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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS III: THE
DOUBLE TREE CONSTRUCTION

DROR BAR-NATAN AND ZSUZSANNA DANCSO

ABSTRACT. This is the third in a series of papers studying the finite type invariants of

various w-knotted objects and their relationship to the Kashiwara-Vergne problem and

Drinfel’d associators. In this paper we present a topological solution to the Kashiwara-

Vergne problem, In patticular we recover via a topological argument the Alkeseev-Enriquez-

Torossian [AET] formula for explicit solutions of the Kashiwara-Vergne equations in terms

of associators.
We study a class of w-knotted objects: knottings of 2-dimensional foams and various

associated features in four-dimensioanl space. We use a topological construction which we

name the double tree construction to show that every ezpansion (also known as universal fi-

nite type invariant) of parenthesized braids extends first to an expansion of knotted trivalent

graphs (a well known result), and then extends uniquely to an expansion of the w-knotted :

objects mentioned above. ‘ ‘
In algebraic language, an expansion for parenthesized braids is the same as a Drinfel’d

associator ®, and an expansion for w-knotted objects is the same as a solution V_ of the

Kashiwara-Vergne problem [KV] as reformulated by Alekseev and Torossian [AT], Hence

our result provides a topological framework for the result of [AET] that “there is a formula

for V in terms of ®”, along with an independent topological proof that the said formula

works — namely that the equations satisfied by V follow from the equations satisfied by ®.
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Now we shov ‘

» show that V determines ' 1uni
C' in A*( 1) so that (V ](,l rmines C' uniquely. Assume there are different values ¢ and

I 14 / ‘ J 1/ ] 77
R mornhic ex N ) and (V,C") are both vertex-cap value pairs of Z"-compatible
phic expansions. Let ¢ denote the lowes J 7 e A
multiple of a single wl te the lowest degree term of € = (’, then c i a scalar
= a single wheel. The (' ~ y i 1t ; :
i T] wheel. The Cap Equation of Fact 2.5 implies ¢gz) = €1 + ey in A™(12).
v 18 a well-defined linear ‘ : 14

which has i df fined linear map w : A*"(1,) = Q[z,y) sending an arrow diagram
strand 1(‘ P tails only on each strand -~ to “r to the power of the number of tails on
stranc imes , , o i

‘] , times y to the power of the number of tails on st rand 27, Assume ¢ = Wy, where

) > »Q Y y o - . )
”421((“““5 the r-wheel, and a € Q. Then 0 = w(cpz = €1 = €2) = al(z +y) — 2" =) 80
el T = 7 = ’ : : 1

1€ 7. ',1 or a = 0. But w; = 0 in A*" by the I*1 relation, hence o = 0 and thus ¢ = 0, &

contradiction.
the value of the vertex, from P,

art (1), We then show
g of

39 : : : :
3.2. Proof of Part (2). In this section we compute V.
the Drinfel'd associator determining Z", nsing the const ruction of P
that the result translates to the [AET] formula for K nshiwara-Vergne sohitions in term

Drinfel’d associators.
tangled foam K on the right

391. From ® to V. To compute V, consider once again the w-

of Figure 11. On one hand, Z*(K) can be computed directly from the generators: Z"(K) =
d vertices are trivial. On the other

C,C,Vip € A™(12), since the values of the left-puncture
with Z*. from p* = Z*(B"), where

hand, one can compute Z"(A’), using the compatibility
enthesised braid B® shown in Figure 12. In particular, ZY(K) =

