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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS I1I: THE
DOUBLE TREE CONSTRUCTION

DROR BAR-NATAN AND ZSUZSANNA DANCSO

ABSTRACT. This is the third in a series of papers studying the finite type invariants of
various w-knotted objects and their relationship to the Kashiwara-Vergne problem and
In this paper we present a topological solution to the Kashiwara-
rticular we recover via a topological argument the Alkeseev-Enriquez-
{ the IXnshiwara-Vergne equations in terms

Drinfel’'d associators.
Vergne problem. In pa
Torossian [AET] formula for explicit solutions o
of associators.

We study a class of w-knotted objects: knottings of 2-dimensional foams and various
associated features in four-dimensioanl space. We use a topological construction which we
tree construction to show that every exrpansion (also known as universal fi-
of parenthesized braids extends first to an expansion of knotted trivalent

and then extends uniquely to an expansion of the w-knotted

name the double
nite type invariant)
graphs (a well known result),
objects mentioned above.

In algebraic language, an expansion for parenthesized braids is the same as a Drinfel'd
associator ®, and an expansion for w-knotted objects is the same as a solution V' of the
Kashiwara-Vergne problem [KV] as reformulated by Alekseev and Torossian [AT], Hence
our result provides a topological framework for the result of [AET] that “there is a formula
for V in terms of ®", along with an independent topological proof that the said formula
works — namely that the equations satisfied by V follow from the equations satisfied by @.

CONTENTS

1. Introduction 2
1.1. Executive Summary 2
1.2. Detailed Introduction 3
1.3. Paper Structure 6
2. The spaces «TF and A*" in more detail 6
2.1. The generators of uTF 7
2.2. The relations 8
2.3. The operations 8
2.4. The associated graded structure A" 10

13

2.5. The homomorphic expansion

Date: first edition in future, this edition Dec. 27, 2021. The arXiv:7777.7777 edition may be older.
2020 Mathematics Subject Classification. 57M25. l
Key words and phrases. virtual knots, w-braids, w-knots, w-tangles, knotted graphs, finite type invari-
ants, Kashiwara-Vergne, associators, double tree, free Lie algebras. N RGP IN - 2,016-——0'135_ =]
The first author's work was partially supported by NSERC grant RGPIN 264374, and wishes to thank
the Sydney Mathematics Research Institute for their hospitality and support. The second author was
partially supported by NSF grant no. 0932078 000 while in residence at the Mathematical Sciences Research
Institute, and by the Australian Research Council DECRA DE170101128. Electronic version and related
files at [WKO3|, http://www.math. toronto.edu/~drorbn/papers/WK03/.
1

Scanned with CamScanner



3. Proof of Theorem ‘1.1” ‘ 15

3.1. Proof of Part (1) 15
3.2, Proofl of Part (2) 17
3.3, Proof of part (3): the double tree construction. 21
4. Closing remarks 36
References 36
Recycling 37
To Do 38

1. INTRODUCTION

1.1. Executive Summary. This section is a large-scale overview of the main result of this
paper and the idea behind its proof; it is followed by a more detailed introduction.

A homomorphic erpansion for a class of topological objects K is an invariant
Z: K — A whose target space A is canonically associated with K (its associated graded). Ho-
momorphic expansions satisfy a certain universality property, and respect operations which
exist on K and therefore also on A. Such invariants are often hard to find, and when they
are found, they are often intimately connected with deep mathematics:

e For many classes of knotted objects in 3-dimensional spaces homomorphic expansions
don’t exist — for example, one would have loved ordinary tangles to have homomor-
phic expansions, but they don't.

e Yet a certain class K" of knotted objects in 3-space, parenthesized tangles, or nearly-
equivalently, knotted trivalent graphs — which we adopt in this paper and denote by
sKTG — do have homomorphic expansions. A homomorphic expansion Z*: K — A"
is defined by its values on a couple of elements of K" which generate K* using the
operations K* is equipped with. The most interesting of these generators is the

i tetra.hedron A, and ¢ = Z"(4) turns out to be equivalent to a Drinfel'd associator.
{ cert i.claas K" of graphs, called w-foams and denoted wTF° in the paper —
ased on a conjectured equivalence to a class of 2-dimensional welded

nensional space — also has homomorphic expansions. The most
f ¥ is the vertex A, and if Z*: K* — A" is a homomor phic
1t Lt!mb V' = Z"(A) is equivalent to a solution of the

S e
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The proof of this theorem is conceptually simple: we show that the generators of K" can
be explicitly expressed using the generators of K and the operations of K", and that the
resulting explicit formulas for Z" (L) (and for Z* of the other generators) satisfies all the
required relations.

The devil is in the details. It is in fact impossible to express the generators of K" in
terms of the generators of K" to do that, one first has to pass to a larger space Ko
(in the paper wTF) that has more objects and more operations, and in which the desired
explicit expressions do exist. But even in K" these expressions are complicated, and are best
described within a certain “double tree construction” which also provides the framework for
the verification of relations. Here's an unexplained summary; the explanations make the
bulk of this paper:

T
l""i‘ -

1.2. Detailed Introduction. This paper is the third in a sequence [WKO1, WKO2, WKO3]
studying finite type invariants of w-knotted objects, and contains the strongest result: a
topological construction for a homomorphic expansion of w-foams starting from the Kont-
sevich integral. This in particular implies the Kashiwara-Vergne Theorem, more precisely,
the [AET] formula for solutions of the Kashiwara-Vergne equations in terms of Drinfel’d
associators. Readers familiar with finite type invariants in general should have no trouble
reading [WIKO2] and this paper without having read [WKO1]. The setup and main results of
[WKO?2] are used heavily in this paper. Reproducing all necessary details would be lengthy,
so we only include concise summaries for readers already familiar with the content, and
otherwise refer to specific sections of [WKO2] throughout.

