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Abstract. A condensed summary of a talk I gave in Nara on August 13, 2023: Reporting
on joint work with Roland van der Veen, I’ll tell you some stories about ρ1, an easy to
define, strong, fast to compute, homomorphic, and well-connected knot invariant. ρ1 was
first studied by Rozansky and Overbay [Ro1, Ro2, Ro3, Ov] and Ohtsuki [Oh2], it has far-
reaching generalizations, it is dominated by the coloured Jones polynomial, and I wish I
understood it.

My talk’s title and abstract were the same
as the title and abstract of this summary.
The talk used slides, and in this summary,
they are shown on the right.

Those slides were all excerpts from a handout, which is attached
at the end of this document. It is where the true content lies! It
is also available on the web site of this talk, which is displayed on
the next slide.

As an aside, I really believe in this way of giving talks, with slides
and a handout. Slides are to save time and to allow for more elabo-
rate figures. But slide talks without a handout are awful! Content
disappears before it’s been digested. A handout with identical con-
tent to the slides solves the problem – you can always look back to
recall (and ahead, to decide how hard you want to fight sleep). But
then the best way to make sure that the handout and the slides
are fully synced is to have the slides simply be zoomed-in parts of the handout, and that’s
precisely what I do.

But it’s a waste of so much paper, I hear you say. Yes, I say, but it’s completely trivial
relative to our travel to hear each other talk. Save where it matters. Where it’s useful,
spend.

Okay, it’s all online, at ωεβ:=http://drorbn.net/na23.
There’s also a paper, at ωεβ/APAI.

Thanks, NSERC and Arthur Chu!

Date: August 14, 2023.
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We seek strong, fast, and homomorphic invariants.
Strong and fast are clear enough. Especially, we care
for fast because of the likes of the GST48 knot [GST]
and the Piccirillo knot [Pi]. Polynomial time is best!

We then explained “homomorphic”. It means, “ex-
tends to tangles and is well behaved under tangle glu-
ing and strand doubling”.

We care for “homomorphic” because using tangles
and tangle operations we can define interesting classes
of knots, and thus invariants that are homomorphic
with respect to these operations may be able to tell us
something about these classes. See ωεβ/AKT.

But enough with philosophy! I learned from Vaughan
Jones that theories change with time, yet formulas
stay. So let’s start with formulas!

To compute our knot invariant ρ1, we cut it to a long
knot and place it in the plane so that at all vertices, all
edges are “flowing up”. We then label each edge with
serial number and with its rotation number φk.

We make a (2n+1)×(2n+1) matrix A
by starting with the identity matrix and
adding a 2 × 2 block for each crossing,
as shown on the right. We let G = (gαβ)
be the inverse of A.
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If we start from the trefoil knot diagram displayed
before, the resulting A is shown on the right.

And now the corresponding G, the “Green Func-
tion”, is shown.

We noted that det(A) is (up to a normalization) the
good old Alexander polynomial. If you are a classical
topologist, you should yawn and perhaps fall asleep
right now, for so far everything is very old material.

The 2 × 2 matrices are the Burau matrices. The matrix A is a presenta-
tion matrix of the Alexander module, derived by applying Fox calculus to the
Wirtinger presentation. Even G is not a great surprise; it is related to the
“Blanchfield Pairing”. All of these people are old timers, so much so that their
pictures are in black and white.
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All the news is in just one slide, the
one on the right! We defined R1(c) and
ρ1, explained why ρ1 is easy to compute
(as easy as the Alexander polynomial),
and asserted that it is invariant (to be
proven below). If you are a classical topol-
ogist, these formulas should come as a
complete surprise to you.

These days I take what I learned from Vaughan
Jones a step further. I care for programs even more
than I care for formulas.

We load some libraries that play a mild role: just
tables of knots, and some older invariants for com-
parison, and a program to compute rotation numbers
(something we could have done by hand).

Next is the main part of the program. It is
almost one-to-one the same as the formulas for
ρ1, and if there’s ever a disagreement, the pro-
gram is to be trusted better because it’s been
tested extensively. Note that the program out-
puts the ordered pair Z = (∆, ρ1), because ∆
is computed anyway within the computation of
ρ1, and we consider it as a part of ρ1.

We run the program on all knots with up to 6 cross-
ings.
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The program is fast! Here is the GST48 knot once
again,. . .

and it takes only about 170 seconds to compute its
ρ1.

