The 17 Worlds of Planar Ants

Dror Bar-Natan, http://drorbn.net/mc21
MathCamp by Web, July 2021

Abstract. My goal is to get you hooked, captured and unreleased until you find all 17 in real life, around you.

We all know that the plane can be filled in different periodic manners: floor tiles are often square but sometimes hexagonal, bricks are often laid in an interlaced pattern, fabrics often carry interesting patterns. A little less known is that there are precisely 17 symmetry patterns for tiling the plane; not one more, not one less. It is even less known how easy these 17 are to identify in the patterns around you, how fun it is, how common some are, and how rare some others seem to be.

Gotta Catch 'Em All!

Thanks for inviting me to MathCamp! Just to feel a little closer, here's a picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

Reading. An excellent book on the subject is The Symmetries of Things by J. H. Conway, H. Burgiel, and C. Goodman-Strauss, CRC Press, 2008.

Another nice text is Classical Tessellations and ThreeManifolds by J. M. Montesinos, Springer-Verlag, 1987.

And another is Tilings \& Patterns by B. Grünbaum and G. C. Shephard, Dover, 2016.
drorbn, net/m<21

(Easy) Question 1. In what ways can you make $\$ 2$ change, using coins denominated $\$ \frac{1}{2}, \$ \frac{2}{3}, \$ \frac{3}{4}, \$ \frac{4}{5}, \$ \frac{5}{6}$, etc.?
(Harder) Question 2. Why am I asking?

Floor tiles at Fran's Restaurant \& Bar, Toronto 2014

A chair at the Toronto Public Library, 2014

A living room sofa at the Karshon's, 2012

Theorem. There are precisely 17 patterns with which to tile the plane, no more, no less. They are all made of combinations of the 10 basic features, $2,3,4,6, \not, \phi, 4, \phi, \mathrm{M}$, and G , as follows:

\checkmark Dror's	Conway's	crystallo -graphic	\checkmark	Dror's	Conway's	crystallo -graphic
2222	2222	p2		33	$3 * 3$	p31m
333	333	p3		222	$2 * 22$	cmm
1442	442	p4		22M	22*	pmg
$\checkmark 632$	632	p6		MM	**	pm
2222	*2222	pmm		MG	$*_{0}$	cm
333	*333	p3m1		GG	OO	pg
442	*442	p 4 m		22G	220	pgg
632	*632	p6m		\emptyset	0	p1
42	$4 * 2$	p4g	(2) Dror Bar-Natan, July 2021			

Video, handout, links at drorbn. net/mc21

Floor tiles in a restaurant in Toronto's Baldwin Street, 2018

A food court at the Roma Fiumicino airport, 2017

A packet of tissues

At Rick's Cafe in Toronto's KensingtcorM Market, 2014

A living room sofa at the Karshon's, 2012

A bike parking in Groningen, 2020

Homework.

Go out and find them all! At home, around the corner, a mile away. Take pictures and upload them to http://drorbn.net/mc21/upload using the file format name-type-description.jpg, where
name is your name or alias.

- type is the type of the tiling pattern, using the Conway conventions but with the "*" replaced with the English letter " s ". In other words, type is one of 2222, 333, 442, 632, s2222, s333, s442, s632, 4s2, 3s3, 2s22, 22s, ss, so, oo, 22 o , or 0.
- description is a short description

As an example, see the file Dror-4S2-StClairWSubway.jpg there.
We will start our class tomorrow with a quick discussion of the patterns you will find - but I can only promise to look at whatever will be uploaded at least two hours ahead of class.
Privacy note. Whatever you upload I may post on my web site. So make sure the pictures you upload don't include anything personal.

Prize.

US\$50 fy you find a 333 n time for our second meeting!

- You must find it "natural") - it can't be your own drawing, or within a book on symmetries, or in a museum that has an exhibit on symmetries (I think MoMath has one).
- In the unlikely event that more than one person will find a 333 , I'll split the prize between all winners.
- I've paid the prize twice before, but it's really tough. I've only seen a 333 "in nature" three times in more than 20 years of looking for it!

of the TV series \qquad visiting \qquad

See you tomorrow!

Best with video on!

Theorem. There are precisely 17 patterns with which to tile the plane, no more, no less. They are all made of combinations of the 10 basic features, $2,3,4,6, \not, \$, 4, \phi, \mathrm{M}$, and G , as follows:

\checkmark	Dror's	Conway's	crystallo -graphic	\checkmark Dror's	Conway's	crystallo -graphic
	2222	2222	p2	33	3*3	p31m
	333	333	p3	222	$2 * 22$	cmm
\checkmark	442	442	p4	$\sqrt{1} 22 \mathrm{M}$	22^{*}	pmg
	632	632	p6	\checkmark MM	**	pm
	2222	*2222	pmm	\checkmark MG	${ }^{0}$	cm
	333	*333	p3m1	\checkmark GG	OO	pg
\checkmark	442	*442	p 4 m	- 22G	220	pgg
	\$32	*632	p6m	\checkmark, \emptyset	0	p1
	42	$4 * 2$	p4g	(0) Dror Bar-Natan, July 2021		

\qquad

Let's look at what you found...

Dror-4S2-StClairWSubway.jpg
42

Janelle-2222-PencilCase.jpg

> Janelle-2£0-MathtownFloorAtTau.jpg 2222

I Jore colow

Janelle-̧ु 32 -TissueBox.jpg

$|x| 11$
$2 \times 1 \quad 12$
$2 \times 2 \quad 22$
no rotatiants. no reflections

Janelle-oo-floor.jpg

Maggie-S442-BowlPattern.jpg

*JLLos picture
限中 $44 x$

Maggie-632-JLo'sPot.jpg

What if we lived on Venus?

Better vaxxed!

The Jerusalem Renaissance Hotel

Doughnuts stolen from the MathCamp Kitchen

A truck's tire inner tube and Itai

Floor of La Tortilleria, Toronto 2018

respect colonMM

Earth on a cylinder

A carpet seen at Indiana University, 2016

Better vaxxed!

A living room sofa at the Karshon's, 2012

A Klein bottle from https://www.kleinbottle.com/

A bed cover and Annie, 2000

a $90^{\circ} 90^{\circ} 90^{\circ} 90^{\circ}$ pillow

This one earned Angela Wu C\$50 a few years ago

Similarly, $442 \rightarrow$ a $90^{\circ} 45^{\circ} 45^{\circ}$ pillow or cookie, and $632 \rightarrow$ a $90^{\circ} 60^{\circ} 30^{\circ}$ pillow or cookie.

Wallpaper at Bridgehead Coffee in Ottawa

a $90^{\circ} 90^{\circ} 90^{\circ} 90^{\circ}$ rectangle

Similarly, $442 \rightarrow$ a $90^{\circ} 45^{\circ} 45^{\circ}$ triangle, $333 \rightarrow$ a $60^{\circ} 60^{\circ} 60^{\circ}$ triangle, and $632 \rightarrow$ a $90^{\circ} 60^{\circ} 30^{\circ}$ triangle.

The powder room at the Kuperberg-Zieve's

A plastic bag

Homework.

What about 42, 3\$, 222, and 22G?

The 219 Worlds of Monkeys that Can't Tell Left From Right (Numbers and pictures from arxiv:math/9911185 by Conway, Friedrichs, Huson, and Thurston; see also http://webmineral.com/crystall.shtml)

Thank You!

