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FIQURE 1. (A) A pl
Piccirillo [Pic20]). (B) A yarn ball, (C)

anar diagram of a knot in a pancake (knot diagram by

Measurements on a yarn ball knot,

very flat and wide subsets of R?, as in Figure 1 (A). This pancake description of a knot
is somewhat artificial and does not realistically describe knots that occur in nature, For
example, knotted DNA is shaped much more like the ball of yarn in Figure | (B), than the
pancake knot in (A). Since we aim to have a 3D understanding of knot invariants, we study

knots in the shape of the yarn ball as opposed to the pancake. We define a yarn ball knot
to be a knotted tube of uniform wid

Equivalently, a yarn ball knot is a
Section 2. Let L be the diameter of
The volume also measures the length of the yarn, or how much yarn was used to make the
knot.

By projecting the yarn ball knot in
diagram. The crossing number of t
into 1 x 1 Squares, as in Figure 1 (
above them, and one can exp
square. Since there are ~ [2
n~LL?=[4 = V43,

We see that to describe a yarn ball knot of volume (or length) V as a planar diagram, we
would need ~ V4/3 crossings. For sufficiently large V, V4/3 5 v and it requires many more
bits to describe a yarn ball knot via its projection rather than directly as a yarn ball.

If ¢ is a knot invariant, we denote by C¢(2D,n) the worst-case complexity of computing
¢ on a knot given by a planar diagram with n crossings, and by C¢(3D,V) the worst-case
complexity of computing ¢ on a knot given as a yarn ball of volume V. Given a yarn ball
of volume V we can always compute ¢ by first projecting to the plane?, obtaining a planar
diagram with ~ V4/3 crossings, and then computing ¢ using our best 2D techniques. Hence
always, C¢(3D,V) < C¢(2D, V43 1t is interesting to know when 3D techniques can do even
better. Our first main result is to show that for the link invariant the linking number, there

is a 3D computation technique whose worst-case complexity is faster than every worst-case
2D technique.

a generic direction onto a disk, we attain a planar knot
his projection can be estimated by subdividing the disk
). Most such 1 x 1 Squares will have L layers of strands
ect these strands to cross around ~ (3) ~ L? times in that

squares, the total crossing number of this Projection is around

Theorem 2.1. (Proof in Section 2) Let lk denote the linking number of a 2-component link.
Then Clk(ZD, n) ~ n while C[k(3D, V) ~V.

The linking number of a link is an example of a finite type invariant. Finite typfe invariants
underlie many of the classical knot invariants, for instance they give the coefficients of the
Jones, Alexander, and more generally HOMPFLY-PT polynomials [BL93, BN95a]. We prove

2The projection itself can be computed quickly, in time ~ V*/3, and for all interesting ¢,

this extra work
is negligible
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the following computational bounds for all finite type invariants.

Theorem 3.2. (Proof in Section 3) If  is a finile type invariant of type d then C¢(2D,n)

is at most ~ nd,

Theorem 3.3. (Proof in Section 3) If ¢ is a finite lype invariant of type d then C¢(3D,V)
is at most ~ V4,

The actual complexities C¢(2D, n) for some specific though “special” finite type (’s, such
as the coefficients of the Alexander polynomial, are known to be much smaller. However, for
generic (s, these theorems suggest that 3D techniques will be more computationally efficient
than 2D ones. We suspect the complexities in Theorem 3.2 and 3.3 can be improved by closer
consideration of the counting arguments used the proofs. However, we view these theorems

as a significant starting point that we hope to improve upon in the future and encourage our
rcaders do to the same. '

1.1. Discussion. The opinion we present in this paper is that knots are three-dimensional
and the best way to understand a knot should be three-dimensionallf. We propose some new
language to aid the knot theory community in discussion surrounding current understanding
of an invariant.

Conversation Starter 1. A knot invariant ¢ is said to be computationally 3D, or C3D, if
Cc(3D,V) <« C¢(2D,V*/3).

In other words, { is C3D if substantial savings can be made to the computation of ( on a yarn
ball knot, relative to the complezity of computing by first projecting the yarn ball to the plane.

This is not a formal definition! The notion of an invariant being computationally 3D is
dependent on the current knowledge of the invariant. As our understanding grows and our
computational techniques get better, an invariant might become C3D, or lose its C3D status.
However, the question whether an invariant is C3D, as we understand it at a given time, still
has merit as it measures our understanding, as a community, of knot theory as a 3D subject.
With this new terminology, Theorem 2.1 could be restated as

Theorem 2.1. (restated) The linking number of a 2-component link is C3D.

The results of Theorems 3.2 and 3.3 naively suggest that finite type invariants are also
C3D, but the theorems only give one sided bounds. Yet we believe that our naive conclusion
remains valid, at least in the form “most finite type invariants are C3D".

The opinion in this paper is that in general knot invariants should be C3D. Unfortu-
nately, as of the time this paper is written, very few knot invariants are known to be C3D.
Are the Alexander, Jones, or HOMFLY-PT polynomials C3D? Why or why not? Are the
Reshetikhin-Turaev invariants C8D? Are knot homologies C3D7 While we seem to have a
weak understanding of these fundamental invariants from a 3D perspective, this is cause for
optimism; there is still much work to be done.

