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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS III:
W-FOAMS, THE KASHIWARA-VERGNE THEOREM AND DRINFEL’D

ASSOCIATORS

DROR BAR-NATAN AND ZSUZSANNA DANCSO

Abstract. This is the third in a series of papers studying the finite type invariants of
various w-knotted objects and their relationship to the Kashiwara-Vergne problem and
Drinfel’d associators. In this paper we present a topological solution to the Kashiwara-
Vergne problem. In particular we recover via a topological argument the Alkeseev-Enriquez-
Torossian

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula for explicit solutions of the Kashiwara-Vergne equations in terms

of associators.
We study a class of w-knotted objects: knottings of 2-dimensional foams and various

associated features in four-dimensioanl space. We use a topological construction which we
name the double tree construction to show that every expansion (also known as universal fi-
nite type invariant) of parenthesized braids extends first to an expansion of knotted trivalent
graphs (a well known result), and then extends uniquely to an expansion of the w-knotted
objects mentioned above.

In algebraic language, an expansion for parenthesized braids is uniquely determined by
Drinfel’d associator Φ, and an expansion for w-knotted objects is uniquely determined by
a solution V of the Kashiwara-Vergne problem

KashiwaraVergne:Conjecture
[KV], as reformulated by Alekseev and

Torossian
AlekseevTorossian:KashiwaraVergne
[AT]. Hence our result provides a topological framework for the result of

AlekseevEnriquezTorossian:E
[AET]

that “there is a formula for V in terms of Φ”, along with an independent topological proof
of the Kashiwara-Vergne Theorem and the Alekseev-Enriquez-Torossian formula.
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1. Introduction

1.1. Executive Summary. This brief section is a large-scale overview of the main result
of this paper and the idea behind its proof; it is followed by a detailed introduction.

A homomorphic expansion for a class of topological objects K is an invariant
Z : K → A whose target space A is canonically associated with K (its associated graded). Ho-
momorphic expansions satisfy a certain universality property, and respect operations which
exist on K and therefore also on A. Such invariants are often hard to find, and when they are
found, they are often intimately connected with deep mathematics, in particular, quantum
algebra and Lie theory:

• For many classes of knotted objects in 3-dimensional spaces homomorphic expansions
don’t exist — for example, one would have loved ordinary tangles to have homomor-
phic expansions, but they don’t.

• Yet a certain class Ku of knotted objects in 3-space, parenthesized tangles, or nearly-
equivalently, knotted trivalent graphs – which we adopt in this paper and denote by
sKTG – do have homomorphic expansions. A homomorphic expansion Zu : Ku → Au

is defined by its values on a couple of elements of Ku which generate Ku using the
operations Ku is equipped with. The most interesting of these generators is the
tetrahedron ,, and Φ = Zu(,) turns out to be equivalent to a Drinfel’d associator.

• A certain class Kw of graphs, called w-foams and denoted wTF o in the paper –
the name is based on a conjectured equivalence to a class of 2-dimensional welded
knotted tubes in 4-dimensional space – also has homomorphic expansions. The most
interesting generator of Kw is the vertex b, and if Zw : Kw → Aw is a homomorphic
expansion, then it turns out that V = Zw(b) is equivalent to a solution of the
Kashiwara-Vergne problem in Lie theory.

u-ops u-ops

w-ops

Au

Φ

V

Aw

w-ops

Kw

,

Ku

I

Zu ⊆ Zw

Roughly speaking, Ku is a part of Kw and
Au is a part of Aw, as in the figure on the
right (more precisely, there are natural maps
a : Ku → Kw and α : Au → Aw). The main
purpose of this paper is to prove the following
theorem, whose precise version is stated later
as Theorem

thm:mainthm:main
1.1:
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Theorem. Any homomorphic expansion Zu for Ku extends uniquely to a homomorphic
expansion Zw for Kw, and therefore, any Drinfel’d associator Φ gives rise to a solution V of
the Kashiwara-Vergne problem.

The proof of this theorem is conceptually simple: we show that the generators of Kw can
be explicitly expressed using the generators of Ku and the operations of Kw, and that the
resulting explicit formulas for Zw(b) (and for Zw of the other generators) satisfies all the
required relations.

The devil is in the details. It is in fact impossible to express the generators of Kw in
terms of the generators of Ku — to do that, one first has to pass to a larger space K̃w

(in the paper w̃TF ) that has more objects and more operations, and in which the desired

explicit expressions do exist. But even in K̃w these expressions are complicated, and in
order to verify the relations they need to be expressed using the framework of a multi-step
“double tree construction”. A brief pictorial summary of the construction is below, and the
explanation takes up the bulk of this paper:

T = TTT

1.2. Detailed Introduction. This paper is the third in a sequence
Bar-NatanDancso:WKO1, Bar-NatanDancso:
[WKO1, WKO2, WKO3]

studying finite type invariants of w-knotted objects, and contains the strongest result: a topo-
logical construction for a homomorphic expansion of w-foams from the Kontsevich integral.
This in particular implies the Kashiwara-Vergne Theorem of Lie theory, more precisely, it
gives the

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula for solutions of the Kashiwara-Vergne equations in terms of Drinfel’d

associators.
The papers in this sequence need not be read consecutively. Readers broadly familiar with

finite type invariants will have no trouble reading
Bar-NatanDancso:WKO2
[WKO2] and this paper without having

read
Bar-NatanDancso:WKO1
[WKO1]. However, the setup and main results of

Bar-NatanDancso:WKO2
[WKO2] are used heavily in this paper.

Reproducing all necessary details would be lengthy, but we include concise summaries for
readers already familiar with the content, and otherwise refer to specific results or sections
of

Bar-NatanDancso:WKO2
[WKO2] throughout.
The Kashiwara-Vergne conjecture (KV for short) — proposed in 1978

KashiwaraVergne:Conjecture
[KV] and proven in

2006 by Alekseev and Meinrenken
AlekseevMeinrenken:KV
[AM] — asserts that solutions exist for a certain set of

equations in the space of “tangential automorphisms” of the free lie algebra on two genera-
tors. For a precise statement we refer the reader to

Bar-NatanDancso:WKO2
[WKO2, Section 4.4] or

AlekseevTorossian:KashiwaraVergn
[AT, Section 5.3].

The existence of such solutions has strong implications in Lie theory and harmonic analysis,
in particular it implies the multiplicative property of Duflo isomorphism, which was shown
to be knot-theoretic in

Bar-NatanLeThurston:TwoApplications, BDS:Duflo
[BLT, BDS].

In
AlekseevTorossian:KashiwaraVergne
[AT] Alekseev and Torossian give another proof of the KV conjecture based on a deep

connection with Drinfel’d associators. In turn, Drinfel’d’s theory of associators
Drinfeld:QuasiHopf
[Dr] can

be interpreted as a theory of well-behaved universal finite type invariants of parenthesized
3
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Figure 1. Two examples of parenthesized braids. Note that by convention the parenthetiza-

tion can be read from the distance scales between the endpoints of the braid, and so we omit

the parentheses in parts of this paper. fig:PBexample

tangles1
LeMurakami:Universal, Bar-Natan:NAT
[LM, BN2], or of knotted trivalent graphs

Dancso:KIforKTG
[Da]. In

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] Alekseev, Enriquez and

Torossian gave an explicit formula for solutions of the Kashiwara-Vergne equations in terms
of Drinfel’d associators.

In
Bar-NatanDancso:WKO2
[WKO2] we re-interpreted the Kashiwara-Vergne conjecture as the problem of finding

a “homomorphic” universal finite type invariant of a class of knotted trivalent tubes in
4-dimansional space (called w-tangled foams), and explained the connection to Drinfel’d
associators in terms of a relationship between 3-dimensional and 4-dimensional topology.

Another topological interpretation for the KV problem in terms of the Goldman-Turaev
Lie bialgabre later emerged in

AKKN:GoldmanTuraev, AKKN:GTReverse
[AKKN1, AKKN2], and the papers

Massuyeau:GT
[M] and

AlekseevNaef:GTKZ
[AN] contain

constructions of Goldman-Turaev expansions from the Kontsevich integral and the Knizhnik-
Zamolodchikov connection, respectively.

In this paper we present a topological construction for a homomorphic universal finite type
invariant of w-tangled foams, thereby giving a new topological proof for the KV conjecture.
This construction also leads to an explicit formula for KV-solutions in terms of Drinfel’d
associators, which we prove agrees with the formula

AlekseevEnriquezTorossian:ExplicitSolutions
[AET, Theorem 4].

Finally, we mention that a circuit algebra, which provides the algebraic structure to w-
foams, were identified as equivalent to the operadic structure of a wheeled prop in

DHR:CircAlg
[DHR1].

The symmetry groups of Kashiwara-Vergne solutions, called the Kashiwara-Vergne groups,
are shown to be automorphism groups of the w-foam circuit algebra and its associated graded
arrow diagrams in

DHR:KVKRV
[DHR2]. The relationship between the symmetries of Drinfel’d associators

– the Grothendieck-Teichmuller groups – and the Kashiwara-Vergne groups is described in
the topological context of w-foams in the forthcoming paper

DHaR:GRTKRV
[DHaR]

1.2.1. Topology. We begin by describing a chain of maps from “parenthesized braids” to
“(signed) knotted trivalent graphs” to “w-tangled foams”:

K := {uPaB
cl

−→ sKTG
a

−→ w̃TF}.