The Kashiwara-Vergne conjecture (KV for short) — proposed in 1978 [KV] and proven in
2006 by Alekseev and Meinrenken [AM] — asserts that solutions exist for a certain set of
equations in the space of “tangential automorphisms” of the free lie algebra on two genera-
tors. For a precise statement we refer the reader to [WKO2] or [AT]. The existence of such
solutions has strong implications in Lie theory and harmonic analysis, in particular it im-
plies the multlppcat,lve properh,r of Duﬂo isomorphism, which was shown to be knot-theoretic
in [BLT BDS] : .

In [AT] Alekseev and- Torossmn give another proof of the KV conjecture based on a deep
connection with Drinfel'd associators. In turn, Drinfel'd’s theory of associators [Dr] can
be interpreted as a theory of well-hehaved unlversal finite type invariants of parenthesized
tangles' [LM BNﬁ] or of knotted trivalent graphs [DaJ. In [AET] Alekseev, Enriquez and
Torossian gave an explicit formula for solutions of the Kashiwara-Vergne equations in terms
of Drinfel'd associators.

In [WKOZ] we r&mterpreted the Kashiwara-Vergne conjecture as the problem of find-
ing a “homomorphm" universal finite type invariant of a class of knotted trivalent tubes

ami_ Un

Hig-tangles” in LMI Bon-aBBOcIAtive't tangles” in ‘[BNZ]
3
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:;sz(l)_c?;ﬁa:sls‘mn?l space (called .W-tal.lgled foams), and explained the connection t

o mn e'rms.of a relati'onshlp between 3-dimensional and 4-dimensional topology.
nother topological interpretation for the KV problem has recently emerged in [AKKN].

; In _thlﬂ paper we present a topological construction for a homomorphic universal finite type

invariant of w-tangled foas, thereby giving a new, topological proof for the KV conjecture.

ﬁ%%‘}%??ﬁﬁ}}“fﬁ_mﬂélso leads to an explicit formula for solutions, which we prove agrees with

}‘.2:1. Topology. We begin by describing a chain of maps from “parenthesized braids” to
(signed) knotted trivalent graphs” to “w-tangled foams”:

K = {wPuB % sKTG —» uIF}.

Let us first briefly elaborate on each of these spaces and maps.
Parenthesized braids are braids whose ends are ordered along two lines, the “bottom”

and the “top”, along with parenthetizations of the endpoints on the bottom and on the
top. Two examples are shown in Figure 1. “Parentehesized braids form a category whose
objects are parenthetizations, morphisms are the parenthesized braids themselves, and com-
position is given by stacking. In addition to stacking, there are several operations defined
on parenthesized braids: strand addition, removal and doubling. A detailed introduction to
parenthesized braids is in [BN1].

Trivalent graphs are oriented graphs with three edges meeting at each vertex
and whose vertices are equipped with a cyclic orientation of the incident edges. 4
A knotted trivalent graph (KTG) is a framed embedding of a trivalent graph
into R3. KTGs are studied from a finite type invariant point of view in [BNDI]."
In UWER‘ per we 1se a version of KTGs that was introduced and studied in
i KO o ?ﬁdﬁﬁfﬁ], namely trivalent tangles with one or two ends and with
combinatorial information: trivalent vertices are equipped with a
“distinguished edge” : 1 signs. We call this space sk1G (for signed

in [V 627_' \n example is shown on the right. The space sKTG is also equipped
ations: tangle insertion, sticking a 1-tangle onto an edge of another tangle,
-tangles, edge unzip, and edge orientation switch (see [WKO2, Section 4.6

a minor extension of the space ul’F* studied in [WKG‘Z,%E_cﬁ:Gﬁ AT
g in detail in Section 2. It can be described as a circuit algebra
non-planar connections allowed, see [WKO2, Section
' kinds of crossings and vertices, as well as “caps”)

.+ moves” ) and equipped with a number of auxiliary

the parenthetiza-
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operations beyorMuit algebra composition. This Reidemeister theory conjecturally rep-
resents knotted tubes in 4-dimensional space with singular foam vertices, caps, and attached
one-dimensional strings.

The map cl : wPaB — sKTG is the “closure map”. Given a parenthesized braid, close
w up its top and bottom each by gluing a binary tree nccording to the parentetization; this
produces a sKTG with the convention that all strands are oriented upwards, bottom vertices
are negative, and top vertices are positive. An example is shown below,

o ﬁ@

The map a : sK1G — ulF arises combinatorially from the fact that all sKTG diagrams
{ ca.n be interpreted as elements of «TF, and all sK'TG Reidemeister moves are also imposed
g | pp}pfxs lly, it 1;3, an extended version of Satoh's tubing map, described in Remark

3llot‘

1902 Algebr c@i‘u‘”:?f maps K is an example of a general “algebraic structure”, as
discussed in 4 ection 2.1]. An algebraic structure consists of a collection of objects
belonging to a number of “spaces” or “different kinds”, and operations that may be unary,
f'b' 1ary, multinary or nullary, between these spaces. In this case there are many spaces
ds of ob_]ects) for example, parenthesnzecl braids w1th specnﬁed bottom and top

al L@g)s,;anwd &
f 62 mcuss assomated gTa,ded str uctures and expansxons for

s uPaB, sKTG and uﬂ"F, the associated graded spaces
izontal chord diagrams on pa.renth ized strands”,
“arrow diagrams”, as described in EiNl ‘{Mg """ =
ively. As a result, the associated gradecl

1
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structure; for a detailed definition and introduction see [WKOQ, Section 2.3]. Hence, a ho-
momorphic expansion Z : K — A is a triple of homomorphic expansions 2 Z*, and Z¥
for K’ := wPaB, K" := sKIG and K" := uﬁ, respectively, so that the following diagram
commmutes:

ki vt gt g )

e

A A S g g

We recall (see tBNi])I that a homomorphic expansion Z” for parenthesized braids is de-
termined by a “horizontal chord associator” ® = Z"(|/|). A homomorphic expansion Z% of
sKTG is also determined? by a Drinfel'd associator (horizontal chords or not; see [WKO2,
Section 4.6]), so the significance of the left commutative square is to force the associator
corresponding to Z* to be a horizontal chord associator. In turn. Z* is determined by a
solution F (a close cousin of V = Z*(,),)) to the Kashiwara-Vergne problem (see [WKO2,
Section 4.4 — 4.5]). The goal of this paper is to prove the following theorem, which, via the
correspondence above, implies the KV conjecture:

' .. Theorem 1.1. (1) Assuming that Z : K — A ezists, it is determined’ by Z*.