B is the closure of the par
¥ : ? =1
@4;(771])30(3“)), where ¢ is the isomorphism_ of Lemma 24, In summary, V = N5 -
1.1, one needs to compute p1pao(B*)

o(pipsal(5”) )Cy2. To obtain the formula (2) of Theorem
“in terms of P.
By the compatibility of Z¢ and Z°, it is enough to compute Bt .= Z%(B"). The result can /
be read from the picture in Figure 12:
5= @62)24‘1)132332‘131_213@(12)34- Fron
AQ/@ 7Lo

hat the associator ® is an clement of A"’ (13), and the
subscripts show which strands diagrams are placed on. For example, the notation <I>('1§)24 f Q"7l’
means doubling the first strand of ®~' and placin\g" the resulting chord endings on strands 1
and 3. as well as placing the chord endings from the other two strands of ®* on strands 2 (- ¢fu /e
and 4. Also recall that R = /2 where c is a single horizontal chord between two strands J
(and in this case Rz means that this chord runs between strands 3 and 2). afl

As A* is the tree closure of A%, it is given by the same formula interpreted as an element ¥ F,,frm/ff
of A*(1s). One then applies a to obtain 8% = a(B"), followed by puncturing strands 1 and /Al Ao/

To interpret this formula, recall t

Arrow/
/e

3 and caping strands 2 and 4. ‘)
To begin understanding the offect of these operations, we note that psa(Rs2) = e?33/2 Wi p
where a,; is a single arrow pointing from srand 7 to strand j. Ix(y<n “7654.(
Recall that ®;23 is a horizontal chord associator which can be expressed as a power se- ;
AS [N

i.e., chords between strands 1—2 and 2—3;

respectively). The image of @ in the quotient w

mps(a®iy;) = 1, as the punctured strands only support arrow heads, and tails on the mid-

dle strand commute by TC. Similarly, pips(a®isy) = 1 because the punctures kill the entire /‘ 7[
And Wi 7%‘1’)

“oft side” of the associator (that is, pipsa(ciz) = 0).
17 79t

_—\ .
PDror fhogL Vored Afler—

"“’5’{7/’@ 15 done.
=



[T n]

> y y

I Z"(H)

Figure 26. The double tree map applied to a disjoint union of
the double tree of each individual +I"T" into the sKTC; If
into the rectangle shown, using VI relations when nec

il"T-5 is the same as inserting

In Z"(I1) all chords can be pushed
essary.

the same algorithm as before, but we can save ourselves the work, as follows, All chords in
u L -\ ed ’ y? v g
Z"(H) can b assumed to be located in the rectangle shown in Figure 26, After applying

a, both supporting strands are punctured, meaning that after punctures pa(Z"(H)) = 1
m A" Thijs mmplies that ¢

w0y ; §(T L T,) = §(T1) U &(Ty), and it follows imrmediately that
Z(hUT) = (1) u Z(T5).
Contractions. Proving that 2

commutes with contractions is more involved. By
C/J'\S\EL/ Lemma 3.2, we can assume wi w—of

I O1LOT L

: Wt.lmt the ends contracted are the
_ last (rightmost) two ond:\j/ T'. Hence we will drop the subscript from ¢; and denote this
(e=ar/*1 %™\ operation simply by ¢. “0F {l¢ lndciSek T

[\ T I,,/oal' in  We need to show that Z*(cT) = cZ*(T), for any T' € fI'T. The
y , ,k Z" is constructed as the composition of
e Som w tivity of the perimeter of a large diagra
6F My - of its smaller parts: the dia

SL»J c;m\/} the commutativity

homomorphic expansion
many maps, so this can be restated as the comimuta-
m, which can be broken down to the commutativity

gram is shown in Figure 27. To complete the proof, we analyze
of each numbered square (and one pe

ntagon) of the diagram:
for 5@(4@/\ (1) This square plays out at skeleton level in JI'T and sKTG. Tt clearly commutes, for
3.2, [ oht example by inspection of the first square of the bottom diagram in Figure 27. In the
‘ diagram, the three strands to delete are indicated by dotted lines. Deletion in the
AL ‘/"‘A'}"](‘ « consecutive square of the diagram always refers to these same strands.
T\ 0\_[, F;D ) TQ show that this square corru_nutes, one needs to understand the properties of Z“
s + . with respect to deleting edges in sKTG. When an edge — which ends in a vertex at
brronss / both ends - is deleted, those two vertices cease to be vertices. The associated graded
mmj Sy /C operation on chord diagrams deletes the skeleton edge, and clm-nl diagrams with any
S W/J) Le chord endings on the deleted edge are set equal to 0. See [(WKO2, Section 4.6.1| for
o leC N more detail.