Let us first briefly elaborate on each of these spaces and maps.
Parenthesized braids are braids whose ends are ordered along two lines, the “bottom”

and the “top”, along with parenthetizations of the endpoints on the bottom and on the
top. Two examples are shown in Figure

fig:PBexamplefig:PBexample
1. Parentehesized braids form a category whose

objects are parenthetizations, morphisms are the parenthesized braids themselves, and com-
position is given by stacking. In addition to stacking, there are several operations defined
on parenthesized braids: strand addition, removal and doubling. A detailed introduction to
parenthesized braids is in

Bar-Natan:GT1
[BN1].

1“q-tangles” in
LeMurakami:Universal
[LM], “non-associative tangles” in

Bar-Natan:NAT
[BN2].
4
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Trivalent graphs are oriented graphs with three edges meeting at each vertex
and whose vertices are equipped with a cyclic orientation of the incident edges.
A knotted trivalent graph (KTG) is a framed embedding of a trivalent graph
into R3. KTGs are studied from a finite type invariant point of view in

Bar-NatanDancso:KTG
[BND1].

In this paper we use a version of KTGs that was introduced and studied in
Bar-NatanDancso:WKO2
[WKO2, Section 4.6], namely trivalent tangles with one or two ends and with
some extra combinatorial information: trivalent vertices are equipped with a
marked “distinguished edge” and signs. We call this space sKTG (for signed
KTGs), as in

Bar-NatanDancso:WKO2
[WKO2]. An example is shown on the right. The space sKTG is also equipped

with several operations: tangle insertion, sticking a 1-tangle onto an edge of another tangle,
disjoint union of 1-tangles, edge unzip, and edge orientation switch (see

Bar-NatanDancso:WKO2
[WKO2, Section 4.6]

for details).

The space w̃TF is a minor extension of the space wTF o studied in
Bar-NatanDancso:WKO2
[WKO2, Section 4.1

– 4.4], and will be introduced in detail in Section
sec:wTFesec:wTFe
2. It can be described as a circuit al-

gebra (similar to a planar algebra but with non-planar connections allowed, see
Bar-NatanDancso:WKO2
[WKO2,

Section 2.4]) generated by certain features (various kinds of crossings and vertices, as well
as “caps”) modulo certain relations (“Reidemeister moves”) and equipped with a number
of auxiliary operations beyond the circuit algebra compositions. This Reidemeister theory
conjecturally represents knotted tubes in 4-dimensional space with singular foam vertices,
caps, and attached one-dimensional strings.

The map cl : uPaB → sKTG is the “closure map”. Given a parenthesized braid, close
up its top and bottom each by gluing a binary tree according to the parentetization; this
produces a sKTG with the convention that all strands are oriented upwards, bottom vertices
are negative, and top vertices are positive. An example is shown below.

cl

−

−

+
++

−

(1) eq:cl

The map a : sKTG → w̃TF arises combinatorially from the fact that all sKTG diagrams

can be interpreted as elements of w̃TF , and all sKTG Reidemeister moves are also imposed

in w̃TF . Topologically, it is an extended version of Satoh’s tubing map, described in Remark
3.1.1 of

Bar-NatanDancso:WKO2
[WKO2].

1.2.2. Algebra. The chain of maps K is an example of a general “algebraic structure”, as
discussed in

Bar-NatanDancso:WKO2
[WKO2, Section 2.1]. An algebraic structure consists of a collection of objects

belonging to a number of “spaces” or “different kinds”, and operations that may be unary,
binary, multinary or nullary, between these spaces. In this case there are many spaces
(or kinds of objects): for example, parenthesized braids with specified bottom and top
parenthetizations form one space, so do knottings of a given trivalent graph (skeleton).
There is also a large collection of operations, consisting of all the internal operations of

uPaB, sKTG and w̃TF , as well as the maps a and cl.
5
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In Sections 2.1 to 2.3 of
Bar-NatanDancso:WKO2
[WKO2]we discuss associated graded structures and expansions for

general algebraic structures. For any algebraic structure (think braids, or tangles with tangle
composition), one allows formal linear compositions of elements of the same kind (think, same
skeleton). Associated graded structures are taken with respect to the filtration by powers of

the augmentation ideal. For the spaces uPaB, sKTG and w̃TF , the associated graded spaces
Ahor, Au and Asw are the spaces of “horizontal chord diagrams on parenthesized strands”,
“chord diagrams on trivalent skeleta”, and “arrow diagrams”, as described in

Bar-Natan:GT1
[BN1],

Bar-NatanDancso:WKO2
[WKO2,

Section 4.6], and Section
sec:wTFesec:wTFe
2 of this paper, respectively. As a result, the associated graded

structure of K is

A := {Ahor cl
−→ Au α

−→ Asw},

where cl and α are the maps induced by cl and a, respectively. More specifically, cl is the
“closure of chord diagrams”, and α is “replacing each chord with the sum of its two possible
orientations”, see

Bar-NatanDancso:WKO2
[WKO2, Section 3.3].

An expansion
Bar-NatanDancso:WKO2
[WKO2, Section 2.3] is a filtration-respecting map from an algebraic struc-

ture to its associated graded structure, whose associated graded map is the identity. In knot
theory, expansions are also called universal finite type invariants. A homomorphic expansion
is an expansion which behaves well with respect to the operations of the algebraic structure,
that is, it intertwines each operation with its induced counterpart on the associated graded
structure; for a detailed definition and introduction see

Bar-NatanDancso:WKO2
[WKO2, Section 2.3]. Hence, a ho-

momorphic expansion Z : K → A is a triple of homomorphic expansions Zb, Zu, and Zw

for Kb := uPaB, Ku := sKTG and Kw := w̃TF , respectively, so that the following diagram
commutes:

K :

Z
��

Kb cl
//

Zb

��

Ku a
//

Zu

��

Kw

Zw

��

A : Ahor cl
// Au α

// Aw

(2) eq:MainDiag

We recall (see
Bar-Natan:GT1
[BN1]) that a homomorphic expansion Zb for parenthesized braids is de-

termined by a “horizontal chord associator” Φ = Zb( ). A homomorphic expansion Zu of
sKTG is also determined2 by a Drinfel’d associator (horizontal chords or not; see

Bar-NatanDancso:WKO2
[WKO2,

Section 4.6]), so the significance of the left commutative square is to force the associator
corresponding to Zu to be a horizontal chord associator. In turn, Zw is determined by a
solution F (a close cousin of V = Zw( )) to the Kashiwara-Vergne problem (see

Bar-NatanDancso:WKO2
[WKO2,

Section 4.4 – 4.5]). The goal of this paper is to prove the following theorem, which, via the
correspondence above, implies the Kashiwara-Vergne Theorem:

thm:main Theorem 1.1. (1) Assuming that Z : K → A exists, it is determined3 by Zu.
(2) There is a formula for V = Zw( )) in terms of the Drinfel’d associator Φ associated

to Zu and C = Zw(℄):

V = C−1
1 C−1

2 ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2Φ(a23, a43)
)
C(12), (3) eqn:AET

2With the exception of some minor normalization, see
Bar-NatanDancso:WKO2
[WKO2], Lemma 4.14 and the paragraph after.

3In fact, almost entirely determined by Zb, with the exception of some minor normalization of Zu which
is not determined by an associator.

6
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where a denotes a single arrow4. This agrees5 with the formula proven in
AlekseevEnriquezTorossian
[AET].

(3) Every Zb extends to a Z.

Remark 1.2. The formula in part (2) of the Theorem, expresses V = Zw( )) in terms of the
Drinfel’d associator Φ, and C = Zw(℄). One might wonder if there are separate formulas
for both V and C in terms of Φ. In fact, in Corollary

cor:CapValuecor:CapValue
3.13 we compute the “even part” of C

explicitly, and show that it is fixed, in other words, does not depend on Φ. Part (1) of the
Theorem, proven in Section

subsec:Part1Proofsubsec:Part1Proof
3.1.2, shows that the complete value of C (even and odd part)

is uniquely determined by Φ. In Theorem
thm:Unitaritythm:Unitarity
3.6 we also prove that a suitable value exists for

any choice Φ.

The key to the proof of the theorem is to show that the generator of w̃TF can be
expressed in terms of the generator of uPaB and the operations of K. Assuming that Z
exists, this yields a formula for V in terms of Φ.

1.3. Computations. We note that this paper is “abstract”, yet everything difficult in it
occurs within graded spaces, and can be computed explicitly up to a certain degree. The
highest degree to which computations can be completed depends on the specific object. In
a follow-up paper

Bar-Natan:WKO4
[WKO4] many of these computations are carried out.

1.4. Paper Structure. In Section
sec:wTFesec:wTFe
2 we provide an overview of the space wTF o of (ori-

ented) w-foams and its extension with strings w̃TF . We provide a brief review of definitions
and crucial facts from

Bar-NatanDancso:WKO2
[WKO2], and details of the extension. We prove that homomorphic

expansions for wTF o extend uniquely to homomorphic expansions for w̃TF .
Section

sec:Proofsec:Proof
3 makes up the bulk of the paper and is devoted to the proof of Theorem

thm:mainthm:main
1.1.