Z = (∆, ρ1) is strong! It seems that it is stronger
than HOMFLY-PT and Khovanov homology taken to-
gether.

On to interpretations, we discussed the
traffic rules for cars on a knot diagram.
All car crashes we discuss are gentle and
no harm is ever caused to the occupants
of our cars.
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A relevant scene with Lightning McQueen, enacted by
Roland’s kids.

We claim that the matrix G of before is the traf-
fic matrix for a knot diagram. Yet first we illustrate
the traffic matrix using a very simple knot diagram (a
single kink), and some simple-minded geometric sum-
mation.

We then used “g-rules” to prove the claim. These
are rules that tell us how to move the traffic injection
sites and the traffic counting sites, and they will also
be useful below, within the actual proof of invariance.

On to the invariance under the hardest of the Rei-
demeister moves, Reid3. We first establish that traffic
away from the Reid3 site is not affected by the move.
This is essentially the invariance of the Burau repre-
sentation.

It follows that we only need to understand the con-
tribution of the R1(c) terms from the crossings within
the Reid3 area.

We could have done it by hand, but we are lazy
and we have good computer skills. So we type in the
g-rules, the three R1 contributions for the left hand
side of Reid3 and the three R1 contributions for the
right hand side. We then apply the g-rules to move
the traffic injection sites and the traffic counting sites
to outside of the Reid3-move area, to where they are
unchanged by the move. Comparing lhs with rhs, the
computer says True, which means that ρ1 is invariant
under Reid3.

As a second example we verify invariance under Reid1.
Most of the work had already been done, because we
computed already the “traffic matrix” of a kink. What
remains is a little calculation (without forgetting the
rotation-number correction!). We do that calculation
on the right, using a hybrid of computer and human power (very little of each). A few further
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moves need to be shown — they are discussed at ωεβ/APAI. This concludes the invariance
proof for ρ1.

This slide ought to be shown
bigger. Wearing my topology hat,
I genuinely, honestly, don’t know
what’s going on.

Unfortunately, at this point we had to rush towards
the end, and be brief. Wearing my quantum algebra
hat, the first thing to note is that there is a whiff of
a Heisenberg relation in car traffic — a difference of 1
between the traffic counting before and after the place
where traffic is injected, and that may remind us of the Heisenberg commutation relation,
[p, x] = 1.
I have gone through the remaining few slides way too quickly. Here I will let them speak

for themselves. The main things to learn from these reproduced slides are the references
cited in them, and the comments in red.

Where did it come from? Consider
gϵ := slϵ2+ := L⟨y, b, a, x⟩ with relations

[b, x] = ϵx, [b, y] = −ϵy, [b, a] = 0,

[a, x] = x, [a, y] = −y, [x, y] = b+ ϵa.

At invertible ϵ, it is isomorphic to sl2 plus a
central factor, and it can be quantized à la
Drinfel’d [Dr] much like sl2 to get an algebra
QU = A⟨y, b, a, x⟩ subject to (with q = e

ℏϵ):

[b, a] = 0, [b, x] = ϵx, [b, y] = −ϵy,

[a, x] = x, [a, y] = −y,

xy − qyx =
1− e

−ℏ(b+ϵa)

ℏ
.

Now QU has an R-matrix solving Yang-
Baxter (meaning Reid3),

R =
∑

m,n≥0

ynbm ⊗ (ℏa)m(ℏx)n

m![n]q!
,

([n]q! is a “quantum factorial”)

and so it has an associated “universal quan-
tum invariant” à la Lawrence and Oht-
suki [La, Oh1], Zϵ(K) ∈ QU .
Now QU ∼= U(gϵ) (only as algebras!) and

U(gϵ) represents into H via

y → −tp− ϵ · xp2, b → t+ ϵ · xp,
a → xp, x → x,

(abstractly, gϵ acts on its Verma module

U(gϵ)/(U(gϵ)⟨y, a, b− ϵa− t⟩) ∼= Q[x]

by differential operators, namely via H), so R
can be pushed to R ∈ H⊗H.

