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Combining this with the computation of V' at the beginning of this section, we obtain the ‘
formula of Theorem 11 part (2). Later in Lemma 356 Dalso compute the even part of Wi

the value of the cap explicitly. and find that it is a(v'Y), where v in the Kontsevieh mtegral
of the unknot .

A 322 PomV to Kashiwara Vergne. Tlunmhnmdmbuhmnintymh‘h*
‘ fwmiliar with the Aleksoev-Enriquez Torossian work on Kashiwara Vergne solutions. Re-
sults of this section are not used afterwards.
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Figure Lk

a g/a e “REpE P(P(ag(13), —az(13) — aaqiy)) - €"/% - B(azy, aq3)) we switch to

arp cemer?t notat‘/on in which we mark on each skeleton strand the elements that have
rows ending on it. For this purpose we denote ®~'(ay(13), —aa(13) — G4(13)) = ¥ and

P(az3, ag3) =: x.

kernel of this map consists only of pairs of the form (cu, By) for o, constants. In other
words, tdety is “almost” [ie3, and there is a one-sided inverse 7 : t0er; — fie; which sends a
tangential derivation to a pair whose first component has no z term and second component
has no y term.
‘ A ;ie word in = and y can be represented by a binary tree oriented towards a single
“head”, with leaves labeled by the letters = and y; for details see “primitive elements of By”
as in [WKO2, Theorem 3.16] and the discussion following it. There is a tree attaching map
| : ety — P*(1,), where P denotes the primitive elements of A*¥, as follows. Represent
the components of 7(D) by binary trees, and label the heads with z for Lie words coming
from a;, and y for a;. Then, attach all z-labeled leaves to strand 1, y-labeled leaves to strand
2. and the head below all tails. The order of tails is irrelevant {TCJ. Conversely, elements
l’\uu}lof Ps¥(1,) act as tangential derivations on lie;¥ Wheels act trivially, and thus one obtains
‘a homomorphism 0 : P%(1,) — toery, whose Ondy kernel consists only of short arrows on
“either strand. The map [ is a one-sided inverse to §, that is, 6 0 [ = Idjer,. For more detailS
see [WKO2, Section 372]. f}
Extending 0 to exponentials gives a group homomorphism § : A¥(12)ezp — TAut,, where /"/q-, wri7e /
(gc)qw{; ,'/] A¥(12)ezp denotes the group-like part-of-A°". For D € A" (12)ezp, the map 4 can be described gfﬁ a
diagrammatically in the following way. Add an extra (third) strand, and represent a Lie word N~
v € liep by a binary tree whose z-labeled tails are attached to the first strand, y-labeled tails f (D )[1/}: 0’%
to the second strand, and whose head lies on the extra strand. Its conjugate DD is once
again a linear combination of such trees (with heads on the third strand), this is the outpu
of the action. See also [WKOZ2, Proposition 3.19, “Conceptual argument”].
Let ¥ be the Z“-value of the vertex for a homomorphic expansion Z*, fchgpF = §(wV) is_
g , ne prok For details see Section 4
of [WKO2]. In particular the [AET] formulas only concern the tree-level part m(V/).
The formula for F presented in [AET, Theorem 4] is'?, R S

17 = (<I>_1(:E, -z —), e‘(I+y)/2¢>(—I — y,y)ey/z),

i e

S
1.1, St

V0N
a solution to the Kashiwara-Vergne problem in the sense of [AET].

12There are some notational differences between [AT) and [AET],hehce

as we did in [WKO3|. There are sign differences between the ,erI,__n,u‘la‘(\i‘éi‘j 'c}f,ld; [AET

misalignment, for example our ® is [AET]’s 1. Our notation is consistent with all other papers in this

series and the formulas are computationally verified in [WKO4].
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Figure 14. The connection between A" (15) and TAut,.

Figure 15. The action of m(V') on the generator z of lie,.

meaning that the automorphism F' conjugates = by 9~} (z, —z — y), and conjugates y by
e‘(”?’)/?fb(—‘r —y,y)e¥/2. This implicitly assumes an “interpretation map” © : U((ieg)al, —
TAut,. That is, an element (eM,eM) € Z/{([icg)cﬂ, is mapped to the automorphism of [ie,
which sends the generator z of liey to e MzeM, and the generator y to e *ye*. Note
that this is not a group homomorphism: composition in TAut, is not given by piecewise
multiplication of the conjugators.