In Section
subsec:Part1subsec:Part1
3.1 we prove part (1). In Section

subsec:AETFormulasubsec:AETFormula
3.2 we deduce the formula for Kashiwara-

Vergne solutions in terms of Drinfel’d associators, proving part (2). In Section
subsec:DTsubsec:DT
3.3 we prove

statement (3), the hardest part of the proof.
Section

sec:Rmkssec:Rmks
?? is a short section of closing remarks, and in Appendix

app:AETapp:AET
A we give an explicit

comparison and equivalence between our formula in Part (2) and the ALekseev–Enriquez–
Torossian

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula.

2. The spaces w̃TF and Asw in more detail
sec:wTFe

As mentioned in the introduction, w̃TF is a minor extension of the space wTF o studied in
Bar-NatanDancso:WKO2
[WKO2, Section 4.1 – 4.4]. It can be introduced as a planar algebra or as a circuit algebra;
we will do the latter as it is simpler and more concise. Circuit algebras are defined in
Bar-NatanDancso:WKO2
[WKO2, Section 2.4]; in short, they are similar to planar algebras but without the planarity

requirement for “connecting strands”. As in
Bar-NatanDancso:WKO2
[WKO2], each generator and relation of w̃TF

has a local topological interpretation. Recall from
Bar-NatanDancso:WKO2
[WKO2, Sections 1.2, 3.4, 4.1] that wTF o

diagrams represent certain ribbon knotted tubes with foam vertices in R4, and the circuit
algebra wTF o is conjecturally a Reidemeister theory for this space (i.e., there is a surjection δ
from the circuit algebra wTF o to ribbon knotted tubes with foam vertices, and δ is conjectured

to be an isomorphism). The space w̃TF extends wTF o by adding one-dimensional strands

4The notation is explained in detail in Section
subsec:AETFormulasubsec:AETFormula
3.2

5The two formulas are written in different languages, and checking that they agree takes effort. See
Section

subsec:AETFormulasubsec:AETFormula
3.2 and Appendix

app:AETapp:AET
A.
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to the picture. Note that in themselves, one dimensional strands in R4 are never knotted,
however, they can be knotted with the two-dimensional tubes. In figures two-dimensional
tubes will be denoted by thick lines and one dimensional strings by thin red lines. With this

in mind, we define w̃TF as a circuit algebra defined in terms of generators and relations, and
with some extra operations beyond circuit algebra compositions. Each generator, relation
and operation has a local topological interpretation which provides much of the intuition
behind the proofs. However, the corresponding Reidemeister theorem is only conjectural.

w̃TF = CA

〈

1 2 5 6 7 8 943
, , , ,,, ,,

generators

∣∣∣∣∣
relations
as in

Section
subsec:wrelssubsec:wrels
2.2

∣∣∣∣∣
auxiliary

operations as
in Section

subsec:wopssubsec:wops
2.3

〉

subsec:wgens

2.1. The generators of w̃TF . We begin by discussing the local topological meaning of each
generator shown above.

The first five generators are as described in
Bar-NatanDancso:WKO2
[WKO2, Sections 4.1.1], we briefly

recall their descriptions here. Knotted (more precisely, braided) tubes in R4 can
equivalently be thought of as movies of flying rings in R3. The two crossings
stand for movies where two rings trade places by the ring of the under strand flying
through the ring of the over strand. The dotted end represents a tube “capped off”
at the bottom by a disk. Generators 4 and 5 stand for singular “foam vertices”,
and will be referred to as the positive and negative vertex, respectively. The
positive vertex represents the movie shown on the left: the right ring approaches
the left ring from below, flies inside it and merges with it. The negative vertex
represents a ring splitting and the inner ring flying out below and to the right. To

be completely precise, w̃TF as a circuit algebra has more vertex generators than
shown above: the vertices appear with all possible orientations of the strands. However,
all other versions can be obtained from the ones shown above using “orientation switch”
operations (to be discussed in Section

subsec:wopssubsec:wops
2.3).

The thin red strands denote one dimensional strings in R4, or “flying points
in R3”. The crossings between the two types of strands (generators 6 and
7) represent “points flying through rings”. For example, the picture on the
left shows generator 6, where “the point on the right approaches the ring on
the left from below, flies through the ring and out to the left above it”. This
explains why there are no generators with a thick strand crossing under a
thin red strand: a ring cannot fly through a point.

Generator 9 is a trivalent vertex of 1-dimensional strings in R4. Finally,
the last generator is a mixed vertex: a one-dimensional string attached to the wall of a
2-dimensional tube, as shown in Figure

fig:MixedVertexfig:MixedVertex
2. All generators should be shown in all possible

strand orientation combinations; we are suppressing this to save space.

subsec:wrels

2.2. The relations. As a list, the relations for w̃TF are the same as the relations for wTF o
Bar-NatanDancso:WKO2
[WKO2, Section 4.5]: {R1s, R2, R3, R4, OC, CP}. Recall that R1s is the weak (framed)
version of the Reidemeister 1 move; R2 and R3 are the usual second and third Reidemeister
moves; R4 allowes moving a strand over or under a vertex. OC stands for Overcorssings

8
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Figure 2. A string-tube vertex. fig:MixedVertex

OC: CP:

Figure 3. The OC and CP relations. fig:wTFeRels

Commute, CP for Cap Pullout: these two relations are shown in Figure
fig:wTFeRelsfig:wTFeRels
3, for a detailed

explanation see
Bar-NatanDancso:WKO2
[WKO2, Section 4.1.2].

In w̃TF all relations should be interpreted in all possible combinations of strand types and
orientations (tube or string), for example the lower strand of the R2 relation can either be
thick black or thin red, as shown below:

R2:

Similarly, any of the lower strands of the R3, R4, and OC relations may be thin red.

As in wTF o, the relations all have local topological meaning and conjecturally w̃TF is a
Reidemeister theory for ribbon knotted tubes in R4 with caps, singular foam vertices and
attached strings. For example, Reidemeister 2 with a thin red bottom strand is imposed
because the movie where a point flies in through a ring and then immediately flies back out
is isotopic to the movie where there is no interaction between the point and ring at all.

It is easy to verify that all relations represent local isotopies of welded (ribbon knotted)
tubes in R4 with singular vertices and attached strings. What is not clear at this stage is that
this is a complete Reidemeister theory, that is, whether this is a complete set of relations.
For more detail on this see

Bar-NatanDancso:WKO2
[WKO2, Section 1.2].

subsec:wops

2.3. The operations. Like wTF o, w̃TF is equipped with a set of auxiliary operations in
addition to the circuit algebra structure.

The first of these is orientation reversal. For the thin (red) strands, this simply means
reversing the direction of the strand. For the thick strands (tubes), orientation switch comes
in two versions. Recall from

Bar-NatanDancso:WKO2
[WKO2, Section 3.4] that in the topological interpretation of

wTF o, each tube is oriented as a 2-dimensional surface, and also has a distinguished “core”:
a line along the tube which is oriented as a 1-dimensional manifold and determines the

9
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e

e ue

Figure 4. Unzip and disc unzip. fig:DiscUnzip

“direction” or “1-dimensional orientation” of the tube. Both of these are determined by the
direction of the strand in the circuit algebra, via Satoh’s tubing map.

Topologically, the operation “orientation switch”, denoted Se for a given strand e, acts by
reversing both the (1-dimensional) direction and the (2-dimensional) orientation of the tube
e. Diagrammatically, this corresponds to simply reversing the direction of the corresponding
strand e.

e e e e

Ae Ae

The “adjoint” operation, denoted Ae, on the other hand
only reverses the (1-dimensional) direction of the tube e,
not the orientation as a surface. Diagrammatically, this
manifests itself as reversing the strand direction and adding
two virtual crossings on either side of each crossing where e
crosses over another strand, as shown on the right (note that the strand below e may be thick
or thin). Note that virtual crossings don’t appear when e crosses under another strand. For
more details on orientations and orientation switches, see

Bar-NatanDancso:WKO2
[WKO2, Sections 3.4 and 4.1.3].

The unzip operation ue doubles the strand e using the blackboard framing, and then
attaches the ends of the doubled strand to the connecting ones, as shown in Figure

fig:DiscUnzipfig:DiscUnzip
4. We

restrict unzip to strands whose two ending vertices are of different signs. (For the definition of
crossing and vertex signs, see

Bar-NatanDancso:WKO2
[WKO2, Sections 3.4 and 4.1].) Topologically, the blackboard

framing of the diagram induces a framing of the corresponding tube in R4 via Satoh’s tubing
map, and unzip is the act of “pushing the tube off of itself slightly in the framing direction”.
Note that unzips preserve the ribbon property.

A related operation, disc unzip, is unzip done on a capped strand, pushing the tube off in
the direction of the framing (in diagram world, in the direction of the blackboard framing),
as before. An example is shown in Figure

fig:DiscUnzipfig:DiscUnzip
4; see

Bar-NatanDancso:WKO2
[WKO2, Section 4.1.3] for details on framings

and unzips.
So far all the operations we have introduced had already existed in wTF o. There is also

a new operation is called “puncture”, denoted pe, which diagrammatically simply turns the
thick black strand e into a thin red one. The corresponding topological picture is “puncturing
a tube”, i.e., removing a small disk from it and retracting the rest to its core. Any crossings
where e passes under another strand are not affected, while crossings in which e is the over
strand turn into virtual crossings.