(2) There is a formula for V in terms of the Drinfel’d associator ® associated to Z*:
V= Cflcz_lc(m)‘P (‘p_l(az(w), —Q3(13) — a4(13)) : emlzq’(aza,a.as)) ;

- the notation will be explained later. This agrees’ with the formula proven in [AET].

(3) Every Z extends to a Z.

‘The key to the proof of the theorem is to show that the generator J. of wIF can be
5 in terms of the generator || of wPaB and the operations of K. Assuming that Z
elds a formula for V in terms of ®.

its extension with strings wIF. We provide a brief review of definitions
{%ﬁﬁﬁmd—aﬁfﬁjlﬁ of the extension. We prove that homomorphic

iquely to homomorphic expansions for uTF.

of the paper a.%g is devoted to the proof of Theorem 1.1.

. In Section Tﬁ‘iv’e uce the formula for Kashiwara-

ociators, proving part (2). In Section me_m—ove

0 nor extensmn pf the space uTF? studied
as a ‘planrar algebra Or as a circnit
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.algeb-ra.; we will do the latter as it is sithpler and more concise. Circuit algebras are defined
in [WKO2, Section 2.4]; in short, they ard similar to planar algebras but without the planarity
m [WIKO2], each generator and relation of w'F has

requirement for “connecting strands”. A;
WKO2, Sections 1.2, 3.4, 4.1] that «7F*° diagrams

a local topological interpretation. Recall

represent certain ribbon knotted tubes with foam vertices in R, and the circuit algebra

wTF* is conjecturally a Reidemeister theory for this space (i.e., there is a surjection 4 from

the circuit algebra uTF° to ribbon knotted tubes with foam vertices, and é is conjectured

to be an isomorphism). The space Wl F extends wTF® by adding one-dimensional strands to /7 7["”}"/'/‘{/

the picture. Note that ene-dimenstomal-strands-eanmot-be-knotted indR#', however, they can [~diim steck

be knotted with the two-dimensional tubes, In figures two-dimensional tubes will be denoted

by thick lines and one dimensional strings by thin red lines. With this in mind, we define

wlF as a circuit algebra defined in terms of generators and relations, and with some extra
——> operations beyond circuit algebra compositions Each generator, relation and operation has

a local topological interpretation which provides much of the intuition behind the proofs.

However, the corresponding Reidemeister theorem is only conjectural.

N T ~t
M Noer™
kel |

relations auxiliary

2 K 2 ~ p—
! )n, X s / \ AN, 1 as in operations as

3 5 6 7 8 9 Section 2.21 1n Section 2.3

W 7
/revi§l  WIF = CA * ,7\’
5 2

2.1. The generators of uTF. We begin by discussing the local topological meaning of each
generator shown above.

The first five generators are as described in [WKO2, Sections 4.1.1], we briefly
recall their descriptions here. Knotted (more precisely, braided) tubes in R? can
equivalently be thought of as movies of flying rings in R*. The two crossings
stand for movies where two rings trade places by the ring of the under strand
flying through the ring of the over strand. The dotted end represents a tube [ﬂ‘/ o Lt
“capped off’Aby a disk. Generators 4 and 5 stand for singular “foam vertices”, 7’
and will be referred to as the positive and negative vertex, respectively. The
positive vertex represents the movie shown on the left: the right ring approaches
the left ring from below, flies inside it and merges with it. The negative vertex
represents a ring splittirigdand the inner ring flying out below and to the right. To
be completely precise, uTF as a circuit algebra has more vertex generators than
shown above: the vertices appear with all possible orientations of the strands. However,
all other versions can be obtained from the ones shown above using “orientation switch”

operations (to be discussed in Section i3y

The thin red strands denote one dimensional strings in R, or “flying points
in R¥. The crossings between the two types of strands (generators 6 and
7) represent “points flying through rings”. For example, the picture on the
left shows generator 6, where “the point on the right approaches the ring on
the left from below, flies through the ring and out to the left above it”. This
explains why there are no generators with a thick strand crossing under a
thin red strand: a ring cannot fly through a point. A3

Generator 9 is a trivalent vertex of 1-dimensional strings in R*. Finally,

the last generator is a mived verter: a one-dimensional string attached to the wall of a
7

o B6000
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;'3 TL\U \ﬂ/b/ﬂ,j »(Figure 2, The OC and CP relations,

——— A ¢ ”"1»‘ ’
2-dimensional !uhhﬁﬁ'mhns should be shown in all possible strand orientation com-
binations; we are suppressing this to save space.

2.2. The relations. As a list, the relations for W F are the same as the relations for ulF°
[WKO2, Section 4.5]: {RI’, R2, R3, R4, OC, CP}. Recall that R1” is the weak (framed)
R2 and R3 are the usual second and third Reidemeister
OC stands for Quercorssings

1

version of the Reidemeister 1 move;
moves: R4 allowes moving a strand over or under a vertex.
Commute, CP for Cap Pullout: these two relations are shown in Figure 2, for a detailec
explanation see [WKO2, Section 4.1.2].