Everything still makes sense at ϵ = 0
and can be expanded near ϵ = 0 resulting
with R = R0(1 + ϵR1 + · · · ), with R0 =
e
t(xp⊗1−x⊗p) and R1 a quartic polynomial in

p and x. So p’s and x’s get created along K
and need to be pushed around to a standard
location (“normal ordering”). This is done
using

(p⊗ 1)R0 = R0(T (p⊗ 1) + (1− T )(1⊗ p)),

(1⊗ p)R0 = R0(1⊗ p),

and when the dust settles, we get our formu-
las for ρ1. But QU is a quasi-triangular Hopf
algebra, and hence ρ1 is homomorphic.
Read more at [BV1, BV2] and hear more at
ωεβ/SolvApp, ωεβ/Dogma, ωεβ/DoPeGDO,
ωεβ/FDA, ωεβ/AQDW.

Schaveling

Also, we can (and know how to)
look at higher powers of ϵ and we
can (and more or less know how
to) replace sl2 by arbitrary semi-
simple Lie algebra (e.g., [Sch]). So
ρ1 is not alone!
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These constructions are very similar to
Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] and

hence to the “loop expansion” of the Kontse-
vich integral and the coloured Jones polyno-
mial [Oh2].

We re-iterated that an invariant as simple as ρ1 must
have a simple explanation, hopefully, within topology.
Our current understanding of ρ1 within quantum alge-
bra is simply way too complicated.

We also remind that in some sense, ρ1 is a “friend”
of the Alexander polynomial ∆, and that ∆ is perhaps
the most topologically-meaningful knot invariant. Like ∆, ρ1 gives a genus bound. Does it
also give a ribbon criteria like the Fox-Milnor condition for ∆?

At the end, we merely flashed our theorem regarding
ρd, which generalizes ρ1 when d ≥ 1, and our imple-
mentation thereof. For d ≥ 2, ρd is more complicated
than ρ1, yet it retains some things in common with
ρ1: Once more the key is the matrix G = (gαβ). To
compute ρ1 we carry out a 1-fold summation over the
features of the knot (crossings and rotations), of poly-
nomials of degree ≤ 2 in the gαβ’s. To compute ρd
we carry out a d-fold summation over the features of
the knot, of polynomials of degree ≤ 2d in the gαβ’s.
Multiple summations are of course more costly than
single summations, yet the computation of ρ2 remains
of polynomial time and for small d it is completely
practical.
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Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants
University of Toronto: Dror Bar-Natan: Talks: Nara-2308:

i+1 j+1j+1 i+1

(n = 3)
T

δ
U

We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle T with skeleton as below
such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-
gles and behaves under tangle
operations; especially gluings
and doublings:

K

τ

Hear more at ωεβ/AKT.
Acknowledgement. This work was supported by NSERC grant
RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

ωεβBhttp://drorbn.net/na23Thanks for inviting me to Nara!

Abstract. Reporting on joint work
with Roland van der Veen, I’ll tell
you some stories about ρ1, an easy
to define, strong, fast to compute,
homomorphic, and well-connected knot invariant. ρ1 was first
studied by Rozansky and Overbay [Ro1, Ro2, Ro3, Ov] and Oh-
tsuki [Oh2], it has far-reaching generalizations, it is dominated
by the coloured Jones polynomial, and I wish I understood it.
Common misconception. “Dominated”⇏ “lesser”.

Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1} and with
rotation numbers φk. Let A be the (2n+1)× (2n+1)
matrix constructed by starting with the identity ma-
trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 − (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1



.

Note. The Alexander polynomial ∆ is given by

∆ = T (−φ−w)/2 det(A), with φ =
∑

k

φk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1
row i −T s T s − 1
row j 0 −1

c :

i j

s = +1

φ
4
=
−1

Formulas, continued. Finally, set

R1(c) B s
(
g ji

(
g j+1, j + g j, j+1 − gi j

)
− gii

(
g j, j+1 − 1

)
− 1/2

)

ρ1 B ∆2


∑

c

R1(c) −
∑

k

φk (gkk − 1/2)

 .

In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.
Theorem. ρ1 is a knot invariant. Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. At the
very end, cars fall off and disappear. See also [Jo, LTW].

More at ωεβ/APAI
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“The Green Function”

Jones:
Formulas stay;
interpretations change with time.

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

1−T T 1 0 0 T−11 1−T−1



Preliminaries
This is Rho.nb of http://drorbn.net/oa22/ap.
Once[<< KnotTheory`; << Rot.m];

Loading KnotTheory` version

of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/la22/ap

to compute rotation numbers.

