Task. Define $\operatorname{Exp}_{U_{i}, k}[\xi, P]$ which computes $\mathbb{e}^{\xi \oplus(P)}$ to ϵ^{k} in the algebra U_{i}, where ξ is a scalar, X is x_{i} or y_{i}, and P is an ϵ-dependent neardocile element, giving the answer in \mathbb{E}-form. Should satisfy $U @ \operatorname{Exp}_{U_{i}, k}[\xi, P]==\boldsymbol{S}_{U}\left[\boldsymbol{e}^{\xi x}, x \rightarrow \mathbb{O}(P)\right]$. Methodology. If $P_{0}:=P_{\epsilon=0}$ and $e^{\xi \mathbb{O}(P)}=\mathbb{O}\left(e^{\xi P_{0}} F(\xi)\right)$, then $F(\xi=0)=1$ and we have:

$$
\begin{aligned}
\mathbb{O}\left(e^{\xi P_{0}}\left(P_{0} F(\xi)+\partial_{\xi} F\right)\right. & =\mathbb{O}\left(\partial_{\xi} e^{\xi P_{0}} F(\xi)\right)= \\
\partial_{\zeta} \mathbb{O}\left(e^{\zeta P_{0}} F(\xi)\right) & =\partial_{\xi} e^{\xi \mathbb{O}(P)}=e^{\xi \mathbb{O}(P)} \mathbb{O}(P)=\mathbb{O}\left(e^{\zeta P_{0}} F(\xi)\right) \mathbb{O}(P)
\end{aligned} .
$$

This is an ODE for F. Setting inductively $F_{k}=F_{k-1}+\epsilon^{k} \varphi$ we find that $F_{0}=1$ and solve for φ.