In «TF all relations should be interpreted in all possible combinations of strand types and
orientations (tube or string), for example the lower strand of the R2 relation can either be
thick black or thin red, as shown below:

b3 |-

Similarly, any of the lower strands of the R3, R4, and OC relations may be thin red.

As in wTF®, the relations all have local topological meaning and conjecturally wTF' is a

Reidemeister theory for ribbon knotted tubes in R* with caps, singular foam vertices and

Al fle movit attachedsstrings. For example, Reidemeister 2 with a thin red bottom strand is imposed
whert becausé-4 point flying in through a ring and then immediately Hz?’gg-bﬂck out is isotopic toW

i interaction between the point and ring at all. s

R e Mivit wheee It is easy to verify that all relations represent local isotopies of welded (ribbon knotted)

Tlel 15 ne tubes in B? with singular vertices and attached strings. What is not clear at this stage is that

this is a complete Reidemeister theory, that is, whether this is a complete set of relations.

501’ more detail on this see [WKO2, Section 1.2].
3. The operations. Like uIF"°, uTF is equipped with a set of auxiliary operations in

addition to the circuit algebra structure.

The first of these is orientation reversal. For the thin (red) strands, this simply means
reversing the direction of the strand. For the thick strands (tubes), orientation switch comes
in two versions. Recall from [WKO2, Section 3.4] that in the topological interpretation of
wI'F?, each tube is oriented as a 2-dimensional surface, and also has a distinguished “core”:
a line along the tube which is oriented as a 1-dimensional manifold and determines the
“direction” or “l-dimensional orientation” of the tube. Both of these are determined by the

direction of the strand in the circuit algebra, via Satoh's tubing map.
8
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Figure 3. Unzip and disc unzip.

Topologically, the operation “orientation switch”, denoted S, for n given strand ¢, acts by
reversing both the (1-dimensional) direction and the (2-dimensional) orientation of the tube
e. Diagrammatically, this corresponds to simply reversing the direction of the corresponding
strand ¢.

The “adjoint” operation, denoted A,, on the other hand
only reverses the (l-dimensional) direction of the tube ¢,
not the orientation as a surface. Diagrammatically, this
manifests itself as reversing the strand direction and adding
two virtual crossings on either side of each crossing where ¢
crosses over another strand, as shown on the right (note that the strand I)clow e nmy be tlutk
or thin). Note that virtual crossings don't appear when e crosses under another strand. For
more details on orientations and orientation switches, see [WKO2, Sections 3.4 and 4.1.3].

The unzip operation u, doubles the strand e using the blackboard framing, and then
attaches the ends of the doubled strand to the connecting ones, as shown in Figure 3. We
restrict unzip to strands whose two ending vertices are of different signs. (For the deﬁnmon of
crossing and vertex signs, see [\’\ KO2, Sections 3.4 and 4. 1].) Topologically, the blackboard
framing of the diagram induces a fra.mmg of the corresponding tube in R? via Satoh’s tubing
map, and unzip is the act of “pushing the tube off of itself slightly in the framing direction”.
Note that unzips preserve the ribbon property.

A related operation, disc unzip, is unzip done on a capped strand, pushing the tube off in
the direction of the framing (in diagram \P/orld _in_the direction of the blackboard framing),
asbdote. An example is shown in Figure 3; see [WKO§ Section 4.1.3] for details on framings

Sofar all the operations we have introduced had already existed in wIF°. There is also
amnew opem&n :scal]ed “puncture”, denoted p,, which diagrammatically simply turns the

. a thin red one. The correspondmg topologlcal plcture is “plmcturmg

aag:na ﬁg‘uxe shows that when
spreads”. Topologxcnlly.
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Figure 4. Puncture operations: the picture on the left shows which edges can be punctured

at each vertex. The middle and right pictures show the effect of puncture operations.

Figure 5. The TC and ﬁ relations. Note that the 3rd strand in each term of the
can be either thick black or thin red, the relation applies in either case.

.I
%

47 relation

[n summary,

ulF' = CA <R N /'\’ T-. I)N, \ 5 7' \, "JT'. 1 El] gcz Ié{lj) : "’1‘1‘"" }
1 DR 3 Ee D 6 7 8 9 ) UHM,/
Sencraters ehetront o AVRELT

2. 4. The associated graded structure A™. Asin [WKO2], the space uTF is filtered by
powers of the augmentation ideal and its associated graded space, denoted A®”, Is a “space
of arrow diagrams on foam skeletons with strings”. As a circuit algebra, A® is presented as

follows:

ool = 2 A AT o auxiliary
ulF = CA I“ —)[ T, jn, \ ; }7 G AN, 1 relsions operations ) -
1 3 g 4’ 5 6 7 as below i
as below

Generators 1 and 5 are called single arrows and they are of degree one, while all others are
“skeleton features” of degree zero. The relations are almost the same as in [WKO2, Section
4.2.1], which describes the relations for the associated graded of wIF*: 4T (the 4-Term
relation), TC (Tails Commute), RI (Rotation Invariance), CP (the arrow Cap Pullout), and
VI (Vertex Invariance). For wIF' there is an additional relation TF (Tails Forbidden on

strings). The T('J,.eu_ldr_lﬁL relations are shown in Figure 5. The Vertex Invariance relation is
shown in Figure 6: here the + signs depend on the strand orientations. Note that the type
of the vertex and the types of each strand (thick black or thin red) are left undetermined:
the VI relation applies in all cases. Figure 7 shows the other relations: RI, CP and TF. Note
that technically TF is not a relation: there were no generators with an arrow tail on a thin
red strand, so saying that such an element vanishes is meaningless. However, without TF
the VI relation would have to be stated for all the sub-cases of 0, 1 or 3 thin red strands, so

we prefer this cleaner way, even if it is a slight abuse of notation.
10
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Figure 6. The VI relation: the vertices and strands could be of any type, but the same
throughout the relation.