The Program
R1[s_, i_, j_] :=

s (gji (gj+,j + gj,j+ - gij) - gii (gj,j+ - 1) - 1/2);

Z[K_] := Module{Cs, φ, n, A, s, i, j, k, Δ, G, ρ1},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ρ1 = 
k=1

n
R1 @@ Cs〚k〛 - 

k=1

2 n
φ〚k〛 (gkk - 1/2);

Factor@

Δ, Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛;

The First Few Knots
TableFormTableJoinK〚1〛K〚2〛, Z[K],

{K, AllKnots[{3, 6}]}, TableAlignments  Center
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1718

23 24 27

29

37 38

41

434647

52 53

Timing@

ZGST48 = EPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95,

X96,7, X13,8, X9,28, X10,41, X42,11, X27,12, X30,15,

X16,61, X17,72, X18,83, X19,34, X89,20, X21,92,

X79,22, X68,23, X57,24, X25,56, X62,31, X73,32,

X84,33, X50,35, X36,81, X37,70, X38,59, X39,54, X44,55,

X58,45, X69,46, X80,47, X48,91, X90,49, X51,82, X52,71,

X53,60, X63,74, X64,85, X76,65, X87,66, X67,94,

X75,86, X88,77, X78,93

170.313, -
1

T8
-1 + 2 T - T2 - T3 + 2 T4 - T5 + T8

-1 + T3 - 2 T4 + T5 + T6 - 2 T7 + T8,
1

T16

(-1 + T)2 5 - 18 T + 33 T2 - 32 T3 + 2 T4 + 42 T5 - 62 T6 -

8 T7 + 166 T8 - 242 T9 + 108 T10 + 132 T11 - 226 T12 +

148 T13 - 11 T14 - 36 T15 - 11 T16 + 148 T17 - 226 T18 +

132 T19 + 108 T20 - 242 T21 + 166 T22 - 8 T23 - 62 T24 +

42 T25 + 2 T26 - 32 T27 + 33 T28 - 18 T29 + 5 T30

Strong!
{NumberOfKnots[{3, 12}],

Length@

Union@Table[Z[K], {K, AllKnots[{3, 12}]}],

Length@

Union@Table[{HOMFLYPT[K], Kh[K]},

{K, AllKnots[{3, 12}]}]}

{2977, 2882, 2785}

So the pair (∆, ρ1) attains 2,882 distinct values on the 2,977 prime
knots with up to 12 crossings (a deficit of 95), whereas the pair
(HOMFLYPT, Khovanov Homology) attains only 2,785 distinct
values on the same knots (a deficit of 192).

Hoste Ocneanu Millett Freyd Lickorish Yetter Przytycki Traczyk Khovanov
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If this all reads like insanity to you, it should (and you haven’t
seen half of it). Simple things should have simple explanations.
Hence, Homework. Explain ρ1 with no reference to quantum
voodoo and find it a topology home (large enough to house ge-
neralizations!). Make explicit the homomorphic properties of ρ1.
Use them to do topology!
P.S. As a friend of ∆, ρ1 gives a genus bound, sometimes better
than ∆’s. How much further does this friendship extend?

T−1

0 1

0

0 1 G =


1 T−1 1
0 T−1 1
0 0 1



∑
p≥0(1−T )p = T−1

1 1

i j

↔

Theorem. The Green function gαβ is the
reading of a traffic counter at β, if car traffic
is injected at α (if α = β, the counter is after
the injection point).
Example.

Proof. Near a crossing c with sign s, incoming upper
edge i and incoming lower edge j, both sides satisfy the
g-rules:

giβ = δiβ + T sgi+1,β + (1 − T s)g j+1,β, g jβ = δ jβ + g j+1,β,

and always, gα,2n+1 = 1: use common sense and AG = I (= GA).
Bonus. Near c, both sides satisfy the further g-rules:

gαi = T−s(gα,i+1 − δα,i+1), gα j = gα, j+1 − (1 − T s)gαi − δα, j+1.

α

β

Wearing my Quantum Algebra hat, I spy a Heisenberg
algebra H = A⟨p, x⟩/([p, x] = 1):

cars↔ p traffic counters↔ x
Where did it come from? Consider gϵ B slϵ2+ B L⟨y, b, a, x⟩
with relations

[b, x] = ϵx, [b, y] = −ϵy, [b, a] = 0,
[a, x] = x, [a, y] = −y, [x, y] = b + ϵa.