For simplicity, we place a restriction on which strands can be punctured, namely at each
(fully thick black) vertex puctures are only allowed for one of the three meeting strands,
as shown on the left of Figure

fig:puncturesfig:punctures
5. More general puctures could be allowed in a theory with

more than one kind of “string to tube” vertex. The right of the same figure shows that when
puncturing one of the thick strands of a mixed vertex, the puncture “spreads”. Topologically,

10
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pe
e

pee

Figure 5. Puncture operations: the picture on the left shows which edges can be punctured

at each vertex. The middle and right pictures show the effect of puncture operations. fig:punctures

TC
+=+

−→

4T
=

Figure 6. The TC and
−→
4T relations. Note that the 3rd strand in each term of the

−→
4T relation

can be either thick black or thin red, the relation applies in either case. fig:TCand4T

this is because the mixed vertex represents a string attached to a tube, so when puncturing e,
the entire tube retracts to its core. Finally, a capped tube disappears (deformation retracts
to a point) when punctured.

In summary,

w̃TF = CA

〈

1 2 5 6 7 8 943
, , , ,,, ,,

generators

∣∣∣∣∣∣∣

R1s, R2, R3,
R4, OC, CP
relations

∣∣∣∣∣∣∣

Se, Ae,
ue, de, pe
auxiliary
operations

〉

2.4. The associated graded structure Asw. As in
Bar-NatanDancso:WKO2
[WKO2], the space w̃TF is filtered by

powers of the augmentation ideal and its associated graded circuit algebra, denoted Asw, is
a “space of arrow diagrams on foam skeletons with strings”. As a circuit algebra, Asw is
presented as follows:

Asw = CA

〈

1 42 3 6 75
,,, , ,,

generators

∣∣∣∣∣∣∣
relations
as below

∣∣∣∣∣∣∣

auxiliary
operations
as below

〉
.

Generators 1 and 5 are called single arrows and they are of degree one, while all others are
“skeleton features” of degree zero. The relations are almost the same as in

Bar-NatanDancso:WKO2
[WKO2, Section

4.2.1], which describes the relations for the associated graded of wTF o:
−→
4T (the 4-Term

relation), TC (Tails Commute), RI (Rotation Invariance), CP (the arrow Cap Pullout), and

VI (Vertex Invariance). For w̃TF there is an additional relation TF (Tails Forbidden on

strings). The TC and
−→
4T relations are shown in Figure

fig:TCand4Tfig:TCand4T
6. The Vertex Invariance relation is

shown in Figure
fig:VIfig:VI
7: here the ± signs depend on the strand orientations. Note that the type

of the vertex and the types of each strand (thick black or thin red) are left undetermined:
the VI relation applies in all cases. Figure

fig:RICPTFfig:RICPTF
8 shows the other relations: RI, CP and TF. Note

that technically TF is not a relation: there were no generators with an arrow tail on a thin
red strand, so saying that such an element vanishes is meaningless. However, without TF
the VI relation would have to be stated for all the sub-cases of 0, 1 or 3 thin red strands, so
we prefer this cleaner way, even if it is a slight abuse of notation.

11
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± ± ± ±± ± = 0, and = 0.

Figure 7. The VI relation: the vertices and strands could be of any type, but the same

throughout the relation. fig:VI

=
RI CP TF

= 0 = 0

Figure 8. The RI and CP relations, and the TF relation (which is not really a relation). fig:RICPTF

Denote arrow diagrams on a given skeleton S by Asw(S). In particular, Asw(↑n) denotes
arrow diagrams on n (black) vertical strands, and A(℄n) denotes arrow diagrams on n
capped strands.

Each operation on w̃TF induces a corresponding operation on Asw. Orientation switch,
adjoint, unzip, cap unzip, and long strand deletion act exactly the same way as they do
for wTF oo. We quickly recall these here, for details see

Bar-NatanDancso:WKO2
[WKO2, Section 4.2.2]. The ori-

entation switch Se reverses the orientation of the skeleton strand e, and multiplies the ar-
row diagram by (−1)#{arrow heads and tails on e}. The adjoint operation also reverses the skele-
ton strand e and multiplies the arrow diagram by (−1)#{arrow heads on e}. Given a skele-
ton S with a distinguished strand e, unzip (or disc unzip, if e is capped) is an operation
ue : A

sw(S) → Asw(ue(S)) which maps each arrow ending on e to a sum of two arrows, one
ending on each of the two new strands which replace e. Deleting a long strand e kills all
arrow diagrams with any arrow ending on e. The operation induced by puncture, denoted
pe, turns the formerly thick black e into a thin red strand, and kills any arrow diagram with
any arrow tails on e.

To summarise:

Asw = CA

〈

1 42 3 6 75
,,, , ,,

generators

∣∣∣∣∣∣∣

−→
4T , TC, VI,
CP, RI, TF
relations

∣∣∣∣∣∣∣

Se, Ae, ue, de, pe
auxiliary
operations

〉

As in
Bar-NatanDancso:WKO2
[WKO2, Definition 3.7], we define a “w-Jacobi diagram” (or just “arrow diagram”)

by also allowing trivalent chord vertices, each of which is equipped with a cyclic orientation,

and modulo the
−−−→
STU relations of Figure

fig:ASIHXSTUfig:ASIHXSTU
9. Denote the circuit algebra of formal linear

combinations of these w-Jacobi diagrams by Aswt. Then, as in
Bar-NatanDancso:WKO2
[WKO2, Theorem 3.8], we

have the following “bracket-rise” theorem:

Theorem 2.1. The natural inclusion of diagrams induces a circuit algebra isomorphism

Asw ∼= Aswt. Furthermore, the
−→
AS and

−−−→
IHX relations of Figure

fig:ASIHXSTUfig:ASIHXSTU
9 hold in Aswt.

The proof is identical to the proof of
Bar-NatanDancso:WKO2
[WKO2, Theorem 3.8]. In light of this isomorphism,

we will drop the extra “t” from the notation and use Asw to denote either of these spaces.
12
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TC

+ = 0

−→

AS
= −

−−−→
IHX

=

−−−→

STU2
= −

−−−→
STU1

− =

−−−→

STU3

Figure 9. The
−→
AS,

−−−→
IHX and the three

−−−→
STU rerations. Note that in

−−−→
STU1, the skeleton

strand can be thin red or thick black, and that
−−−→
STU3 is the same as the TC relation. fig:ASIHXSTU

Figure 10. An example of a tree, left, and a wheel, right. fig:TreeAndWheel

The space Asw(↑n) forms a Hopf algebra with the stacking product and the standard
co-product. (The coproduct is the sum over all possible ways of distributing the connected
components of the arrow graph between two copies of the skeleton.) As in

Bar-NatanDancso:WKO2
[WKO2], the

primitive elements of Asw(↑n) are connected diagrams, denoted Psw(↑n), and Psw(↑n) =
〈trees〉 ⊕ 〈wheels〉 as a vector space. Examples of trees and wheels are shown in Figure

fig:TreeAndWheelfig:TreeAndWheel
10;

for details see
Bar-NatanDancso:WKO2
[WKO2, Section 3.1]. Note that the RI relation can now be rephrased (via

−−−→
STU2) as the vanishing of the wheel with a single spoke, or one-wheel.

We recall the following crucial facts
Bar-NatanDancso:WKO2
[WKO2, Proposition 3.19, Lemmas 4.6 and 4.7]:

fact:semidirect Fact 2.2. As a Lie algebra, Psw(↑n) ∼= 〈wheels〉 ⋊ 〈trees〉. The vector space (abelian Lie
algebra) spanned by wheels is canonically isomorphic to the space (cycn)≥1 of cyclic words6

in n letters of degree at least 2, where degree is given by word length, and degree 1 is killed
by the RI relation.

fact:CapIsWheels Fact 2.3. Asw(℄), the part of Asw with skeleton a single capped strand, is isomorphic as a
vector space to the completed polynomial algebra freely generated by wheels wk with k ≥ 2.

fact:VTwoStrands Fact 2.4. Asw( ) ∼= Asw(↑2), where Asw( ) stands for the space of arrow diagrams whose
skeleton is a single vertex (the picture shows a positive vertex but the statement is true for
all kinds of vertices with thick black strands), and Asw(↑2) is the space of arrow diagrams on
two (thick black) strands.

The following Lemma – called the Sorting Lemma as we will see it “sorts” arrow tails above
arrow heads – will play an important role. In particular the second isomorphism stated is
the map ϕ appearing in Theorem

thm:mainthm:main
1.1, part (2). We will refer to the isomorphism ϕ in the

Lemma as the sorting isomorphism.

6Cyclic words are denoted trn in
Bar-NatanDancso:WKO2
[WKO2] and

AlekseevTorossian:KashiwaraVergne
[AT] and Tn in

AlekseevEnriquezTorossian:ExplicitSolutions
[AET].
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x
ϕ

h t

Figure 11. Inverse maps. fig:SlideUpLemma

lem:CapString Lemma 2.5 (Sorting Lemma). There is a linear isomorphism ϕ : Asw
( )

∼=
−→ Asw(↑)

between the vector spaces of arrow diagrams on the indicated skeleta. On the left, the thin
red string is a tangle end. The black strand may continue past the arrow, and there may be
additional skeleton components: the same on both sides. Applying the isomorphism ϕ twice,

one obtains Asw
( ) ϕ

∼= Asw(↑2).