We relate (0! (z, —z —y), e TT2P(—g —y, y)ev/?) to (V). by constructing a map L
which completes a commutative triangle as in Figure 14. At the level of primitives, the map
00 has the property that 6 o (lof) = 6. Extend this to the (completed) enveloping algebra
Z)([icg) as follows. An element ofa([ieg) is an (infinite) linear combination of products of Lie
words. As with [, represent each Lie word as a labeled tree, but then attach the products
of these labeled trees to the two strands by attaching all heads below all tails. The order of
tails doesn’t matter, the order of heads is in the order in which the words were multiplied.
Call this map L, and note that L is not an algebra homomorphism: it does not respect
multiplication in &(lie2). However, the restriction of L to the group-like part U (i€3)csp, also
denoted L (and which does not equal ¢!) fits into a commutative triangle © = Ao L.

Now we are ready to compute how w(V) e A" (T2) acts on the generator z of lie; and
match this to the formula(4.) Recall the value of m(V') shown in Figure 13. The generator
Is represented by an arrow from the first strand to the added third strand, and the result of
the action is 7(V)~'zr(V), as shown in Figure 15. To compute this, one commutes the tail

of = to the top of the strand across (V') using S‘Tﬁ relations, thereby «(V') and 7(V)~?
cancel, and the result of the action remains. Observe that due to the T'C' relation, only
arrows with heads on strand I act nontrivially on z, in other words only t; matters, ?vhich
came from = (a, () s ). The arrows as3 and a4z act trivially on x, so, more simply

stated, the action on x is by ¢(® *(as, —az — aq)). Note tfhathll(@_l(x, —z'—), 0=

(P! (ag), —az — as)), so Theorem 1.1 agrees with Formula (4) in the first component.
20




Figure 16. A different expression of /3.

2 M} f/b One can proceed similarly for the second component: the action on y is by
N B i
4 O(D (ag3, —ags — aay)e™ P(azs, asz)) = L(0, ({0 =l = y)e" 2o (x,y))-

O . e . , |
-t 3 ¢ While this does not match the second component of Formula (4), it only differs from it by
KF‘[L‘/ S hexagon relation. Alternatively, note that one can obtain the second component of the

: : : . : T b
been el Formula (4) “on the nose” by starting from an equivalent (isotopic) expression'” of (7, as
A% shown in Figure 16.

3.3. Proof of part (3): the double tree construction. It remains to prove that t'he
values of V and C, which we proved in Section 3.1.2 are determined by Z*, indeed give rise
to a homomorphic expansion of wIF, In other words, one needs to show that they satisfy

the three equations of Fact 2.5. Unfortunately, doing this directly seems difficult.
Note that R4, which is in some sense the “main equation”, is an equality between different

planar algebra compositions of generators. Hence, the proof would be much easier if Z" were
to be a planar algebra map. This unfortunately makes no sense, as sKTG is not a planar
algebra but a different, more complicated algebraic structure. The reader might ask, why
work with a space as_inconvenient as sKTG instead of, say, the planar algebra of trivalent
tangles? The answer is that the existence of a homomorphic expansion is a highly non-trivial
property, and in particular ordinary trivalent tangles do not have one. Even without tl'ivalﬂlHA o/ 7,

vertices, ordinary tangles, or u-tangles, do not have have a homomorphic, expansiory.
ﬁzrenthesiged tangles (ak.a. g-tangles) [LNI, BN2| do, sk in fact these are almost equivalent
to sKTG [T, BND1, Dal. have honmoro e W N OK, 7
Nonetheless, the unsuccessful thought above leads to the following, feasible, strategy: we
map ordinary trivalent tangles into sK7G via a double tree construction, and use this to

——> define Z" for the a-imagefof all usual trivalent tangles. Then we use the planar algebra
structure to prove that this Z* is a homomorphic expansion, and finally show that the 2"

constructed this way is in fact the same as the one arising from part (@E

3.3.1. Defining Z". We start by defining (classical, or usual) trivalent tangles, denoted I'T":
o Switet o

i = 1IN 5 j\y( R, R2, R3, R4 ) <3wf/fcl</o/(7 /;oﬁf?