At invertible ϵ, it is isomorphic to sl2 plus a central factor, and
it can be quantized à la Drinfel’d [Dr] much like sl2 to get an
algebra QU = A⟨y, b, a, x⟩ subject to (with q = eℏϵ):

[b, a] = 0, [b, x] = ϵx, [b, y] = −ϵy,
[a, x] = x, [a, y] = −y, xy − qyx =

1 − e−ℏ(b+ϵa)

ℏ
.

Now QU has an R-matrix solving Yang-Baxter (meaning Reid3),

R =
∑

m,n≥0

ynbm ⊗ (ℏa)m(ℏx)n

m![n]q!
, ([n]q! is a “quantum factorial”)

and so it has an associated “universal quantum invariant” à la
Lawrence and Ohtsuki [La, Oh1], Zϵ(K) ∈ QU.
Now QU � U(gϵ) (only as algebras!) and U(gϵ) represents into
H via

y→ −tp − ϵ · xp2, b→ t + ϵ · xp, a→ xp, x→ x,
(abstractly, gϵ acts on its Verma module

U(gϵ)/(U(gϵ)⟨y, a, b − ϵa − t⟩) � Q[x]
by differential operators, namely via H), so R can be pushed to
R ∈ H ⊗ H.
Everything still makes sense at ϵ = 0 and can be expanded near
ϵ = 0 resulting with R = R0(1+ ϵR1+ · · · ), with R0 = e

t(xp⊗1−x⊗p)

and R1 a quartic polynomial in p and x. So p’s and x’s get crea-
ted along K and need to be pushed around to a standard location
(“normal ordering”). This is done using

(p ⊗ 1)R0 = R0(T (p ⊗ 1) + (1 − T )(1 ⊗ p)),
(1 ⊗ p)R0 = R0(1 ⊗ p),

and when the dust settles, we get our formulas for ρ1. But QU
is a quasi-triangular Hopf algebra, and hence ρ1 is homomorph-
ic. Read more at [BV1, BV2] and hear more at ωεβ/SolvApp,
ωεβ/Dogma, ωεβ/DoPeGDO, ωεβ/FDA, ωεβ/AQDW.
Also, we can (and know how to) look at higher po-
wers of ϵ and we can (and more or less know how
to) replace sl2 by arbitrary semi-simple Lie algebra
(e.g., [Sch]). So ρ1 is not alone!
These constructions are very similar to Rozansky-Overbay [Ro1,
Ro2, Ro3, Ov] and hence to the “loop expansion” of the Kontse-
vich integral and the coloured Jones polynomial [Oh2].

(1−T )2+T (1−T ) (1−T )T

T (1−T )
1−T

T

T 2T (1−T )

T

T 2

=

1−T

Invariance of ρ1. We start with the hardest, Reidemeister 3:

⇒ Overall traffic patterns are unaffected by Reid3!
⇒Green’s gαβ is unchanged by Reid3, provided the cars injection
site α and the traffic counters β are away.
⇒ Only the contribution from the R1
terms within the Reid3 move matters, and
using g-rules the relevant gαβ’s can be pu-
shed outside of the Reid3 area:
δi_,j_ := If[i === j, 1, 0];

gRuless_,i_,j_ :=

giβ_  δiβ + Ts gi+,β + 1 - Ts gj+,β, gjβ_  δjβ + gj+,β,

gα_,i  T-s (gα,i+ - δα,i+),

gα_j  gα,j+ - 1 - Ts gαi - δα,j+

lhs = R1[1, j, k] + R1[1, i, k+] + R1[1, i+, j+] //.

gRules1,j,k ⋃ gRules1,i,k+ ⋃ gRules1,i+,j+;

rhs = R1[1, i, j] + R1[1, i+, k] + R1[1, j+, k+] //.

gRules1,i,j ⋃ gRules1,i+,k ⋃ gRules1,j+,k+;

Simplify[lhs  rhs]

True

Next comes Reid1, where we use results from an earlier example:

R1[1, 2, 1] - 1 (g22 - 1/2) /. gα_,β_ 

1 T-1 1

0 T-1 1

0 0 1

〚α, β〛

1

T2
-
1

T
-

-1 +
1

T

T

Invariance under the other moves is proven similarly.

Wearing my Topology hat the formula for R1, and
even the idea to look for R1, remain a complete my-
stery to me.