Proof. We construct inverse maps between the two spaces. There is a natural map

Asw(↑)
ψ
→ Asw

( )
, shown in Figure

fig:SlideUpLemmafig:SlideUpLemma
11: given an arrow diagram on a single thick black

strand, place all arrow endings (denoted “x”) on the strand above the tube/string vertex.
In the other direction, consider an arrow diagram on the capped/stringed vertex. One

may assume that there are only arrow tails on the capped strand under the vertex: any

arrow head may be commuted using
−−−→
STU relations towards the cap, where it is killed by

the CP relation7. On the thin red strand there are only arrow heads. To construct ϕ, first
“push” the arrow tails (denoted “t”) from the capped strand up across the vertex using the
VI relation. Since tails vanish on the thin red strand, they simply slide past the vertex.
Once the capped side is cleared, continue by sliding the arrow heads “h” up from the thin
red string to the strand above the vertex. Now the cap relation kills any arrow heads on
the capped strand, so once again they simply slide past the vertex. The result placed on a
single thick black strand is shown in Figure

fig:SlideUpLemmafig:SlideUpLemma
11.

It is clear that ψ is well-defined, we leave it to the reader to check that so is ϕ as a short
exercise. Given that both maps are well-defined, it is clear that they are inverses of each
other. �

Observe that in the image of ϕ, all arrow tails are above arrow heads along the strand.
Arrow diagrams of this form appear in the context of “over-then-under” tangles, which have
applications in several contexts, including virtual braid classification

BDV:OU
[BDV].

2.5. The homomorphic expansion. As discussed in
Bar-NatanDancso:WKO2
[WKO2, Section 2.3], an expansion

for w̃TF is a map Zw : w̃TF → Asw with the property that the associated graded map
grZw : Asw → Asw is the identity map idAsw . A homomorphic expansion is an expansion

which also intertwines each operation of w̃TF with its arrow diagrammatic counterpart. In
Bar-NatanDancso:WKO2
[WKO2, Theorems 4.9 and 4.11] we proved that the existence of solutions for the Kashiwara–
Vergne equations implies that there exsists a homomorphic expansion for wTF o. In fact that

7This argument also appears in
Bar-NatanDancso:WKO2
[WKO2], for example as the basic idea for the proof of Fact

fact:CapIsWheelsfact:CapIsWheels
2.3.
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homomorphic expansions8 for wTF o are in one-to-one correspondence with solutions to the
Kahiwara-Vergne problem.

The point of this paper is to provide a topological construction for such a homomorphic
expansion (and hence for a solution of the Kashiwara–Vergne conjecture), and this is easier

to do for the slightly more general space w̃TF .
Let Aosw ⊆ Asw denote arrow diagrams on wTF o skeleta, the associated graded space of

wTF o. One of the key results of
Bar-NatanDancso:WKO2
[WKO2, Section 4.3] is the characterisation of homomorphic

expansions of wTF o. For any (group-like) homomorphic expansion Zow : wTF o → Aosw, the
value Zow(!) is uniquely determined and equals R = ea12 , where a12 denotes a single arrow
from the over strand 1 to the under strand 2.

To state the full characterisation, we use co-simplicial notation in subscripts. For example,
for R = ea12 =∈ Asw(↑2), R13 = ea13 and R23 = ea23 in Asw(↑3) are the diagrams where R
is placed on strands 1 and 3, and 2 and 3, respectively. R(12)3 ∈ Asw(↑3) is obtained by
doubling the first strand of R and placing it on strands 1 and 2, and placing the second
strand of R on strand 3, that is, R(12)3 = ea13+a23 . Similarly for V ∈ A(↑2), V12 ∈ A(↑3)
denotes V placed on the first two starnds, et cetera.

fact:EquationsForZ Fact 2.6. A filtered, group-like map Zow : wTF o → Aosw is a homomorphic expansion if and
only if the Zow-values V = Zow( ) and C = Zow(℄) satisfy the following equations:

(1) R4 Equation:
V12R(12)3 = R23R13V12 in Asw(↑3). (R4) eq:R4

(2) Unitarity Equation:

V · A1A2(V ) = 1 in Asw(↑2), (U) eq:U

where A1 and A2 denote the antipode operations.
(3) Cap Equation9:

C(12)V
−1
12 = C1C2 in Asw(℄2), (C) eq:C

where the subscripts mean strand placements as in the R4 Equation.

We begin by showing that finding a homomorphic expansion for w̃TF is no harder than
finding one for wTF o.

thm:ExtendRestrict Theorem 2.7. Homomorphic expansions for wTF o are in one-to-one correspondence with

homomorphic expansions for w̃TF via unique extension and restriction.

wTF o � � //

Zow

��

w̃TF

Zw

��

Aosw � � // Asw

Proof. Every element of wTF o is also in w̃TF , hence any Zw restricts

to a homomorphic expansion Zow of wTF o. Every element of w̃TF is
the result of puncturing – possibly on multiple strands – an element of
wTF o, and Zw is required to commute with punctures. Hence any Zow

uniquely extends to a Zw. �

In
Bar-NatanDancso:WKO2
[WKO2, Section 4.4] we showed that short arrows – arrows whose head and tail is

not separated by any other arrow endings – supported on either strand of V don’t affect
whether Zw is a homomorphic expansion. That is, if Zw is a homomorphic expansion and

8Subject to the minor technical condition that the value of the vertex doesn’t contain isolated arrows.
9For convenience we state the Cap Equation phrased for caps at the bottom of strands, hence the difference

from the equivalent formulation in
Bar-NatanDancso:WKO2
[WKO2].
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a is a linear combination of short arrows, then replacing V by eaV gives rise to another
homomorphic expansion. Hence, in

Bar-NatanDancso:WKO2
[WKO2] we typically assume there are no short arrows

in V , this motivates the following definition:

Definition 2.8. A homomorphic expansion Z is v-small if there are no short arrows in the
Z-value V of the positive vertex.

As it turns out, the value of the left-punctured vertex is trivial under any v-small homo-
morphic expansion. This fact will be useful later, so we prove it here.

lem:pV Lemma 2.9. For any v-small homomorphic expansion Zw, Zw
( )

= 1, that is, the Zw-

value of a left punctured vertex is trivial.

Proof. Recall from
Bar-NatanDancso:WKO2
[WKO2, Proof of Theorem 4.9] that the Zw-value V of the positive (not

punctured) vertex can be written as V = ebet, where b is a linear combination of wheels only
and t (denoted uD in

Bar-NatanDancso:WKO2
[WKO2]) is a linear combination of trees. Puncturing the left strand

of V kills all arrow diagrams with tails on the left strand. Diagrams that survive are wheels,
and trees all of whose tails are on the right side strand. However, if all tails of a tree are
supported on one strand, then the tree is a single arrow, due to TC and the anti-symmetry
of the trivalent arrow vertices, thus the only surviving trees are simple arrows directed from
right to left. Observe that all of these arrow diagrams commute with each other in Asw(↑2).

Denote the value of the punctured vertex by p1V = ep1(b)ep1(t). Recall that V must satisfy
the Unitarity Equation of Fact

fact:EquationsForZfact:EquationsForZ
2.6, so p1V · A1A2(p1V ) = 1. Since wheels have only tails,

A1A2(p1(b)) = p1(b). Each arrow has one head, so A1A2(p1(t)) = −p1(t). Hence, using
commutativity, p1V · A1A2(p1V ) = e2p1(b) = 1, which implies that p1(b) = 0. As for p1(t),
one can show that there are no arrows pointing from the right to the left strand by a direct
computation in degree 1. �

3. Proof of Theorem
thm:mainthm:main
1.1

sec:Proofsubsec:Part1

3.1. Proof of Part (1). We prove Part 1 in two steps: first verifying the easier “tree level”
case, which nonetheless contains the main idea, then in general.

subsec:Part1TreeProof
3.1.1. Tree level proof of Part (1). Let Atree denote the quotient of Asw by all wheels, and
let π : Asw → Atree denote the quotient map (cf

Bar-NatanDancso:WKO2
[WKO2, Section 3.2]). Part (1) of the main

theorem is the same as stating that Zw is determined by Zu. Zw, in turn is determined by
the values V and C of the positive vertex and the cap

Bar-NatanDancso:WKO2
[WKO2, Sections 4.3 and 4.5], so one

only needs to show that V and C are determined by Zu. Proving this “on the tree level”
means showing only that π(V ) and π(C) are determined by Zu. In particular, observe that
since C is a linear combination of products of wheels (Fact

fact:CapIsWheelsfact:CapIsWheels
2.3), we have π(C) = 1, so we

only need to show that π(V ) is determined by Zu.

Bu =

Let Bu denote the “buckle” sKTG, as shown on the right (ignore the dotted
lines for now). All edges are oriented up, and by the drawing conventions
of

Bar-NatanDancso:WKO2
[WKO2, Section 4.6] all the vertices in the bottom half of the picture are

negative and all the ones in the top half are positive. Let Bw = a(Bu) ∈ w̃TF ,
and βu := Zu(Bu). Note that βu can be represented as a chord diagram on
four strands10: use VI relations to move all chord endings to the “middle” of the skeleton,

10The value of βu is computed explicitly to degree four in
Bar-Natan:WKO4
[WKO4].

16



D
R
A
FT

between the dotted lines on the picture. Hence, we write βu ∈ Au(↑4). Let βw = α(βu),
and note that by the compatibility of Zu and Zw we have βw = Zw(Bw). We will perform
a series of operations on Bw and π(βw) to recover π(V ) from it.