/ / The expansion 7“ is not, quite homomorphic with respect to such edge deletions.
bt rdy (A% Recall that in [WKO2, Section 4.6,1] Z" is constructed from an invariant Zo by
(L @ 4,‘»-/"/ / adding vertex normalisations, which make it commute with unzips. In fact, Z¢ does

commute with edge deletions™ [Da, Proposition 6.7], so the deletion errors of Z¢
depend only on the vertex normalisations implemented in [WIKO2]

18The reader might wonder, why normalize so that (he
The answer is that for finite generation of knotted trjve
30

expansion respects unzips, rather than deletions?
lent graphs, unzips ave crucial but deletions are not.
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Figure 27. The top diagram summarises the proof that Z" commutes with contractions.
The bottom diagram follows the skeleton changes of T € «I'T throughout the same diagram.
In the first square, the dotted lines indicate which three strands are to be deleted.

Each vertex of an sKTG has one incident edge marked distinguished, in our drawings

this is the vertical edge. If an edge is not distinguished at either of its ending vertices,

then deleting it commutes with Z", When deleting a distinguished edge, such as

the right vertical edge of square (2), then deletion and Z" commutes only up to a

correction term of e=“/4yY2 inserted at the place of the vertex, where ¢ stands for a
31



unzips

A

Figure 28. Computing the top left corner of Square 7. Step 1: ®(T)) can be expressed as
the sKTG' denoted S inserted into the sKTG denoted A, followed by some unzips, as shown.

Z" respects insertions, hence computing Z"(A) determines the value of Z%(®(T')) outside
of S.

single chord. In square (2), this correction term appears at the bottom right corner
of the square, where the two ends of T are contracted (see in the diagram showing
skeleta in Figure 27)

(3) There is a corresponding “edge delete” operation of '(Tjﬁ, which works the same way:
when deleting a tube or a string, the vertices at either end'? cease being vertices.
The associated graded operation deletes the appropriate skeleton strand and sends
any arrow diagram with arrow endings on the deleted strand to zero. The edge delete
operations for chord and arrow diagrams make a commutative square with o, hence
square (3) commutes. (ﬁo-k,d;llﬁ n A, <(c)=22)

(4) This square plays out in A®* and it is commutative as the deletion/correction and
cap attachment operations affect different strands.

(5) The only detail to check is that for arrows near the cap in the top left corner of this
square, unzipping n — 1 times and then deleting the last two strands leads to the
same diagram as unzipping n — 3 times. This follows from the definition of unzip for
arrow diagrams. Noteon the right side of this square two of the three deleted edges
are capped. {l}

(6) The deletions and punctures occur on different strands, hence commute. The only
thing to note is that when a tube strand is deleted at a “tube-and-string” vertex,
the other tube strand deflates to a string (as in the case of a puncture, as shown in
Figure 4). ’

(7) For the pentagon (7), we show that it commutes up to a possible small error on the
u-shaped strand, and later prove that this error is necessarily zero.

To show commutativity up to an error, a better understanding of the arrow diagram
in the top left corner is necessary. This arrow diagram is the result of a sequence of
operations (p" ?ou" ' o-Coao Z%o®). All of these operations with the exception
of Z" are “easy” in the sense that we have a complete understanding of their effect.
Z" is “hard”, but the proof of [WKO2, Proposition 4.13] presents a technique for
computing the relevant part of its value, see Figures 28 and 29 and their captions.

The value at the top left corner of the pentagon (7) is the chord diagram D of Figure
29, with Z%(A) inserted, then a, cap attachment, unzips and punctures performed.

91t is also possible to delete a capped edge.
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