Here PA stands for planar algebra, an algebraic structure similar to a circuit algebra, except s
with planar wiring diagrams. (This is a slightly more simple-minded notion than the s%anda.r_d_,c//b,'q,\j
use of the term in [J], in particular we do not use checkerboard shadings.) The elements

13We thank Karene Chu for this idea.
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Figure 17. The double tree map: connect the ends of T by two binary trees (henceh dqu:Ite
tree"), as shown. Note that the tree on the left always crosses over the tree on the right, 0‘-4}7(/
and all edges of both trees are oriented towards 1L g

. The planar
algebra «I'T is equipped with orientation switch and edge unzip operation$, where an edge )
unzips is defined for an edge if it ends in one positive and one negative vertex and the _edge IS

MM/)I"D Z.tr/“distinguished” at both vertices. Note that «I'T does not have grhopl\lomorphic expansion.

We define a double tree map ® : uI'T — sKTG, as in Figure 17. The map ® depends on
two choices of binary trees: in Figure 17 we chose a particular example. It is important that,
regardless of this choice, the “left side” tree always crosses over the “right side” tree. We will
demonstrate that in fact the choice of tre becomes irrelevant after some post-compositions,

5L (see omm il
Working towards a construction of Z*/ we postj:;]pose @ with the following sequence of

mapsy, hgA 15 ofliny /n Ne //,f?/»y( L

T € I'T = sKTG 25 Av(@(T)) 2 AT(®(T)) 2% Ags(T) & AM(@) (6) {eq

Here T' stands for an arbitrary tangle in «'T. The double tree construction maps 7' into
SKTG, and by applying Z* one obtains a value in A*, namely a chord diagram on the skeleton
of ®(T'). We denote the space of chord diagrams on this skeleton by A%(®(T)). Now a maps
this to arrow diagrams on the skeleton of ®(T), that is, to A*™(®(T)). In order to revert the
skeleton back to that of T', we apply some operations in A™: a cap attachment x, unzips and
punctures (as shown in Figure 18 and explained in the next paragraph), resulting in a slightly
modified version of the desired skeleton. denoted T Finally, we use that A"(7T) = A™(T)
via the isomorphism ¢ of Lemma 2.1 and hence we obtain a value in A™(T), as, A
which, we will later see, is almost Z*“(a(T)). Note that the proof of I@mm a;?ﬁl?:gjv:n

though the punctured strands all connect in a binary tree: V[ relations can be used as
of the isomorphism. o Shon /-
The cap attachment, unzip and puncture operations are done in the 1 Q.
attach a cap - a capped strand with no AITows on it - to the end of the right vertical str
this is a circuit algebra operation in A, If T has n ends, perform (n — 1) co
disc unzips on the right vertical strand. as shown in Figure 18. T} 1
Vith “1” on the left of Figure 18. Then puncture strs
1l that these pu nctures also sp to the conne -n_p
D .«ﬁ-‘- 10 any : { wm- '
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Figure 18. The cap attachment, unzips and punctures. Uazips-are performed in the order
of the edge numberings. While these operations are applied in A", the picture only shows

1=
S
_1:
N
N

the effect on the skeleton.

since the punctured tree had originally crossed over the capped tree, these crossings become
virtual after puncturing, hence the last equality in Figure 18. S - o
Let us denote the composition of the maps and operations shown in Equation (5) by <
that is, £ = popouokoao Z*o ®. To summarise, @) Ak N s

§(T) is well-defined, that is, it doesn’t depend on the choice of binary trees.
Lemma 3.1. The choice of binary trees in the double tree construction does not affect §(T).
N A4 PR

S

Proof. Any binary tree can be changed into any other binary tree via A
a sequence of “I to H” moves, as shown on the right. Hence, it is enough I
to analyze how an I to H move on one of the trees affects the value of Z%(®(T)), and prove

that the difference does not “survive” the cap and puncture operations.
N/

2
-

Suppose 7; and T, are two binary trees which differ by a single I to H \ %
move, and let @,, and @, denote the two resulting double-tree maps, as- \{
suming the “other side tree” is unchanged. The I to H move can be realised \J
: llowed by unzipping the edge marked ‘1’ on .
the right, then the edge marked ‘2. By the homomorphicity of Z*, the values Z"(®n (7))
and Z%(®,, (T)), only differ in an inserted horizontal chord associator ® on the three strands
involved. In sloppy notation, Z*(®n,(T)) = Z%(®,(T))  ®. If the I to H move was done
on the left side tree, then all the strands involved are later punctured, killing any arrow
diagram that lived on them by the TF relation. As a result, the only surviving part of ® is
its constant term, 1, and the resulting values of & are equal.

