

following modification GRT(k) of the group GT(k). We denote by  $GRT_1(k)$ the set of all  $g \in \operatorname{Fr}_{k}(A, B)$  such that  $g(B, A) = g(A, B)^{-1}$ . (5.12)

by successive approximations presents no problems. For this we introduce the

$$g(C, A)g(B, C)g(A, B) = 1$$
 for  $A + B + C = 0$ , (5.13)

$$A + g(A, B)^{-1}Bg(A, B) + g(A, C)^{-1}Cg(A, C) = 0$$
 (5.14)

$$A + g(A, B) \quad Bg(A, B) + g(A, C) \quad Cg(A, C) = 0$$
for  $A + B + C = 0$ ,
$$g(X^{12}, X^{23} + X^{24})g(X^{13} + X^{23}, X^{34})$$
(5.14)

$$= g(X^{23}, X^{34})g(X^{12} + X^{13}, X^{24} + X^{34})g(X^{12}, X^{23}),$$
 (5.15) where the  $X^{ij}$  satisfy (5.1). GRT<sub>1</sub>(k) is a group with the operation

$$(g_1 \circ g_2)(A, B) = g_1(g_2(A, B)Ag_2(A, B)^{-1}, B) \cdot g_2(A, B). \tag{5.16}$$

On  $GRT_1(k)$  there is an action of  $k^*$ , given by  $\widetilde{g}(A, B) = g(c^{-1}A, c^{-1}B), c \in$  $k^*$ . The semidirect product of  $k^*$  and  $GRT_1(k)$  we denote by GRT(k). The Lie algebra  $grt_1(k)$  of the group  $GRT_1(k)$  consists of the series  $\psi \in \mathfrak{fr}_k(A, B)$ such that

$$\psi(B, A) = -\psi(A, B), \qquad (5.17)$$

$$\psi(C, A) + \psi(B, C) + \psi(A, B) = 0 \text{ for } A + B + C = 0,$$
 (5.18)

$$[B, \psi(A, B)] + [C, \psi(A, C)] = 0 \text{ for } A + B + C = 0,$$
 (5.19)

$$\psi(X^{12}, X^{23} + X^{24}) + \psi(X^{13} + X^{23}, X^{34})$$

$$= \psi(X^{23}, X^{34}) + \psi(X^{12} + X^{13}, X^{24} + X^{34}) + \psi(X^{12}, X^{23}), (5.20)$$

where the  $X^{ij}$  satisfy (5.1). A commutator  $\langle , \rangle$  in  $grt_1(k)$  is of the form

$$\langle \psi_1, \psi_2 \rangle = [\psi_1, \psi_2] + D_{\psi_2}(\psi_1) - D_{\psi_1}(\psi_2), \tag{5.21}$$
 where  $[\psi_1, \psi_2]$  is the commutator in  $\mathfrak{fr}_k(A, B)$  and  $D_{\psi}$  is the derivation of

 $\operatorname{fr}_{\nu}(A, B)$  given by  $D_{\nu\nu}(A) = [\psi, A], D_{\nu\nu}(B) = 0$ . The algebra  $\operatorname{grt}_{\nu}(k)$  is **PROPOSITION** 5.1. The action of GT(k) on M(k) is free and transitive.

PROOF. If  $(\mu, \varphi) \in M(k)$  and  $(\overline{\mu}, \overline{\varphi}) \in M(k)$ , then there is exactly one f such that  $\overline{\varphi}(A, B) = f(\varphi(A, B)e^A\varphi(A, B)^{-1}, e^B) \cdot \varphi(A, B)$ . We need to show that  $(\lambda, f) \in GT(k)$ , where  $\lambda = \overline{\mu}/\mu$ . We prove (4.10). Let  $G_n$  be the semidirect product of  $S_n$  and  $\exp \alpha_n^k$ . Consider the homomorphism  $B_n \to G_n$ that takes  $\sigma_i$  into

$$\varphi(X^{1i} + \dots + X^{i-1,i}, X^{i,i+1})^{-1} \sigma^{i,i+1} e^{\mu X^{i,i+1}/2} \varphi(X^{1i} + \dots + X^{i-1,i}, X^{i,i+1}),$$

where  $\sigma^{ij} \in S_n$  transposes i and j. It induces a homomorphism  $K_n \to \exp \mathfrak{a}_n^k$ , and therefore a homomorphism  $\alpha_n$ :  $K_n(k) \to \exp \alpha_n^k$ , where  $K_n(k)$  is the kpro-unipotent completion of  $K_n$ . It is easily shown that the left- and right-hand sides of (4.10) have the same images in  $\exp \mathfrak{a}_{A}^{k}$ . It remains to prove that  $\alpha_{n}$  is an isomorphism. The algebra Lie  $K_{-}(k)$  is topologically generated by the elements  $\xi_{ii}$ ,  $1 \le i < j \le n$ , with defining relations obtained from (4.7)-(4.9) by substituting  $x_{ij} = \exp \xi_{ij}$ . The principal parts of these relations are the same as in (5.1), while  $(\alpha_n)_*(\xi_{ij}) = \mu X^{ij} + \{\text{lower terms}\}, \text{ where } (\alpha_n)_*: \text{Lie } K_n(k) \to \mathfrak{a}_n^k$ is induced by the homomorphism  $\alpha_n$ . Therefore  $\alpha_n$  is an isomorphism, i.e., (4.10) is proved. (4.3) is obvious. To prove (4.4), we can interpret it in terms of  $K_3$  and argue as in the proof of (4.10), or, what is equivalent, make the substitution

$$X_1 = e^A, \quad X_2 = e^{-A/2} \varphi(B, A) e^B \varphi(B, A)^{-1} e^{A/2},$$
  
 $X_3 = \varphi(C, A) e^C \varphi(C, A)^{-1},$  (5.4)