Figure 7. The Rl and CP relations, and the TF relation (which is not really a relation).

Each operation on «TF induces a corresponding operation on A**. Orientation switch,
adjoint, unzip, cap unzip, and long strand deletion act exactly the same way as they do
for wl'F°°. We quickly recall these here, for details see [WKO2, Section 4.2.2]. The ori-
entation switch S, reverses the orientation of the skeleton strand e, and multiplies the ar-
row diagram by (—1)#{arrow heads and tailson ¢}~ The adjoint operation also reverses the skele-
ton strand e and multiplies the arrow diagram by (—1)#{arowheadsone}  Giyen a skele-
ton S with a distinguished strand e, unzip (or disc unzip, if e is capped) is an operation
U, : A*(S) — A*"(u,.(S)) which maps each arrow ending on e to a sum of two arrows, one
ending on each of the two new strands which replace e. Deleting a long strand e kills all
arrow diagrams with any arrow ending on e. The operation induced by puncture, denoted
Pe, turns the formerly thick black e into a thin red strand, and kills any arrow diagram with

any arrow tails on e.

To summarise: 9ener v o/ froof X o
WIF =CA({ |- x4 | 4T TG, VI, | O, Ae, Uey
<} ]4.‘ I, j&, 3\ ‘l- 6 ) 7 CP' RI, TF dml)c

As in [WI\’d?,‘l’l‘je!ﬁnitic'ml‘3.7], we define a “w-Jacobi diagram” (or just “arrow diagram”)
by also allowing trivalent chord vertices, each of which is equipped with a cyclic orientation,
and modulo the STU relations of Figure 8. Denote the circuit algebra of formal linear
combinations of these w-Jacobi diagrams by A*"‘. Then, as in [WKO2, Theorem 3.8], we
have the following “bracket-rise' theorem:

Theorem 2.1. The obvious winclusion of diagrams induces a circuit algebra isomorphism
A = A Furthermore, the AS andiTHX relations of Figure 8 hold in A™*.

The proof is identical to the proof of [WKO2, Theorem 3.8]. In light of this isomorphism,
we will drap the extra “¢” from the notation a.nd use A*" to denote either of these spaces.
As in [WKO2], the primitive elements of A*“ are connected diagrams, denoted P**, and
P = {trees} @ {wheels} as a vector space. Examples of trees and wheels are shown in
Figure 9: for details seeﬁWKOL’ Section 3.1]. Note that the RI relation can now be rephrased

(via .S'T[_J) 2) as the vanishing of the wheel with a single spoke, or one-wheel.

We recall the following two crucial facts fWKO? Lemmas 4.6 and 4. 7]
11
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Figure 8. The ~1_§ THX and the three ST[; Er—a_tions. Note that in STU;, the skeleton
strand can be thin red or thick black, and that .S'T(,;;; is the same as the TC relation.

Figure 9. An example of a tree, left, and a wheel, right.

Fact 2.2. A®( "), the part of A® with skeleton a single capped strand, is isomorphic as a
vector space to the completed polynomial algebra freely generated by wheels wy with k = 2.
Fact 2.3. A*“(J.) = A(1,), where A**()J.) stands for the space of arrow diagrams whose
skeleton is a single vertex (the picture shows a positive vertex but the statement is true for
all kinds of vertices with thick black strands), and A*"“(1») is the space of arrow diagrams on
two (thick black) strands.

The following Lemma will play an important role, in particular the second isomorphism
stated is the map p appearing in Theorem 1.1, part (2):

?
Lemma 2.4. A" (/I) = A™(1), where each side of the isomorphism is a space of arrow
diagrams on the skeleta shown in parentheses. On the left, the thin red string is a tangle end.
The thick black strand may continue past the arrow, and there may be additional skeleton
components: the same on both sides. Applying the isomorphism ¢ twice, one also obtains

am( ) = A(rs)
Proof. We construct inverse maps between the two spaces. There is an obvious map
A"”(T@ .A""( (I) shown in Figure 10: given an arrow diagram on a single thick black
strand, place all arrow endings (denoted “z”) on the strand above the tube/string vertex.
In the other direction, consider an arrow diagram on the capped/stringed vertex. One
may assume that there are only arrow tails on the capped strand under the vertex: any

arrow head may be commuted using STU relations towards the cap, where it is killed by
the CP relation®. On the thin red strand there are only arrow heads. To construct c,o, ﬁrst

£l

This argument also appears in [VVKO?] i exam—le Sl el basic idea for the proof of Fact 29
12
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Figure 10. Inverse maps.
across the vertex using the
slide past the vertex.
up from the thin

from the capped strand up
thin red strand, they simply
by sliding the arrow heads “h”

Now the cap relation kills any arrow heads on
le past the vertex. The result placed on a

“push” the arrow tails (denoted “t")
VI relation. Since tails vanish on the
Once the capped side is cleared, continue
red string to the strand above the vertex.
the capped strand, so once again they simply slic
single thick black strand is shown in Figure 10.

It is clear that v is well-defined, we leave it to the reader to check that so is @ as a short
exercise. Given that both maps are well-defined, it is clear that they are Inverses of each
other. O
95 The homomorphic expansion. As discussed in [WKO2, Section 2.3], an expansion
for wIF is a map Z¥ : WTF — A with the property that the associated graded map
grZ® : A*Y — A’ is the identity map idgew. A homomorphic expansion Is an expansion
which also intertwines each operation of u/ T with its arrow diagrammatic counterpart. In
[WKO2, Theorems 4.9 and 4.11] we proved that the existence of solutions for the Kashiwara—
Vergne equations implies that there exsists a homomorphic expansion for ullF*. In fact that
homomorphic expansions’ for wTF° are in one-to-one correspondence with solutions to the

Kahiwara-Vergne problem.