If the I to H move is done on the right side tree, then the all participating strands are
capped and disk unzipped. If a(®) is immediately adjacent to the caps, then it cancels by
the CP relation. However, it is a priori possible that there are other arrow ending separating
it from the cap. Note that in A", any chord endings can be can be commuted from below
the associator to above, using VI relations and the invariance property of chord diagrams.
Thus, one can assume that a(®) is adjacent to the caps and hence cancels. This concludes

O

by inserting'® an associator, fo

the proof.
There is an action of Z/nZ on elements of «I'T with n ends, by cyclic permutations of the

ends. The following lemma will be useful later in proving that Z" is a planar algebra map;
we present it now because its proof is similar to that of Lemma 3.1.

Lemma 3.2. The map & is invariant under cyclic permutation of the ends of T.

14Gee [WKO2, Section 4.6] for a detailed description of tangle insertion in sKTG.
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®(T) @ (oT)

Figure 19. Double tree construction for cyclically permuted ends of 7. € e ;fejicg@

oy

@(oT) with inserts:

¢ unzips (i

AN —>
[ I I

AN

®(T)

unzip

Figure 20. The difference between ®(T') and @(0T), understood via insertions. [ 1_r el

Proof.  To show that &(T) is invariat under cyclic permutations of ends of T, it is enough

to show that &(7') does not change when the rightmost end of T is moved to the far left
(denote this by oT'), as shown in the left versus middle pictures of Figure 19,

The rightmost picture of Figure_?19y"'"i's"ié‘(jii‘1'\“/‘alent as sK1Gs to @(oT). It differs from @(T)
in three ways: :

e the binary trees connecting the ends of T are different;

® two tree branches are connected to the trunk “on the wrong side”, thaéiigs,“g'g €.
trivalent vertices have opposite cyclic orientation (marked by  in Figure 19);

e one tree branch has a kink in it. : :

As before, we need to analyse how Z"(%(oT)) differs from Z*(®(T)), and show t
difference doesn’t survive the puncture, cap and unzip operations. . das
To achieve this, we transform ®(oT) into ®(T') using tangle insertions

j ' ite kink /; on the same strand, a '




Similarly, switching the si
el (lll%n:?lcp }S)llieg ‘illllzt,ctllc tL:e.e branches are attached on amounts to, inserting
Sl el i 2 ,lonn_ecm?lg edges, also shown in Figure 20. Each of these
e e by inserting the value of a twist: e“/2, where ¢ denotes
ar, and ag denote horiz 1 al'PPl‘OD“a‘te.St‘r"mds- Applying a maps this to ¢l em)/%, where
el punctmeu(‘)n‘t]a left and r1ghi;' arTows, respectively. On the left side tree, this
twist is capped and h vefore. On the right side tree, the strand directly underneath the
Now obselw;e tl t“.lf 1DPF‘FL ;1'1.1(1 l’le_nce the value of the twist cancels by thc, CP relatior}-
of bi hat the right side picture of Figure 20 only differs from FAG) in the choioR
nary trees, which do not change the value of ¢ by Lemma 3.1. o

The purpose of the following lemma is two-fold: first, it clarifies the relationship between
the map § and the homomorphic expansion Z* that we're aiming to construct. Second,
making this relationship explicit allows us to compute the even part of Z*-value C of the
cap in Corollary 3.5.

Lemma 3.3. If there exists a homomorphic expansion Z" for 7;)?77 compatible with Z*, then
for a tangle T € a(uI'T), the value Z¥(T) is equal to §(T) multiplied by C~' at each end of
T, where C is the Z™-value of the cap.