12

3
φ2=1

i j k i j k

k+

i+

j+ j+
k+

i+

k++ j++ i++ k++ j++ i++



A Small-Print Page on ρd, d > 1.
Definition. ⟨ f (zi), h(ζi)⟩{zi} B f (∂ζi)h

∣∣∣
ζi=0, so ⟨p2x2, egπξ⟩ = 2g2.

Baby Theorem. There exist (non unique) pow-
er series r±(p1, p2, x1, x2) =

∑
d ϵ

dr±d (p1, p2, x1, x2) ∈
Q[T±1, p1, p2, x1, x2]⟦ϵ⟧ with deg r±d ≤ 2d + 2 (“docile”) such
that the power series Zb =

∑
ρb

dϵ
d B

〈
exp


∑

c

rs(pi, p j, xi, x j)

 , exp


∑

α,β

gαβπαξβ



〉

{pα,xβ}
is a bnot invariant. Beyond the once-and-for-all computation of
gαβ (a matrix inversion), Zb is computable in O(nd) operations in
the ring Q[T±1].
(Bnots are knot diagrams modulo the braid-like Reidemeister mo-
ves, but not the cyclic ones).
Theorem. There also exist docile power series γφ(p̄, x̄) =∑

d ϵ
dγ
φ
d ∈ Q[T±1, p̄, x̄]⟦ϵ⟧ such that the power series Z =∑

ρdϵ
d B

〈
exp


∑

c

rs(pi, p j, xi, x j) +
∑

k

γφk ( p̄k, x̄k)

 ,

exp


∑

α,β

gαβ(πα + π̄α)(ξβ + ξ̄β) +
∑

α

παξ̄α



〉

{pα,p̄α,,xβ,x̄β}
is a knot invariant, as easily computable as Zb.
Implementation. Data, then program (with output using the
Conway variable z =

√
T −1/

√
T ), and then a demo. See Rho.nb

of ωεβ/ap.
V@γ1,φ_[k_] = φ (1/2 - pk xk); V@γ2,φ_[k_] = -φ

2 pk xk /2;