The point of this paper is to provide a topological construction for such a homomorphic
expansion (and hence for a solution of thcz/\lgashiwara—\/ergne conjecture), and this is easier
to do for the slightly more general space uTF.

Let A%* C A denote arrow diagrams on
uTF°. In [WKO2, Section 4.3] we prove the following crucial fact:

Fact 2.5. Z° - ul[F° — A" is a (group-like) homomorphic expansion for wTF°, if and
only if the (group-like) values V and C for the positive vertex and the cap, respectively, satisfy

the following equations:
(1) The R4 Equation:

WTF° skeleta, the associated graded space of

VizR2)s = RasRisVie  in A™(13).

Here R = €2 is the value of the crossing, where a denotes a single arrow from the
over strand 1 to the under strand 2. In the equation Vi, denotes the value V' placed on
strands 1 and 2;, R(123 means the first strand of R 1s doubled and placed on strands
1 and 2, and the\second strand of R is placed on strand 5; emésopn=

Subject to the mingr techhical condition that the value of the vertex doesn’t contain isolated arrows.
13 154 =
ant
vk An/ R,
35 Ry

T ,{"
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(2) The Unitarity Equation:
VA Ay(V)=1 in A™(T2),

where A, and Ay denote the antipode operations.
(3) The Cap Equation’:
C'(u,\',z' = (A‘|('g in .Aml \_7-2 \ L

where the subscripts mean strand placements as in the 114 Equation.

We begin by showing that finding a homomorphic expansion for wf" is no harder than
finding one for wil’F*:

Theorem 2.6. Homomorphic expansions for wl'F” are in one-to-one correspondence with

homomorphic expansions for wI'F via unique extension and restriction.

. verv ole ‘ TF° is also in wIF, hence any ZY restricts oc e
Proof. Every element of wlF is .ll‘hu»ll] wWl'F, hence any Z : 501 : Wl TF
to a homomorphic expansion Z?% of wI'F°. Every element of wIF is
the result of puncturing — possibly on multiple strands — an element of
wTF°, and Z" is required to commute with punctures. Hence any 2

O

Zow Zw

Atmwr Auu'
—_—

uniquely extends to a Z".
As it turns out, the value of the left-punctured vertex is trivial under any homomorphic
expansion. This fact will be useful later, so we prove it here.

Lemma 2.7. For any homomorphic expansion 2", Z“’(‘f\) = 1, that is, the Z"-value of

a left punctured vertez is trivial.®

Proof. Recall from [WKOZ2, Proof of Theorem 4.9] that the Z*-value V of the positive (not
punctured) vertex can be written as V = ebet, where b is a linear combination of wheels only
and ¢ (denoted uD in [WKO2]) is a linear combination of trees. Puncturing the left strand
of V kills all arrow diagrams with tails on the left. Diagrams that survive are: wheels and
short arrows (whose head and tail are not separated by any other arrow ending) supported
entirely on the right strand, and arrows pointing from the right to the left”. Observe that
all of the surviving arrow diagrams commute with each other. Wihc ’Cj’*’-jﬂz [ A’(T T) 52
Denote the value of the punctured vertex by pV = eP'®ler®  Recall that V' must r
satisfy the Unitarity Equation of Fact 2.5, so p1V - A As(pV) = 1. Since wheels have only
tails, A;Az(pi(b)) = pi(b). Each arrow has one head, so A, As(pi(t)) = —pi(t). Hence,
using commutativity, p;V - AiAx(p V) = e?P1(®) — 1 which implies that p,(b) = 0. As for
pi(t), showing that there are no arrows pointing from the right to the left strand is a direct

computation in degree 1.

"For convenience we state the Cap !]_E;qllz‘_atiqq ph.yused fp; caps at the bottom of strands, hence the difference

from the equivalent formulation in [WKO2|
8 Assuming that V is free of short arrows on the right strand: arrows whose tail and head are not separated

by any other arrow endings. Adding or removing such arrows does not affect whether Z" is a homomorphic
expansion, hence the assumption. For details see the last paragraph of the proof of this Lemma, or [WKOZ2,

Section 4.4].
9Using that if all tails of a tree are supported on one strand, then the tree is a single arrow, due to TC

and the anti-symmetry of the trivalent arrow vertices.

14
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arrows supported on either strand of V don’t
if 7" is n homomorphic expansion and a
acing V by e*V gives rise to another

no short arrows in V,

In [WKOZ2, Section 4.4] we showed that short
affect whether Z"™ is a homomorphic expansion:
is a linear combination of such short arrows, then repl

homomorphic expansion. Hence, as in [\\']\'()2] we assime there are £
sopV =1,
L
3. Proor or THEOREM 1.]

For conver nience we

Sh M
be

Mﬂ._fvﬂ/
/")‘?f)
oy
/'fjf/
/7/(’
whert A
Tl\w/:y;
1S stk d

Let us now return to the proof of our main theorem, Theorem 1.1.
i b - el I Y ! | U i
recall that it consists of three parts, with K" 1= w8, K" ;= sKTG and K = uflF:

K: Kbl Kl

PRk

A : Ahnr ‘_'_‘_ Au S AY

(1) Assuming that Z : K — A exists, it is determined'” by 2",
(2) Given a Drinfel'd associator ¢ dml,nwm.lml Z there is an explicit formula for V

in terms of &: IS

r -1 - - azs/? 5
V =Cr'Cy o (97 (aa13), —a2013) — 84(13)) * "/ P (ag3, as3)) Cliz), (2)

where a denotes a single arrow. This agrees with the formula proven in [AET].
(3) Every Z° extends to a Z.

