\[R = \mathbb{Q}[C; \mathcal{D}] \]

\[M_A = \{ w \in \mathbb{K} : \forall i \in E \} \]

\[\mathfrak{d}_0(S) \xrightarrow{x} \mathfrak{a}_0(S) \]
\[\downarrow \mathfrak{m}^{xy} \]
\[\downarrow \mathfrak{m}_1^{xy} \]

\[\mathfrak{d}_0(S) \xrightarrow{x} \mathfrak{a}_0(S') \]

Question. Determine the \(\mathfrak{a} \)-side \(M^{xy} \) \& \(C_x \). [They are non-linear!]

"one-colour-Euler"

Methodology. Apply the Euler operator \(E \) on the \(\mathfrak{a} \) side;

it commutes with \(M^{xy} \) \& \(C_x \) and it is injective.

Extend \(\mathfrak{d} \) to \(\mathfrak{d}^E \) so that there would be an Euler operator on the \(\mathfrak{d} \) side as well.
Write $a_{12,13}$ in terms of $a_{4,5,6}$.

In first pass, with $a_{pq} := t_{pq}$,

$$M = \alpha A_{zz} + \beta A_{zy} + \gamma A_{yx}$$

I'm only using "multiplication" here, not using specific properties of conjugation. There has to be a better way to go!

$$u_1 = \frac{1}{x-1} \frac{1}{y} \frac{1}{x} = \frac{x}{x-1} \frac{1}{y} \frac{1}{x}$$

$$u_2 = \frac{1}{x-1} \frac{1}{y} \frac{1}{x}$$

$$= \frac{e^{x C_2 + y C_1}}{x C_2 + y C_1} \left(x C_1 u_2 + y C_y u_1 \right)$$

$$- e^{x C_2 + y C_y} d$$

$$= \frac{e^{x C_2 + y C_1}}{x C_2 + y C_1} \left(x C_1 u_2 + y C_y u_1 \right)$$

$$u_2 = \frac{1}{x-1} \frac{1}{y} \frac{1}{x} = \frac{x}{x-1} \frac{1}{y} \frac{1}{x}$$