'ﬂ,\;;c—fwb Proof.  Assume there exists a homomorphic expansion Z* compatible with Z*. We use,
par~y~fhs ) as in Figure 21, the homomorphicity of Z% and its compatibility with Z* to show fhat :
f“""ﬂf%\@ E(T) = Z*(T), where T is as defing m-Equa-s}Gﬂ—%;fgéé—l&he—pamgrap}bfeﬂemw /%!%/‘{'J /0 /‘TJ /g.
g;\ o l;’A \ E We show that the three squares¥and one heptagonvof the diagram in Figure 21 commute.
‘(W[(QIJ This means that, for any 7 € «I'T and any Z"-compatible Z¥. and with T denoting the
o w-foam derived from 7" as in Figu@l& we have Z%(T") = £(T). The result is then obtained
by comparing Z*(T) with Z*(T') using homomorphicity.

The leftmost square of the diagram commutes by the compatibility of Z* and Z*. In
the middle square, recall the top horizontal x map denotes the circuit algebra operation of
attaching a cap at the bottom right end of the w-foam, and the same on the bottom horizontal
arrow. The C on the bottom horizontal arrow denotes the circuit algebra operation which
attaches a cap with a value C at the end of the strand. The commutativity of this square is
implied by the homomorphicity of Z* with respect to circuit algebra composition (as a binary
operation). The rightmost square is commutative once again due to the homomorphicity of
Z¥ with respect to punctures and disc unzips.

The commutativity of the heptagon would be true by definition, if
not for the map C (the insertion of the cap value). We show that,
in fact, the value C' cancels after punctures, by a property of arrow

‘ diagrams in.the ime}ge q} a, ’c%mllecl tai{-z’nvam’ance. This property is
.ﬁo,oﬂ,?//,j the arrow diagram gﬂ/-ﬁ-rcarbﬂa—of tRefact that as long as a w-foam
is in the image of a, one can slide a strand under it. In the current

situation this means that the value €', which has only tails on the skeleton, can be moved

from one tangle end to the other, as shown on the right. Consequently, C' cancels when the

Al A
biyge/

Jeft strand is punctured. For more details on tail-invariance, see [W‘KOlZ]‘,’ Remark 3.14 and

early in Section 3.3.
Finally, note that since Z* is a circuit algebra homomorphism, Z*(T) can be obtained

from Z*(T) by attaching the Z%-value of a left-punctured right-capped vertex at each tangle
end. By Lemma 2.7 the value of the left-punctured vertex is 1, so the only additions are C

A (b ) sr))
g (W)
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Figure 21. Comparing ¢ and 2", assuming that Z" exists.

Figure 22. Computing Z"(T) and the forced definition of Z.

values at each capped end, as shown in Figure 22. This can then be interpreted as a value

in A*(T) via the isomorphism ¢ of Lemma 2.4, This implies the statement of the Lemma,

also illustrated in Figure 22. O

/4 As an aside, assuming that Z* exists, Lemma 3.3 can be used to compute the even part
of the value of the cap C. Recall that C € A*(1) | hence by Fact 22,Cis a “power
series” consisting of wheels of progressively larger size, all of which commute. Lemma 34~

SRS and Corollary 3.5 imply that the even wheels part of C is uniquely determined. that is
W‘“d‘ n /ﬁLFF § / :

e regardless of the choice of Z“/(@fe]é associator). Df,}\;e//c( lag 4n (,\/)gjffoplt' n_a_

VA
15 "\w e Lemma 3.4. For the un-knotted strand, £(1) = a(v'/?), where v € A%(1) denotes the Kont- ' //\CZ-
AL¢ Cl\(b}a\_ sevich integral of the un-knot'S.

SR

Proof. We apply @ to 1, as shown in Figure 23. Our first goal is to comupte Z*(®(1)). In
[WKO2, Section 5.2] we give an algorithm for writing any sK7G as a ‘Gorduct’of generators,
and hence expressing its Z* value in terms of the Z*-values of the generators. To feed @ (1)
into this algorithm, one needs to “curve up” one strand, in this case the strand on the right
(this choice doesn’t affect the outcome). .

The result after applying ® and Z* are shown in Figure 23. The value of Z* is expressed
in terms of:

e the value of the associator graph, ®, a horizontal-chord Drinfel’d associator
e the value of the twist, R = /2 where c is a single chord, and
e the values n and b of the noose and balloon graphs, respectively.