3.1. Proof of Part (1). We prove Part 1 in two steps: first verifying the easier “tree level”
case, which nonetheless contains the main idea, then in general.

3.1.1. Tree level proof of Part (1). Let A" denote the quotient of A" by all wheels, and

let 7 : A% — A”"* denote the quotient map (cf [WKO2, Section 3.2]). Part (1) of the main

theorem is the same as stating that Z" is determined by Z*. Z", in turn is determined by

the values IV and C of the positive vertex and the cap [WKO2, Sections 4.3 and 4.5], so one

only needs to show that VV and C are determined by Z*“. Proving this “on the tree level”

means showing only that (V') and 7(C) are determined by Z", a-partialresutt—which-makes thy "_2 w<s
nse-6f-the main idea without-theteehnical-details. In particular, observe that since C is a Ja//::/

linear combination of products of wheels (Fact 2.2), we have 7(C') = 1, so we only need to \7
show that 7(V) is determined by Z*.

Let B* denote the “buckle” sK7G, as shown on the right (ignore the dotted lines L
for now). All edges are oriented up, and by the drawing conventions of [WKO2,
Section 4.6] all the vertices in the bottom half of the picture are negative and allg%
the ones in the top half are positive. Let B* = a(B") € uTF, and A" = Z*(B").
Note that F“ can be thought of as a chord diagram on four strands: use VI relations
to move all chord endings c‘.ﬁ) the g tdle” of the skeleton, between the dotted lines on the
picture. Hence, we ion A“ € A"(ty). Let B¥ = a(B"), and note that
by the compatibility of Z" and Z“ we have g = Z “(B"). We will perform a series of
operations on B" and ﬂ(ﬂ“’) to recover 7(V') from it.

W\ 15
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First, connect (a circuit algebra operation in WTF) positive vertex to the bottom of B",
as shown in Figure 11, Then unzip the edge marked by u, and puncture the edges marked
e and €', in that order. Then attach a cap (once again a circuit algebra operation) to the
thick black end at the bottom. Finally, unzip the capped strand.

This is a circuit algebra operation, and correspondingly m(/4") is “circuit algebra multi-
pliec l\b‘y 7(V), where V is the value of the vertex. This is a circuit algebra operation; keep
in mind that image of the value of the cap is trivial in A",

Figure 11. From the “buckle” 3% to the (modified) vertex.

Let us call the resulting w-tangled foam K, as shown at the right in Figure 11. What is
Z¥(K)? Due to the homomorphicity of Z, it is obtained from 3“ by performing the same
series of operations in the associated graded: a circuit algebra composition with V', unzip,
punctures, circuit algebra composition with C', and disc unzip. Notice that the left strand of
that attached vertex got punctured, and hence by Lemma 2.7 the attached value V cancels."!
Z"(K) still depends on the value C. At the tree level, since n(C') = 1, 7(Z"(K)) can be
computed from 5" by performing punctures and unzips. Since 8" = a(f3"), this means that
7(Z"(K)) is determined by Z*.

On the other hand, note that the space of chord diagrams on the skeleton of K is the space
A(12) by Lemma 2.4 and VI. Note also that K is a circuit algebra combination of a vertex,
two left-punctured right-capped vertices and an all-red-strings vertex, and the Z*-values of
the latter three are trivial. So 7(Z“(K)) = n(V') € A"*“(1,). Hence, (V') is determined by
Z* as needed. O

3.1.2. Complete proof of Part (1). In the previous subsection we showed that Z* determines
7(V) € A”°*(1;). Now we show that in turn, 7(V') determines both V and C uniquely, using
a perturbative argument.

By contradiction, assume this is not the case, in particular, first assume that there exist
V # V', both of which are vertex values of Z"-compatible homomorphic expansions, such
that 7(V) = m(V’). Let v denote the lowest degree term of V' — V. Note that v is primitive
and v € ker 7, so v is a homogeneous linear combination of wheels. By the Unitarity Equation

of Fact 2.5, we have AIAZ( ) = —v. Recall that A, reverses the direction of the strand ¢ and
multiplies each arrow diagram byj(—l)fto the number of heads on that strand. Since v has
only tails, A, A;(v) = v, so v = —v, so v = 0, a contradiction. Therefore, (V') determines
V' uniquely.

T Any short arrows would also cancel when the right strand is capped.
16
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C,N”?“;i‘:"‘t( ?h)ow that V/(l("lv(‘l'll'lill(‘ﬁ Cr"’lllliflllf.'ly. Assume there are r“[.rf'l'(‘]l"rV”?Lll,lf'h' C 'Tmr]
HorBmorphis :0 l.’]m“: (V,C) and (V,C") are both vertex-cap vnlllu-' pairs of Z -l'f)lll[)‘d,l.lb]r'
RS Xpansions. ,LM C ('I('nul.u 1lu‘- ]uwr-.-sl; (!(!;.f,l‘('l“lt,‘l'll.l of C = (', then C 18 & .:«-:l.lnr
There : single wheel. The Cap Equation of Fact 2.5 implies ¢z = ¢; + ¢z in A™(13).
\Vlli(‘;lor}({a_-",-s;:lrr:s,";‘lf}ﬁnml linear map w : A"™(1,) = Q[z,y] sending an arrow tliv;n‘gr.:un
(o ails only on each strand — to “z to the power of the number of tails on
strand 1, times y to the power of the number of tails on strand 2”. Assume ¢ = aw,, where
u.r,. denotes the r-wheel, and & € Q. Then 0 = w(eyy — ¢ — ) = al(z +y) — 2" = y’), 60
either r = 1 or a = 0. But wy = 0in A" by the R relation, hence o = 0 and thus ¢ = 0, a
contradiction. m|

3.2. Proof of Part (2). In this section we compute V, the value of the vertex, from @,
the Drinfel’d associator determining Z°, nsing the construction of Part (1), We then show
that the result translates to the [AINT] formula for Kashiwara-Vergne solutions in terms of
Drinfel'd associators.