First, connect (a circuit algebra operation in w̃TF ) a positive vertex to the bottom of Bw,
as shown in Figure

fig:BuckleToVfig:BuckleToV
12. Then unzip the edge marked by u, and puncture the edges marked

e and e′. Then attach a cap (once again a circuit algebra operation) to the thick black end
at the bottom. Finally, unzip the capped strand.

uu

e′
e

u

= K

Figure 12. From the “buckle” βw to the (modified) vertex. fig:BuckleToV

Call the resulting w-foam K, as shown at the right in Figure
fig:BuckleToVfig:BuckleToV
12. What is Zw(K)? Due to

the homomorphicity of Z, it is obtained from βw by performing the same series of operations
in the associated graded: a circuit algebra composition with V , unzip, punctures, circuit
algebra composition with C, and disc unzip. Notice that the left strand of that attached
vertex got punctured, and hence by Lemma

lem:pVlem:pV
2.9 the attached value V cancels.11 Zw(K) still

depends on the value C. At the tree level, since π(C) = 1, π(Zw(K)) can be computed from
βw by performing punctures and unzips. Since βw = α(βu), this means that π(Zw(K)) is
determined by Zu.

On the other hand, note that the space of chord diagrams on the skeleton of K is the
space A(↑2) bythe Sorting Lemma (Lemma

lem:CapStringlem:CapString
2.5) and VI. Note also that K is a circuit alge-

bra combination of a vertex, two left-punctured right-capped vertices and an all-red-strings
vertex, and the Zw-values of the latter three are trivial. So π(Zw(K)) = π(V ) ∈ Atree(↑2).
Hence, π(V ) is determined by Zu as needed. �

subsec:Part1Proof
3.1.2. Complete proof of Part (1). In the previous subsection we showed that Zu determines
π(V ) ∈ Atree(↑2). The proof of Part (1) is completed by the following Lemma:

lem:PiVEnough Lemma 3.1. For any homomorphic expansion Zw of w̃TF set V = Zw( ) and C = Zw(℄).
Then π(V ) ∈ Atree(↑2) determines both V and C uniquely.

Proof. We use a perturbative argument. By contradiction, assume this is not the case,
in particular, first assume that there exist V 6= V ′, both of which are vertex values of Zu-
compatible homomorphic expansions, such that π(V ) = π(V ′). Let v denote the lowest
degree term of V − V ′. Note that v is primitive and v ∈ ker π, so v is a homogeneous linear
combination of wheels. By the Unitarity Equation of Fact

fact:EquationsForZfact:EquationsForZ
2.6, we have A1A2(v) = −v.

Recall that Ai reverses the direction of the strand i and multiplies each arrow diagram by

11Any short arrows would also cancel when the right strand is capped.
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c23S2p1(α(Φ))

Figure 13. A concatenated associator. fig:Concat

(−1) to the number of heads on that strand. Since v has only tails, A1A2(v) = v, so v = −v,
so v = 0, a contradiction. Therefore, π(V ) determines V uniquely.

Now we show that V determines C uniquely. Assume there are different values C and
C ′ in Asw(℄) so that (V, C) and (V, C ′) are both vertex-cap value pairs of Zu-compatible
homomorphic expansions. Let c denote the lowest degree term of C − C ′, then c is a scalar
multiple of a single wheel. The Cap Equation of Fact

fact:EquationsForZfact:EquationsForZ
2.6 implies c(12) = c1 + c2 in Asw(℄2).

There is a well-defined linear map ω : Asw(℄2) → Q[x, y] sending an arrow diagram –
which has arrow tails only on each strand – to “x to the power of the number of tails on
strand 1, times y to the power of the number of tails on strand 2”. Assume c = αwr, where
wr denotes the r-wheel, and α ∈ Q. Then 0 = ω(c(12) − c1 − c2) = α((x+ y)r − xr − yr), so
either r = 1 or α = 0. But w1 = 0 in Asw by the RI relation, hence α = 0 and thus c = 0, a
contradiction. �

subsec:AETFormula

3.2. Proof of Part (2). In this section we compute V , the value of the vertex, from Φ, the
Drinfel’d associator determining Zb, using the construction of Part (1). In Appendix

app:AETapp:AET
A we

also show that this result translates to the
AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula for Kashiwara-Vergne solutions in

terms of Drinfel’d associators.
In the computation of V from Φ, as well as later in the paper, we use two facts about

Drinfel’d associators. We summarise these in the following Lemma:

lem:PhiFacts Lemma 3.2. Let Φ = Φ(c12, c23) ∈ Au(↑3) be a Drinfel’d associator, where cij denotes a
chord between strands i and j. Let α(Φ) ∈ Aw(↑3) denote the image of Φ in arrow diagrams.
Then, the following facts hold:

it:Central (1) Φ(x, y) = Φ(x,−x − z), whenever (x+ y + z) is central.
it:TwoPunctures (2) pipjα(Φ) = 1, whenever i, j ∈ {1, 2, 3}, i 6= j, and pi denotes puncture of the i-th

strand.
it:Concat (3) µ23 (S2p1(α(Φ))) = 1, where S2 stands for orientation switch of strand 2, and µ23 is

concatenation (multiplication) of strands 2 and 3 – a circuit algebra operation – as
shown in Figure

fig:Concatfig:Concat
13.

Proof. Property (
it:Centralit:Central
1) follows from the fact that the logarithm of Φ is a Lie series in x and

y with no constant term.
To show Property (

it:TwoPuncturesit:TwoPunctures
2), recall that if Φ(x, y) is a Drinfel’d associator, then Φ(0, y) =

Φ(x, 0) = 1. Therefore p1p2α(Φ) = 1, because p1p2α(c12) = p1p2(a12 + a21) = 0. Similar
reasoning shows that p2p3α(Φ) = 1. Finally, p1p3α(Φ(c12, c23)) = Φ(a21, a23), and since
[a21, a23] = 0 by the TC relation, Φ(a21, a23) = 1.

For Property
it:Concatit:Concat
3, note that p1(α(Φ)) = Φ(a21,−a21−a31). Thus, strands 2 and 3 carry only

arrow tails, and these commute by the TC relation, and S2p1(α(Φ)) = Φ(−a21, a21 − a31).
18



D
R
A
FT

Furthermore, tails on strand 3 can be pulled to strand 2 through the concatenation, which
identifies a21 with a31. Therefore, Φ(−a21, a21 − a31) = Φ(−a21, 0) = 1. �

To compute V and prove Part (2) of Theorem
thm:mainthm:main
1.1, consider once again the w-tangled foam

K on the right of Figure
fig:BuckleToVfig:BuckleToV
12.

On one hand, Zw(K) can be computed directly from the generators: Zw(K) = C1C2V12 ∈
Asw(↑2), since the values of the left-punctured vertices are trivial. Hence, if we know Zw(K),
we know V .

On the other hand, we can compute Zw(K), using the compatibility with Zu, as follows.
Note that Bu is the closure – in the sense of (

eq:cleq:cl
1) – of the parenthesised braid Bb shown in

Figure
fig:BuckleBraidfig:BuckleBraid
14, Bw = a(Bu). Using the notation βu = Zu(Bu), and βw = Zw(Bw), and by the

compatibility of Zw with Zu, we have

βw = Zw(Bw) = α(Zu(Bu)) = α(βu).

How does Zw(K) differ from βw? To obtain K, a vertex and a cap were attached to Bw,
two strands were punctured and the cap unzipped, as in Figure

fig:BuckleToVfig:BuckleToV
12. The Zw-value of the

added vertex cancels when its left strand is punctured, however, the value of the cap remains
and is unzipped. Thus, in loose notation, Zw(K) = u(C) · p2(βw), where p2 denotes the two
punctures – we will compute this value explicitly in terms of associators shortly.

To equate the two approaches, we need to express u(C) · p2(βw) as an element of Asw(↑2),
by applying the sorting isomorphism ϕ of Lemma

lem:CapStringlem:CapString
2.5. By doing so, we obtain

C1C2V12 = ϕ(u(C)p2(βw)). (4) eq:BuckleV

Through a careful analysis of the right hand side, this will imply formula (
eqn:AETeqn:AET
3) stated in

Theorem
thm:mainthm:main
1.1. In other words, we need to compute

Υ := ϕ(u(C)p2(βw)).

To achieve this, we use that βw = α(βu), and compute βu in terms of the Drinfel’d
associator Φ associated to Zu. By the compatibility of Zu and Zb, it is enough to compute
βb := Zb(Bb). The result can be read from the picture in Figure

fig:BuckleBraidfig:BuckleBraid
14:

βb = Φ−1
(13)24Φ132R32Φ

−1
123Φ(12)34.

Recall that the cosimplicial notation used in the subscripts show which strands the diagrams
are placed on, for example, Φ−1

(13)24 = Φ−1(c12 + c32, c24). Also recall that R = ec/2, so

R32 = ec23/2.
As βu is the tree closure of βb, it is given by the same formula interpreted as an element

of Au(↑4). One then applies α to obtain βw = α(βu). After the vertex and cap attachment,
of Figure

fig:BuckleToVfig:BuckleToV
12, strands 1 and 3 are punctured and strands 2 and 4 are capped, and in this

strand numbering, u(C) = C24 Therefore, we have

Υ = ϕ
(
C24 · p1p3α(Φ

−1
(13)24Φ132R32Φ

−1
123Φ(12)34)

)
.