See [W KO2,d§eét1on46] for details.

T gl ntanGaropt al idiaRosesnid ondieelpibaed Lngns
'®The value of  was conjectured in (BGRT] and proven in [BLT]. Note t nvolves wheels only, which

is what one would expect of the value C.
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Figure 24. The result after applying a, cap, unzips and puncture.

In &(1), Z* is followed by a, a cap attachment, unzips and punctures. As explained in
[WKO2, Section 4.6], there is a one-parameter uncertainty in the exact values of n and
b, but we do know that and a(b) = /20(v)1/2, and a(n) = e~*?a(v)'/2. Note that the
exponential part of n cancels by the CP relation once the cap is attached. We “push” most
of the arrow diagrams to the middle four strands using the VI relation. The result after a,
cap attachment, unzip and puncture is shown in Figure 24 and explained below.

Recall that o maps a chord to the sum of its two possible orientations. However, when one
supporting strand is punctured, only one of these orientations survive. Hence, for example,
po(a(Ra3)) = (e%2/2). Figure 24 shows a schematic picture of puCaZ"®(1) with exponentials
and associators indicated by single arrows. To explain the notation for associators, recall
that ® € A""(13) can be written as a power series in any two of the three generators of
A" (13): 19, ca3 and ¢13. For each associator above, we chose the presentation in which a(®) .
is of the simplest form. For example, we write the top associator @;31(2 » of Figure 23 in terms
of ¢13 and ¢1(24) = €12 + C14, Since after the puctures pra(ei3) = az and pypaa(cize)) = Qar-
This is reflected in Figure 24 in drawing only these two arrows for this associator.

Now observe that the two arguments of a(®);(34) commute by the TC relation: strands 3
and 4 support only tails in this associator. As mentioned before, the value of an associator
in the quotient where its two arguments commute is 1, hence pa(®)ia34y = 1. Next, study
pa(®71)i34: the tail of an arrow a4 can be “pulled over the top on strand 5” using the

VI relation and the fact that e%?a(v) is a local arrow diagram on one strand and hence
27



it is central. So ay; = a3, meaning in particular that as commutes with as1, and g

pa(®1) 154 = 1. Applying the same trick also cancels a(P)324, and (@ ")g34. In the latter
case note that the tail of a4, also commutes with the tails of a(R). In summary, all associators
cancel.

Next we show that a(v"%) 34y, which remains from n, cancels as ‘well. Since v is an
exponential of wheels, so is a(v'/?) € A%“(1). Recall from [WKOT1, Section 3.8] that wheels
i A*™ have two possible orientations. For odd wheels these are negatives of each other by
the AS relation, for even wheels they are equal. Hence, « kills odd wheels and multiplies
even wheels by 2, as well as orienting them. Let us write a(v'/?) as ), where w(z) is an
(even) power series in = with constant term 0 to interpret this as an element of A**(1),

expand it and interpret each monomial z* as a k-wheel on the single strand. Then by
action of unzip, a(v'/2) 4, = ewlestes

which is in turn interpreted as a wh

the
), where each monomial is interpreted as a cyclic word
eel on strands 3 and 4. Now slide this arrow diagram
up on strands 3 and 4 to strand 5. Since all associators have canceled, and «(R) has only
tails on strand 3, there is no obstruction to doing this. At the junction of strands 3, 1 and
9, we need to apply the VI relation. Tails on the punctured strand 1 are zero (TF relation),
so each tail slides onto strand 9, whose orientation is compatible with strand 3. In other

words we replace x3 by x5 in the expression. On the other side, tails again slide onto strand
5 but now the orientations are opposite, and hence 4 is replaced by —z5. In summary,
(1’(1/1/2)(3_1) = (?w(l“.’““') = 1.

Finally, move the top exponential e*/? to strands 3
vertices. The tail of the arrows moves freely from strand 5 to strand 3. The heads commute
with a(v), they are killed on strand 4 due to the CP relation, so they slide onto strand 2 but
acquire a negative sign. Hence, (e%s/ %) = (e7®2/2) and this cancels a(R). To summarize,

§ O

and 2, using the VI relation at both

§(1) = a(v?), as claimed.

