Handout on 180222

February 22, 2018 11:23 AM

Dror Bar-Natan: Talks: Matemale-1804:

Solvable Approximations of the Quantum sl_2 Portfolio

Our Main Theorem (loosely stated). Everything that matters in the quantum sl_2 portfolio can be continuously expressed in terms of docile perturbaed Gaussians using solvable approximations. Our Main Points.

- What's the "quantum sl₂ portfolio"?
- What in it "matters" and why? (the most important question)
- What's "solvable approximation"? What's "continuously"?
- What are "docile perturbaed Gaussians"?
- Why do they matter?

(2nd most important)

• How proven?

(docile)

How implemented?

(sacred)

The quantum sl₂ Portfolio includes a classical universal enveloping algebra CU, its

 $\otimes ,m_{k}^{ij},\!\Delta _{jk}^{i},\!S_{i},\!\theta$ \otimes , m_k^{ij} , Δ_{ik}^i , S_i , θ quantization QU, their tensor $R, s \in \{QU^{\otimes S}\} \xrightarrow{AD, SD} \{CU^{\otimes S}\}$

powers $CU^{\otimes S}$ and $OU^{\otimes S}$ with the "tensor operations" \otimes , their products m_k^{ij} , coproducts Δ_{ik}^i and antipodes S_i , their Cartan automophisms $C\theta: CU \to CU$ and $Q\theta: QU \to QU$, the "dequantizators" $A\mathbb{D}: QU \to CU$ and $S\mathbb{D}: QU \to CU$, and most importantly, the R-matrix R and the Drinfel'd element s. All this in any PBW basis, and change of basis maps are included.

doc∙ile

ˈdäsəl/ •

60 🍑 6 F B

ready to accept control or instruction; submissive

Add "section of a quadratic" picture.