- Task. Define $\operatorname{Exp}_{U_i,k}[\xi, P]$ which computes $e^{\xi \mathbb{Q}(P)}$ to ϵ^k in the algebra
- U_i , where ξ is a scalar, X is x_i or y_i , and P is an ϵ -dependent near-
- docile element, giving the answer in E-form. Should satisfy
- $U \textcircled{\ } \operatorname{Exp}_{U_{i,k}}[\xi, P] == \$_{U}[e^{\xi x}, x \to \mathbb{O}(P)].$ Methodology. If $P_{0} := P_{\epsilon=0}$ and $e^{\xi \mathbb{O}(P)} = \mathbb{O}(e^{\xi P_{0}} F(\xi))$, then $F(\xi = 0) = 1$
- and we have:
- This is an ODE for *F*. Setting inductively $F_k = F_{k-1} + \epsilon^k \phi$ we find that $F_0 = 1$ and solve for ϕ .