Recall that the value C' = e¢ = ZY (1)

consists of wheels only, meaning ¢ = ) >
where w,,

n=0 Wn,
denotes the n-wheel and wy 18 the unit arrow diagram (with no arrows). Let
€ = ¢y + 1, where ¢y denotes the even part of ¢ (sum of all even wheels), and ¢; denotes the
odd part, that is, ¢ = ¢y + ¢;. Let Co = e, the even part of the value of the cap.

Corollary 3.5. Let Cy denote the even part of C =Z"(1). Then Cy= a(v'/h)

for any Zv.
Proof. By Lemma 3.3, Z¥(1) = C~1¢(1)S(C~1); here S denotes the orientation switch!’.
Note that S(wq.k) = wy, and S(wak+1) = —woyryy, and hence S(C) = e®~. Also, by
homomorphicity, Z*(1) = 1. Thus, with the input of Lemma 3.4, 1 = ¢o+eig

(Ul/2)ec0—c1 1
: a
Corollary 3.5 shows that the even part of the Z*-value of the cap ,.'1.\.8.!lnigg_ely‘de;tgrmined,
independent of the choice of Drinfel'd associator and Z*. Lemma 3.3 shows that the choice
of Z" uniquely determines V, the Z%-value of the vertex: as the vertex is an element of yI'T.

Z In turn, by Section 3.1.2 (the complete proof of Part 1), V uniquely determines C, and thus,
zo Z% is well-defined. (_/( il
3.3.2. Z* is a Z"-compatible homomorphic expansion( Having constructed Z“)Dit remains

to show that it is indeed a homomorphic expansion of wTF compatible with Z*. We begin
with the easier second statement:

and therefore a(v!/?) = €2, which gives C = e® = a(v/4)

Iy Lemma 3\3wééssu1ﬁe:d by convention that all strands below T were oriented upwards (towards T).
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Figure 25. Basic planar algebra operations: disjoint union and contraction.

Proposition 3.6. The map 2 defined as in Lemma 3.718 compdtz’blé with Z* in the sense

that Z*(K) = o(Z¥(K)), when K € sKIG < ulF.
v nwd o IAW/%?% 1~ gy 5 ,
! K e [T is Wﬂ/ o

Proof.  Note that sKTG C ul'T. Phe-key-observationie-—thet ,
in fact in SKTG (that is, when K is a tangle with two ends), then Z"(K) = a(Z*(K)). Note e
that @(K') can be obtained by inserting K into the top strand of @(1). Since 7 is compatible , ¢
— with insertions, Z*(®(K)) can be obtained by Z’Q’() inserted into Z4(®(1))- Through the /ngcr-f,‘g,)
sequence of a, capping, puncturing, ¢ and multiplications by C-1 allof Z “(@(1)) cancels,

as in Lemma 3.4. Note that the cancellations still go through despite the fact that a(Z*(K)) ()Z
is inserted on the top strand: this follows from the fact that a(Z*(K)) is in the a-image of

A", and the appropriate “commutativity” property holds in A". Hence, Z 2z = 74 KS

as required.
as constructed via &, 1s indeed a homomorphic ex-

ak
Finratty 1t remains to show that Z*,
pansion of wlF’, which boils down to checking that it satisfies the R4, Unitarity, and Cap
: j that Z* it is a planar algebra homomorphism

equations of Fact 2% Wr%ﬁ
on «I'T, which implies the R4 equation immediately. /e jﬁy‘f k///j L 14//:) Nt

Theorem 3.7. The restriction of Z% to a

perations cai be written

(uI'T) s a planar algebra map.

as compositions of two simpler, basic
d contractions. For two tangles T and T, the disjoint union
f the two tangles where the ends are ordered by declaring
lowed by the ordered ends of Ty. The contraction

at least i + 1 ends, and acts by joining the
lting in a tangle with two less

Proof. Planar algebra o
operations: disjoint unions an
Ty U T, is the disjoint union o
that the ordered ends of T, come first, fol
operation ¢; can be applied to any tangle with
i-th and (i + 1)-st ends of T and re-numbering the rest, resu

ends. Both operations are shown in Figure 25.