Next, we analyse how the puctures and α act on factors of βb. First observe that
p3α(R32) = ea23/2, where aij is a single arrow pointing from strand i to strand j.

Observe that p1p3α(Φ
−1
123) = p1p3α(Φ

−1
123) = 1 by Fact (

it:TwoPuncturesit:TwoPunctures
2) of Lemma

lem:PhiFactslem:PhiFacts
3.2.

Since strands 1 and 3 are both punctured, no arrows can be supported between these two
strands, hence p1p3α(Φ(12)34) = Φ(a23, a43).

19



D
R
A
FT

1 2 3 4

Φ132

R32

Φ(12)34

7−→ 1

7−→ ea23/2

7−→ 1

7−→ Φ−1(a2(13),−a2(13) − a4(13))Φ−1
(13)24

p2α
7−→ Φ(a23, a43)

Φ−1
123

Zb

7−→Bb =

Figure 14. Computing βb. Strands are numbered at the top and multiplication is read from

bottom to top; the rightmost column lists the images of the factors under p1p3α. fig:BuckleBraid

1 2

1 3 42

Figure 15. Strand numbering convention for K and V : arrow endings from strand 1 and 2

of K are “pushed” to strand 1 of V when applying ϕ, and arrow endings from strands 3 and

4 are pushed to strand 2. fig:NumberingK

By Properrty (
it:Centralit:Central
1) of Lemma

lem:PhiFactslem:PhiFacts
3.2, Φ−1

(13)24 = Φ−1(c(13)2, c24) = Φ−1(c(13)2,−c(13)2 − c(13)4), so

p1p3αΦ
−1
(13)24 = Φ−1(a2(13),−a2(13) − a4(13)). To summarise,

Υ = ϕ
(
C24 · Φ

−1(a2(13),−a2(13) − a4(13)) · e
a23/2 · Φ(a23, a43)

)
.

Note that the expression Φ−1(a2(13),−a2(13)−a4(13)) ·e
a23/2 ·Φ(a23, a43) has only arrow tails

on strands 2 and 4, and therefore commutes with C24 by the TC relation. Hence, by the
definition of ϕ,

Υ = ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43) · C24

)

= ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43)
)
· ϕ(C24).

Furthermore, by the strand numbering convention shown in Figure
fig:NumberingKfig:NumberingK
15, we have ϕ(C24) = C12.

Therefore,

V12 = C−1
1 C−1

2 Υ = C−1
1 C−1

2 ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43)
)
C12,

as stated in part (2) of Theorem
thm:mainthm:main
1.1. �

In
Bar-Natan:WKO4
[WKO4] V is computed to degree 4 using the techniques of this section. Matching this

result to the Alekseev–Enriquez–Torossian formula of
AlekseevEnriquezTorossian:ExplicitSolutions
[AET, Theorem 4.] is technical, and

not used anywhere else in the paper, hence we defer this to Appendix
app:AETapp:AET
A.

20



D
R
A
FT

subsec:DT
3.3. Proof of part (3): the double tree construction. Given a homomorphic expansion
Zu of sKTG, in Section

subsec:Part1Proofsubsec:Part1Proof
3.1.2 we showed that if there is to exist a homomorphic expansion

Zw of w̃TF compatible with Zu, then V = Zw( ) and C = Zw(℄), and hence Zw itself, are
uniquely determined by Zu. In Section

subsec:AETFormulasubsec:AETFormula
3.2 we proved the formula (

eqn:AETeqn:AET
3), which in particular

gives the explicit expression

V tree = ϕ
(
Φ−1(a2(13),−a2(13) − a4(13))e

a23/2Φ(a23, a43)
)

(5) eq:VtreeAET

for the tree level value of V in terms of the Drinfel’d associator associated to Zu. From here
on we denote this value V tree

β as it is calculated from the Zu-value of the “buckle” graph.

It remains to show that there is an appropriate cap value C = Zw(℄) such that C along

with Zw( ) =: Vβ = C−1
1 C−1

2 V tree
β C(12) define a homomorphic expansion of w̃TF , which is

furthermore compatible with Zu. In particular, to show that the a pair (Vβ, C) defines a
homomorphic expansion, one needs to show that the values Vβ and C satisfy the equations
(
eq:R4eq:R4
R4), (

eq:Ueq:U
U) and (

eq:Ceq:C
C) of Fact

fact:EquationsForZfact:EquationsForZ
2.6. We do this in order of difficulty: first the easiest Cap

Equation (
eq:Ceq:C
C), then Unitarity (

eq:Ueq:U
U) (assuming (

eq:R4eq:R4
R4) and compatibility), then Reidemeister 4

(
eq:R4eq:R4
R4) (hard). Finally, we prove compatibility, which is easier again, given the machinery
developed for (

eq:R4eq:R4
R4).

prop:CapEq Proposition 3.3. For any choice of C ∈ Asw(℄), the values Vβ and C verify (
eq:Ceq:C
C).

Proof. Substituting Vβ and C into the Cap equation (
eq:Ceq:C
C), we need to show that

u(C)(u(C))−1(ϕ(p1p3β
w))−1C1C2 = C1C2,

in Asw( 2). We cancel u(C)(u(C))−1 on the left, and multiply on the right by C−1
1 C−1

2 (this
is valid as A( 2) is a right A(↑2)-module by stacking). Then we only need to show that
(ϕ(p1p3β

w))−1 = 1 in A(℄2). We can multiply on the right by ϕ(p1p3β
w), hence it’s enough

to see that 1 = ϕ(p1p3β
w). This, in turn, is clear by the CP relation since all heads are

below all tails in the image of ϕ. �

To address the unitarity equation, we need to set up some notation prove a few basic
Lemmas about arrow diagrams.

def:norm Definition 3.4. For an arrow diagram D ∈ Asw(↑n) let D
∗, the adjoint of D, be the arrow

diagram A1A2...An(D), where Ai denotes the adjoint operation applied to strand i. For a
group-like diagram12 D = ed, where d ∈ Psw(↑n), denote by ‖D‖ the diagram DD∗, and call
it the “norm13” of D.

lem:Norms Lemma 3.5. The adjoint operation and norm satisfy the following basic properties:

pr:mult (1) (D1D2)
∗ = D∗

2D
∗
1.

pr:exp (2) If d ∈ Psw(↑n) is a primitive arrow diagram, then (ed)∗ = ed
∗

.
pr:wheel (3) If d ∈ Psw(↑n) is a wheel, then d∗ = d, and ‖ed‖ = e2d.
pr:tree (4) If d ∈ Psw(↑n) is a tree, then ‖ed‖ ∈ exp(〈wheels〉).

12While the definition of “norm” makes sense for all arrow diagrams, it is most useful, and only used, in
the context of group-like diagrams.

13We use the word “norm” only because it is notationally intuitive; we do not claim that ‖D‖ satisfies
the properties of a norm. The reader might object that it should be called “norm squared”; in our opinion
this would clutter up the notation too much.
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pr:product (5) If d1, d2 ∈ Psw(↑n), then ‖ed1ed2‖ = ‖ed1‖‖ed2‖e
d∗1 = ‖ed1‖‖ed2‖e

−d1 , where the expo-
nent denotes conjugation.

pr:Ahor (6) If d ∈ Phor(↑n) is a primitive horizontal chord diagram, then ‖eα(d)‖ = 1.

Proof. Properties (
pr:multpr:mult
1), (

pr:exppr:exp
2), and (

pr:wheelpr:wheel
3) are immediate from the definitions. Property (

pr:treepr:tree
4) follows

from the fact that for a tree arrow diagram d, the sum (d + d∗) is a linear combination of

wheels by repeated applications of
−−−→
STU relations.

We verify property (
pr:productpr:product
5) directly:

‖ed1ed2‖ = ed1ed2ed
∗

2ed
∗

1 = ed1ed
∗

1e−d
∗

1ed2ed
∗

2ed
∗

1 = ‖ed1‖‖ed2‖e
d∗1 .

To show the second equality, note that by definition ed
∗

1 = e−d1‖ed1‖. By Property (
pr:treepr:tree
4),

‖ed2‖ ∈ exp(〈wheels〉), so ‖ed2‖e
−d1 ∈ exp(〈wheels〉). Since ‖ed1‖ ∈∈ exp(〈wheels〉), it acts

trivially on ‖ed2‖e
−d1 .

To prove property (
pr:Ahorpr:Ahor
6) observe that for a single chord tij ∈ Ahor, α(tij) = aij + aji, that is,

the sum of arrows from strand i to strand j and vice versa. Therefore, (α(tij))
∗ = −α(tij).

Furthermore, if in Psw(↑n), x and y are two primitive arrow diagrams such that x∗ = −x
and y∗ = −y, then by direct computation we also have ([x, y])∗ = −[x, y]. Since the set
{(tij)}1≤i<j≤n generate Phor(↑n) as a Lie algebra, this implies that (α(d))∗ = −α(d) for any
d ∈ Phor(↑n). Thus, by direct computation

‖eα(d)‖ = eα(d)e(α(d))
∗

= eα(d)e−α(d) = 1.

�

The following theorem states that any tree-level homomorphic expansion of w̃TF that is

compatible to Zu lifts to a genuine homomorphic expansion of w̃TF .

thm:Unitarity Theorem 3.6. Suppose that Ztree : w̃TF → Atree is a filtered map with Ztree( ) := V tree,
such that V tree satisfies the (

eq:R4eq:R4
R4) equation, and for any K ∈ sKTG, Ztree(a(K)) = παZu(K).