V@γ3,φ_[k_] := -φ 3 pk xk /6

V@r1,s_[i_, j_] :=

s -1 + 2 pi xi - 2 pj xi + -1 + Ts pi pj xi
2
+ 1 - Ts pj

2 xi
2
- 2 pi pj xi xj + 2 pj

2 xi xj 2

V@r2,1[i_, j_] :=

-6 pi xi + 6 pj xi - 3 (-1 + 3 T) pi pj xi
2
+ 3 (-1 + 3 T) pj

2 xi
2
+ 4 (-1 + T) pi

2 pj xi
3
-

2 (-1 + T) (5 + T) pi pj
2 xi

3
+ 2 (-1 + T) (3 + T) pj

3 xi
3
+ 18 pi pj xi xj -

18 pj
2 xi xj - 6 pi

2 pj xi
2 xj + 6 (2 + T) pi pj

2 xi
2 xj - 6 (1 + T) pj

3 xi
2 xj -

6 pi pj
2 xi xj

2
+ 6 pj

3 xi xj
2
 12

V@r2,-1[i_, j_] :=

-6 T2 pi xi + 6 T2 pj xi + 3 (-3 + T) T pi pj xi
2
- 3 (-3 + T) T pj

2 xi
2
-

4 (-1 + T) T pi
2 pj xi

3
+ 2 (-1 + T) (1 + 5 T) pi pj

2 xi
3
- 2 (-1 + T) (1 + 3 T) pj

3 xi
3
+

18 T2 pi pj xi xj - 18 T2 pj
2 xi xj - 6 T2 pi

2 pj xi
2 xj + 6 T (1 + 2 T) pi pj

2 xi
2 xj -

6 T (1 + T) pj
3 xi

2 xj - 6 T2 pi pj
2 xi xj

2
+ 6 T2 pj

3 xi xj
2
 12 T2

V@r3,1[i_, j_] :=

4 pi xi - 4 pj xi + 2 (5 + 7 T) pi pj xi
2
- 2 (5 + 7 T) pj

2 xi
2
- 4 (-5 + 6 T) pi

2 pj xi
3
+

4 -16 + 17 T + 2 T2 pi pj
2 xi

3
- 4 -11 + 11 T + 2 T2 pj

3 xi
3
+ 3 (-1 + T) pi

3 pj xi
4
-

3 (-1 + T) (4 + 3 T) pi
2 pj

2 xi
4
+ (-1 + T) 13 + 22 T + T2 pi pj

3 xi
4
-

(-1 + T) 4 + 13 T + T2 pj
4 xi

4
- 28 pi pj xi xj + 28 pj

2 xi xj + 36 pi
2 pj xi

2 xj -

12 (9 + 2 T) pi pj
2 xi

2 xj + 24 (3 + T) pj
3 xi

2 xj - 4 pi
3 pj xi

3 xj + 28 T pi
2 pj

2 xi
3 xj -

4 -6 + 17 T + T2 pi pj
3 xi

3 xj + 4 -5 + 10 T + T2 pj
4 xi

3 xj + 24 pi pj
2 xi xj

2
-

24 pj
3 xi xj

2
- 24 pi

2 pj
2 xi

2 xj
2
+ 6 (10 + T) pi pj

3 xi
2 xj

2
- 6 (6 + T) pj

4 xi
2 xj

2
-

4 pi pj
3 xi xj

3
+ 4 pj

4 xi xj
3
 24

V@r3,-1[i_, j_] :=

-4 T3 pi xi + 4 T3 pj xi - 2 T2 (7 + 5 T) pi pj xi
2
+ 2 T2 (7 + 5 T) pj

2 xi
2
-

4 T2 (-6 + 5 T) pi
2 pj xi

3
+ 4 T -2 - 17 T + 16 T2 pi pj

2 xi
3
-

4 T -2 - 11 T + 11 T2 pj
3 xi

3
+ 3 (-1 + T) T2 pi

3 pj xi
4
- 3 (-1 + T) T (3 + 4 T) pi

2 pj
2 xi

4
+

(-1 + T) 1 + 22 T + 13 T2 pi pj
3 xi

4
- (-1 + T) 1 + 13 T + 4 T2 pj

4 xi
4
+

28 T3 pi pj xi xj - 28 T3 pj
2 xi xj - 36 T3 pi

2 pj xi
2 xj + 12 T2 (2 + 9 T) pi pj

2 xi
2 xj -

24 T2 (1 + 3 T) pj
3 xi

2 xj + 4 T3 pi
3 pj xi

3 xj - 28 T2 pi
2 pj

2 xi
3 xj -

4 T -1 - 17 T + 6 T2 pi pj
3 xi

3 xj + 4 T -1 - 10 T + 5 T2 pj
4 xi

3 xj -

24 T3 pi pj
2 xi xj

2
+ 24 T3 pj

3 xi xj
2
+ 24 T3 pi

2 pj
2 xi

2 xj
2
- 6 T2 (1 + 10 T) pi pj

3 xi
2 xj

2
+

6 T2 (1 + 6 T) pj
4 xi

2 xj
2
+ 4 T3 pi pj

3 xi xj
3
- 4 T3 pj

4 xi xj
3
 24 T3

{p*, x*, p*, x*} = π, ξ, π, ξ; z_i__
* := (z*)i;

Zip{}[ℰ_] := ℰ ;

Zip{z_,zs___}[ℰ_] :=

Collectℰ // Zip{zs}, z /. f_. zd_.  (D[f, {z*, d}]) /. z*  0

gPair[fs_, w_] :=

gPair[fs, w] =

CollectZipJoin@@Tablepα,pα,xα,xα,{α,w}

(Times @@ (V /@ fs))

ExpSumgα,β (πα + πα) ξβ + ξβ, {α, w}, {β, w} - Sumξα πα, {α, w},

g__, Factor

T2z[p_] := Module{q = Expand[p], n, c},

Ifq === 0, 0, c = Coefficient[q, T, n = Exponent[q, T]];

c z2 n + T2zq - c T1/2 - T-1/22 n;

Zd_[K_] := Module{Cs, φ, n, A, s, i, j, k, Δ, G, d1, Z1, Z2, Z3},

{Cs, φ} = Rot[K]; n = Length[Cs]; A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts - 1

0 -1
;

{Δ, G} = Factor@T(-Total[φ]-Total[Cs〚All,1〛])/2 Det@A, Inverse@A;

Z1 =

ExpTotalCasesCs, {s_, i_, j_}  Sumϵd1 rd1,s[i, j], {d1, d} +

Sumϵd1 γd1,φ〚k〛[k], {k, 2 n}, {d1, d} /. γ_,0[_]  0;

Z2 = Expand[F[{}, {}]×Normal@Series[Z1, {ϵ, 0, d}]] //.