Instead of using computational complexity to compare 2D and 3D understandings of in-
variants, we can also use the notion of the maximal value of other quantities relating to the
size of the knot, which motivates the next conversation starter.
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Conversation Starter 2. If 0 is a stingy quantity (i.e. wee
knots), we say 1 has savings in 3D, or has ‘S3D’ if

M,(3D,V) < M,(2D, V%),

is the mazimum value of 1 on all knots described k-dimensionally and of

apect it to be small for small

where M, (kD, s)

size s.

For example, the hyperbolic volume is a stingy quantity-the more
the more complicated its complement, in % will be, which make
perbolic structure on it harder. We expect hyperbol

complicated a knot is,
8 the question of putting a hy-
ic volume to have savings in 3 dimensions,
Conjecture (Bar-Natan, van der Veen) Hyperbolic volume hag SaD.

The genus of a knot is another exa
genus of a knot has S3D, or not. If
the genus truly to compute the Seife
genus is by all means a 3D proper
computed in a 3D manner,

We hope that these conversat
3D computational methods. Th
ing Theorems 2.1 and 3.3,

mple of a stingy quantity, but we do not know if the
a knot is given in 3-dimensions, is the best way to find
1t surface from a projection to 2D, at a great cost? The
ty of a knot, and it seems as though it should be hest

ion starters will encourage our readers to think about more
€ remaining two sections of this paper are dedicated to prov-
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2. GRID KNOTS AND LINKING NUMBER

To emphasize the 3D nature of knots, we think of them as yarn ball knots, instead of as
pancake knots. An equivalent notion is “grid knots” (see also [BL12)). A grid knot (or link)
of size L is a labeled parametrized knot or link embedded as a subset of a grid with side
length L. The arcs of a grid knot are enumerated in order of the parametrization of the
knot along the unit grid segments of the grid lines. For a grid link, the link components are
enumerated, and each arc of the link is labeled by a pair (c, p), where c is the arc’s component
enumeration, and p is the arc’s parametrization enumeration. Some examples of grid knots
are shown in Figure 2, and Figure 3 (A) and (B) shows an example of a 4 x 4 x 4 grid from
different perspectives.

The process of converting an oriented yarn ball knot of length/volume V to a grid knot
is as follows. Replace the yarn by an approximation along grid lines with grid spacing say
1—10’th the unit width of the yarn. Rescale so that the grid squares are unit length again.
Starting at any corner of the grid knot, label the arcs of the knot in order according to the
orientation. The resulting knot is bounded in a box of size ~ 103V, and this process takes
~ V computation steps. To convert a grid knot to a yarn ball knot, scale the grid so the
distance between neighbouring grid points is say 3 or 5 units. Replace the arcs ij the knot
with yarn of width 1 and round out the corners. This process takes time proportlonal. to the
length of the knot. When computing an invariant of a yarn ba'll knot, first converting the
knot into a grid knot adds a negligible amount of computation tlII.le. :

For the remainder of this paper, we conventionally view grids Wlt}.l the shght!y askew top-
down view as in Figure 3 (B). From this perspective, alllof the crossings of 2 g.nd k_not occur
in triangular crossing fields of the grid- highlighted in Figure 3 (C). The grid lines in the z,y
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FIGURE 2. Two examples of grid knots. The left grid knot has L =3 and 64
labeled arcs, and the right has L = 5 and 216 labeled arcs,

'A
i)
N

7 )
(/N

COUNIT N
75

.-
7Ty
).

ISR T
SN NN )
—
e

"/

N

N/

AN

N\
a"
U
N

(B) (C)

FIGURE 3. The grid in (B) shows a slightly askew top down view of the grid
from (A). (C) highlights two crossing fields, F1 and F3, of a grid.

directions are colored in green and red, and the grid lines in the vertical direction are colored
blue. From the askew top down perspective as in Figure 3 (B), we keep the convention that
“/” grid lines are called “green”, “\” grid lines are called “red”, and horizontal grid lines are
called “blue”. All of the crossings in a crossing field occur between green and red grid lines.
The vertical blue grid lines never participate in a crossing.

There are 2L? triangular crossing fields; 2 at each (L — 1)? interior corners, and one along
cach exterior corners except two corners, which is 2L + 2(L — 1), for a total of 2(L — 1)% +
2L +2(L - 1) = 2L2,

2.1. Linking Number. For a two-component link £, the linking number of £, denoted lk(£),
is a classical link invariant that measures how the two components are linked. From a planar
projection of £, lk(L) can be computed as follows: Only counting “mixed” crossings that
involve both components (the over strand is from one component and the under strand is from
the other component), [k(L) is one half{the number of positive crossings minus the number of “y{‘; /Iffc'zﬁ/q‘M
negative crossingsf} Using this 2D method for a planar diagram with n crossings, computing ?
Ik requires ~ n steps— one for every crossingl which shows that Cj;(2D,n) ~ n. Using grid
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