Ths CThis) we only need to show that Z* commutes with these two operations, that is,
Ze(Ty U Ty) = Z¥(Ty) U Z*(Tz), and Z%(ci(T)) = ¢i(Z*(T)). Note that the right sides
of these equalities make sense: arrow diagrams on uI'T skeleta, where ZV takes its values,

T BAE

also form a planar algebra.
Disjoint unions. We need to compute (71 U T5), where dTFrare
map applied to a disjoint union of Ty and T5 is shown in Figure 96. Recall that the trees

can be chosen arbitrarily by Lemma 3.1Vve chose the most convenient trees for the proof. So
Observe that @(T; UT5) is the same sKTG as @(T)) and ®(T>) inserted into a simpler sKT1G,
denoted H, as shown in the same figure (up to some orientation switches which don’t impact

what follows and hence will be ignored for—simpticity). Hence, Z*(®(Ty U T3)) is given by
inserting Z*(®(T1)) and Z*(®(T: y)) into Z*(H). One could compute Z“(H) explicitly using
29
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Figure 26. The double tree map applied to a disjoint union of «I"T-s is the same as inserting
the double tree of each individual «I'T into the sKTG H. In Z"(H) all chords can be pushed
into the rectangle shown, using VI relations when necessary.

the same algorithm as before, but we can save ourselves the work, as follows, All chords in
Z"(H) can be assumed to be located in the rectangle shown in Figure 26. After applying
@, both supporting strands are punctured, meaning that after punctures pa(Z*(H)) = 1
In A% This implies that &(7 U Ty) = €(Th) U E(Ty), and it follows immediately that
Z*(MUT) = Z*(Ty) u Z¥(Ty).

Contractions. Proving that Z* commutes with contractions is more involved. By

Lemma 3.2, we can assume i 56 enerality- that the ends contracted are the
last (rightmost) two ends/ T'. Hence we will drop the subscript from ¢; and denote this
operation simply by c¢. ‘o€ {g l,/)c’g o {

We need to show that 7 “(cT) = cZ*(T), for any T' € «I'T. The homomorphic expansion
Z" is constructed as the composition of many maps, so this can be restated as the commuta-
tivity of the perimeter of a large diagram, which can be broken down to the commutativity
of its smaller parts: the diagram is shown in Figure 27. To complete the proof, we analyze

the commutativity of each numbered square (and one pentagon) of the diagram:

(1) This square plays out at skeleton level in «I'T and sKTG. 1t clearly comimutes. for
example by inspection of the first square of the bottom diagram in Figure 27. In the
diagram, the three strands to delete are indicated by dotted lines. Deletion in the
consecutive square of the diagram always refers to these same strands.

To show that this Square commutes, one needs to understand the properties of Z*
with respect to deleting edges in sKTG. When an edge — which ends in a vertex at
both ends - is deleted, those two vertices cease to be vertices. The associated graded
operation on chord diagrams deletes the skeleton edge, and chord diagrams with any
chord endings on the deleted edge are set equal to 0. See (W I(’OQ,LSéétiéﬁ"ZliB'.'l] for
more detail.

The expansion Z* is not quite homomorphic with respect to such edge deletions.
Recall that in [WKO2, Section 4.6.1] Z* is constructed from an invariant Zoi by
adding vertex normalisations, which make it commute with unzips. In fact, Z°4 does
commute with edge deletions' [Da, Proposition 6.7], so the deletion errors of Z*
depend only on the vertex normalisations implemented in [WKO2].

18The reader might wonder, why normalize so that the expansion respects unzips, rather than deletions?
The answer is that for finite generation of knotted trivalent graphs, unzips are crucial but deletions are not.
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Figure 27. The top diagram summarises the proof that Z* commutes with contractions.
The bottom diagram follows the skeleton changes of T € uI'T throughout the same diagram.
In the first square, the dotted lines indicate which three strands are to be deleted.

Bach vertex of an sSKTG has one incident edge marked distinguished, in our drawings

this is the vertical edge. If an edge is not distinguished at either of its ending vertices,

then deleting it commutes with Z“. When deleting a distinguished edge, such as

the right vertical edge of square (2), then deletion and Z* commutes only up to a

correction term of e~</4vY/2 inserted at the place of the vertex, where ¢ stands for a
31