3.2.1. From ® to V. To compute V', consider once again the w-tangled foam K on the right
of Figure 11. On one hand, Z*(K) can be computed directly from the generators: Z"(K) =
C1CaVip € A%(1,), since the values of the left-punctured vertices are trivial. On the other
hand, one can compute Z"(K), using the compatibility with Z". from f* = Z“(B"), where
B is the closure of the parenthesised braid B” shown in Figure 12. In particular, Z"(K) =
. ] ,

@lp(plpgo-(/j”) ¥ where  is the isomorphism of Lemma 2.4. In summary, V = CFC5" -
o(prpsa(B™))Crz. To obtain the formula (2) of Theorem 1.1, one needs to compute pypsa(5*)
in terms of .

By the compatibility of Z* and Z°, it is enough to compute A" .= Z*(B*). The result can
be read from the picture in Figure 12:

gt = ‘1’(_1;)24‘1’1323:52‘1’;21:5‘1’(12).'54- Fron
: : . U e © phor : rlwt’/ ¢ 7Lo
To interpret this formula, recall that the associator ® is an element of A"”" (1), and the /7(2/*71’
—1

subscripts show which strands diagrams are placed on. For example, the notation 43(13)24

means doubling the first strand of ®~' and placinE the resulting chord endings on strands 1 /7" oL/
and 3, as well as placing the chord endings from the other two strands of @' on strands 2 (-t /t
and 4. Also recall that R = e“/?, where c is a single horizontal chord between two strands J
(and in this case R3; means that this chord runs between strands 3 and 2). &

As [3“ is the tree closure of A4°, it is given by the same formula interpreted as an element “{%/‘Mkﬂf
of A%(14). One then applies « to obtain 3" = a(3"), followed by puncturing strands 1 and ,',,_(c/ﬂ‘w)
3 and caping strands 2 and 4.

To begin understanding the effect of these operations, we note that psa -
where a;; is a single arrow pointing from strand i to strand j. Ux¥<n r7l/au

Recall that @53 is a horizontal chord associator which can be expressed as a power se- ;
ries in non-commuting variables ¢i and ¢z (i.e., chords between strands 1—2 and 2—3, AJS /0
respectively). The image of ® in the quotient where ciz and ¢33 commute is 1. Hence, f’\J q-/)l l#
pipa(a®h) = 1, as the punctured strands only support arrow heads, and tails on the mid- ¥
dle strand commute by TC. Similarly, pips(a®y32) = 1 because the punctures kill the entire A i /7( 4
“left side” of the associator (that is, pipsar(cis) = 0). WA
17 ﬂ‘D L
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Prioyza  — P(ass, 0u3)

Plo3 ==

R — e23/2

P39 !

D! — & ag13y, —G2(13) — Q412
(13)24 2(13), —02(13) — A4(13))

Figure 12. Computing 3". Strands are numbered at the top and multiplication is read from
bottom to top; the rightmost column lists the images of the factors under pjpac.

(|.‘It)‘.n| ))e?2/2p pa(ca(P(12)34)). Since strands
1 and 3 are both punctured, no arrows can be supported between these strands, hence
P1P3a(P(12)31) = pacr(Pysy).

Expressing ® as a power series in two variables (abusively also denoted by ), D3y =
D(c23, €34), and pipaa(P(cas, c31)) = P(azs, ass). Similarly, <I‘)(]}”.2,1 = ®™ (s, cu), where
€(13)2 = C12 + C32.

A well-known property of associators is ®(eijycin) = ®(cyy, —ciy — ci).  Hence,
7% (cas)2, 24) = P (cquapz, —casp — cusp), S0 Ppsa@ia = 07 (a209), ~a209) — ains).
To summarise,

Thus p;p3(5*™) can be expressed as p;ps(a(P;

Pipaf” = &7 (as13), —azas) — asaa)) - €% . B(ags, aqs). (3)

Combining this with the computation of V at the beginning of this section, we obtain the
formula of Theorem 1.1 part (2). Later in Lemma 3.5 we’ll also compute the even part of
the value of the cap explicitly, and find that it is a(v'/4), where v is the Kontsevich integral
of the unknot.

3.2.2. From V to Kashiwara-Vergne. This technical section is mainly interesting for readers
familiar with the Alekseev-Enriquez-Torossian work on Kashiwara—Vergne solutions. Re-
sults of this section are not used afterwards.

The value (P~ (az(13), —a213) —as13))-¢"*/2- ® (a3, as3)) can be computed more explicitly,
which is necessary in order to compare it with the [AET] formulas. The first strand of A™(12)
joins strands 1 and 2 in a vertex, and the second strand of A"(12) joins strands 3 and 4.
Strands 1 and 3 are punctured and strands 2 and 4 are capped. Let us call the two strands
of A“(t2) strand I and strand /7 to avoid confusion. Recall from the construction of @ that
one first slides arrow tails from the capped strands “up” through the vertices, then slides all
the heads up from the punctured strands 1 and 3. Thus one obtains an element of A" (15) in
which all arrow heads are below all tails on both strands. The result is shown in Figure 13,
and explained in the caption. LT —

For a quick re-cap of [AET] notions, let lie, denote the free Lie algebra on two generators
r and y. Let tder, denote tangential derivations of this Lie algebra, that is, derivations d
with the property that d(z) = [z,a,] and d(y) = [y, a2], where a1, a; € lie;. Let TAut, :=
exp(toer;) denote the group of tangential automorphisms of lie;. There is a map 6 : lie? —
tdery, sending a pair (a, ap) to the derivation d given by d(z) = [z, a4],d(y) = [y, az]. The

18
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