F[fs_, {es___}]×f : (r γ)ps__[is__]
p_.



F[Join[fs, Table[f, p]], DeleteDuplicates@{es, is}];

Z3 = Expand[Z2 /. F[fs_, es_]  Expand[gPair[

Replace[fs, Thread[es  Range@Length@es], {2}], Length@es

] /. gα_,β_  G〚es〚α〛, es〚β〛〛] ];

CollectΔ, Z3 /. ϵ
p_.

 p! Δ
2 p

ϵ
p
, ϵ, T2z ;

Z2[GST48] (* takes a few minutes *)

1 - 4 z2 - 61 z4 - 207 z6 - 296 z8 - 210 z10 - 77 z12 - 14 z14 - z16,

1 + 38 z2 + 255 z4 + 1696 z6 + 16 281 z8 + 86 952 z10 + 259 994 z12 + 487 372 z14 + 615 066 z16 + 543 148 z18 + 341 714 z20 +

153 722 z22 + 48 983 z24 + 10 776 z26 + 1554 z28 + 132 z30 + 5 z32 ϵ +

-8 - 484 z2 + 9709 z4 + 165 952 z6 + 1 590 491 z8 + 16 256 508 z10 + 115 341 797 z12 + 432 685 748 z14 + 395 838 354 z16 - 4 017 557 792 z18 - 23 300 064 167 z20 -

70 082 264 972 z22 - 142 572 271 191 z24 - 209 475 503 700 z26 - 221 616 295 209 z28 - 151 502 648 428 z30 - 23 700 199 243 z32 +

99 462 146 328 z34 + 164 920 463 074 z36 + 162 550 825 432 z38 + 119 164 552 296 z40 + 69 153 062 608 z42 + 32 547 596 611 z44 + 12 541 195 448 z46 +

3 961 384 155 z48 + 1 021 219 696 z50 + 212 773 106 z52 + 35 264 208 z54 + 4 537 548 z56 + 436 600 z58 + 29 536 z60 + 1252 z62 + 25 z64 ϵ
2


TableFormTableJoinK〚1〛K〚2〛, Z3[K], {K, AllKnots[{3, 6}]}, TableAlignments  Center (* takes a few minutes *)

31 1 + z2 1 + 2 z2 + z4 ϵ + 2 - 4 z2 + 3 z4 + 4 z6 + z8 ϵ2 + -12 + 74 z2 - 27 z4 - 20 z6 + 8 z8 + 6 z10 + z12 ϵ3

41 1 - z2 1 + -2 + 2 z4 ϵ2

51 1 + 3 z2 + z4 1 + 10 z2 + 21 z4 + 12 z6 + 2 z8 ϵ + 6 - 28 z2 + 33 z4 + 364 z6 + 655 z8 + 536 z10 + 227 z12 + 48 z14 + 4 z16 ϵ2 + -60 + 970 z2 + 645 z4 - 3380 z6 - 3280 z8 + 7470 z10 + 19 475 z12 + 20 536 z14 + 12 564 z16 + 4774 z18 + 1109 z20 + 144 z22 + 8 z24 ϵ3

52 1 + 2 z2 1 + 6 z2 + 5 z4 ϵ + 4 - 20 z2 + 43 z4 + 64 z6 + 26 z8 ϵ2 + -36 + 498 z2 - 883 z4 + 100 z6 + 816 z8 + 556 z10 + 146 z12 ϵ3

61 1 - 2 z2 1 + -2 z2 + z4 ϵ + -4 + 4 z2 + 25 z4 - 8 z6 + 2 z8 ϵ2 + 12 + 154 z2 - 223 z4 - 608 z6 + 100 z8 - 52 z10 + 10 z12 ϵ3

62 1 - z2 - z4 1 + -2 z2 - 3 z4 + 2 z6 + z8 ϵ + -2 - 4 z2 + 29 z4 + 28 z6 + 42 z8 - 8 z10 - 2 z12 + 4 z14 + z16 ϵ2 + 12 + 166 z2 + 155 z4 - 194 z6 - 2453 z8 - 1622 z10 - 1967 z12 - 258 z14 + 49 z16 - 30 z18 + z20 + 6 z22 + z24 ϵ3

63 1 + z2 + z4 1 + 2 + 8 z2 - 16 z6 - 24 z8 - 16 z10 - 2 z12 ϵ2
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