Then there exists a group-like C ∈ Asw(℄) which, along with V := C−1
1 C−1

2 V treeC12, defines

a homomorphic expansion Zw : w̃TF → Asw.

Proof. Indeed, the values (V, C) uniquely determine Z. To show that Z is a homomorphic
expansion, we need to prove that (V, C) satisfy the (

eq:R4eq:R4
R4), (

eq:Ceq:C
C) and (

eq:Ueq:U
U) equations. The (

eq:R4eq:R4
R4)

equation only depends on V tree. Since π(V ) = π(C−1
1 C−1

2 V treeC12) = V tree, therefore V
satisfies (

eq:R4eq:R4
R4) by assumption. The fact that (V, C) satisfy the Cap (

eq:Ceq:C
C) equation follows from

Proposition
prop:CapEqprop:CapEq
3.3.

For the remainder of this proof we denote V tree =: T . The main difficulty is to show that
(V, C) satisfy the Unitarity (

eq:Ueq:U
U) equation, which can be re-stated as ‖V ‖ = 1. Substitut-

ing V = C−1
1 C−1

2 V treeC12, the (
eq:Ueq:U
U) equation becomes C−1

1 C−1
2 TC2

12T
∗C−1

2 C−1
1 = 1, and by

rearranging, this simplifies to

‖T‖ =

((
(C12)

T−1
)−1

C1C2

)2

, (6) eq:Unitarity1

where T−1 in the exponent denotes conjugation. We need to prove that there exists a
value C = ec, which satisfies this equation. Note that ‖T‖ is an exponential of wheels in
Asw(↑2), so this makes semantic sense. By Fact

fact:semidirectfact:semidirect
2.2, ‖T12‖ is identified with an element of

exp(cyc〈x, y〉) and thus represented by an exponential in cyclic words in two variables. Let
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f(x, y) ∈ cyc〈x, y〉 denote the logarithm of ‖T‖. In turn, c ∈ cyc〈x〉 ∼= Q[[x]], thus we write
c = c(x).

We claim that

(C12)
T−1

= (exp(c(x+ y)))T
−1

= T exp(c(x+ y))T−1 = exp(c(log(exey))).

The last equality follows from the fact that T satisfies the (
eq:R4eq:R4
R4) equation; this is explained

in detail in
Bar-NatanDancso:WKO2
[WKO2], Section 4.4, in particular in and around Fig. 19.

With this reduction in place (
eq:Unitarity1eq:Unitarity1
6) reduces to

ef(x,y) =
(
ec(log(e

xey))ec(x)ec(y)
)2
,

and since all exponents (wheels) commute, this is equivalent to

f(x, y) = 2
(
c(x) + c(y) + c(log(exey))

)
. (7) eq:Unitarity2

which we need to solve for c ∈ Q[[x]].
To do so, we use that Ztree(a(K)) = παZu(K), specifically for the associator graph K = φ

shown in Figure
fig:phifig:phi
??. Recall that Zu(φ) is a Drinfel’d associator Φ. On the other hand, α(φ)

is a circuit algebra product of four vertices, therefore

α(Φ) = Ztree(a(φ)) = T−1
12,3T

−1
12 T23T1,23.

Rearranging, we obtain
T12T12,3α(Φ) = T23T1,23.

Applying the “norm” to both sides, keeping in mind that ‖α(φ)‖ = 1 by Lemma
lem:Normslem:Norms
3.5

property (
pr:Ahorpr:Ahor
6), and using the exponent notation for the adjoint action on a norm, we get

‖T12‖‖T12,3‖
T−1
12 = ‖T23‖‖T1,23‖

T−1
23 . (8) eq:UnitarityMidProof

Recall that ‖T12,3‖ = exp(f(x+ y, z)), ‖T23‖ = exp(f(y, z)), ‖T1,23‖ = exp(f(x, y + z)).
As before, we have

‖T12,3‖
T−1
12 = (exp(f(x+ y, z)))T

−1
12 = T12 exp(f(x+ y, z))T−1

12 = exp(f(log(exey), z)),

since T satisfies the (
eq:R4eq:R4
R4) equation. Similarly,

‖T1,23‖
T−1
23 = (exp(f(x, y + z)))T

−1
23 = exp(f(x, log(eyez))).

Thus, Equation (
eq:UnitarityMidProofeq:UnitarityMidProof
8) reduces to

ef(x,y)ef(log(e
xey),z) = ee

f(y,z)

ef(x,log(e
yez)),

and since all the exponentials (wheels) commute, this is equivalent to

f(x, y) = f(y, z) + f (x, log(eyez))− f (log(exey), z) (9)

The fact that there exists a solution c(x) to Equation
eq:Unitarity2eq:Unitarity2
7 follows from this equation via a

short cohomology calculation as in
AlekseevEnriquezTorossian:ExplicitSolutions
[AET, Proposition 27], and

AlekseevTorossian:KashiwaraVergne
[AT, Appendix A, Proof of

Theorem 2.8]. �

In order to use Theorem
thm:Unitaritythm:Unitarity
3.6, it is necessary to show that the value V tree constructed

in Section
subsec:Part1TreeProofsubsec:Part1TreeProof
3.1.1 satisfies the (

eq:R4eq:R4
R4) equation; unfortunately this is hard. The equation (

eq:R4eq:R4
R4)

is an equality between different circuit algebra – in fact, planar algebra – compositions of
crossings. Hence, the proof would be much easier if Zu were to be a circuit algebra – or
planar algebra – map. This unfortunately makes no sense, as sKTG is not a circuit or planar
algebra but a different, more complicated algebraic structure.
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The reader might ask, why work with a space as inconvenient as sKTG instead of, say,
a planar algebra of trivalent tangles? The answer is that the existence of a homomorphic
expansion is a highly non-trivial property, and in particular ordinary trivalent tangles do not
have one. Even without trivalent vertices, ordinary tangles, or u-tangles, do not have have
a homomorphic expansion as a planar algebra14. Parenthesized tangles (a.k.a. q-tangles)
LeMurakami:Universal, Bar-Natan:NAT
[LM, BN2] do have homomorphic expansions, yet in fact these are almost equivalent to
sKTG

Thurston:KTG, Bar-NatanDancso:KTG, Dancso:KIforKTG
[T, BND1, Da].

Nonetheless, we can harness the power of planar algebras in a less direct way to prove
the R4 equation, by building a new definition for Zw. Since we will be working with two
constructions (eventually proving that they lead to the same expansion), it will be necessary
to distinguish them, at least temporarily.

• From here on we denote the value V tree arising from the “buckle” construction of
Section

subsec:Part1TreeProofsubsec:Part1TreeProof
3.1.1 by V tree

β . Assuming the conditions of Theorem
thm:Unitaritythm:Unitarity
3.6 hold, there is a

unique homomorphic expansion Zw
β for which π(Zw( )) = V tree

β .
• In a new construction, we map classical trivalent tangles into sKTG via a “double
tree” map, and use this to define a partial expansion Zw

ξ for the a-images of classical

trivalent tangles. This in particular defines a new vertex value Zw
ξ ( ) = Vξ.

• After some technical lemmas, we show that Zw
ξ satisfies the compatibilty Zw(a(K)) =

αZu(K) for all K ∈ sKTG: see Proposition
prop:uwCompatibilityprop:uwCompatibility
3.14.

• We show that restriction of Zw
ξ to a(uTT ) is a planar algebra map (see Theorem

thm:PAMapthm:PAMap
3.17),

and thus Zw
ξ satisfies the (

eq:R4eq:R4
R4) equation.

• We show that the two constructions yield the same vertex value on the tree level:
π(Vξ) = V tree

β . This is done in Lemma
lem:TwoConstructionslem:TwoConstructions
3.19. Thus, by Lemma

lem:PiVEnoughlem:PiVEnough
3.1, if the two

constructions produce homomorphic expansions, those expansions are the same.
• Putting this together, V tree

β satisfies (
eq:R4eq:R4
R4) and the compatibility condition of Theo-

rem
thm:Unitaritythm:Unitarity
3.6, and thus exists a unique homomorphic expansion Zw = Zw

ξ = Zw
β , compat-

ible with Zu. We prove this in detail in Theorem
thm:ZwExpansionthm:ZwExpansion
3.22 below.

subsubsec:ZwDef
3.3.1. The new construction: Zw

ξ . We start by defining (classical, or usual) trivalent tangles,
denoted uTT :

uTT := PA
〈

+ −,, ,

∣∣∣ R1s, R2, R3, R4
∣∣∣ Se, ue

〉

Here PA stands for planar algebra: an algebra over the operad of planar tangles, that is,
an algebraic structure similar to a circuit algebra, except with planar wiring diagrams. (See
DHR:CircAlg
[DHR1, Section 3.1] for a detailed definition. This is a slightly more simple-minded notion
than the original use of the term in

Jones:PlanarAlgebras
[J], in particular we do not use checkerboard shadings.)

14We only mention that the planar algebra of u-tangles does not have a homomorphic expansion Zt so
as to explain why we are not using one. This said, the non-existance of Zt is easy to prove: by an explicit
calculation in degree 2 one shows that there is no linear combination of chord diagrams that can serve as
Zt(!), satisfying the R3 relation.
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[

7→T T

−

−

−

−

−

−

++ + +

Figure 16. The double tree map: connect the ends of T by two binary trees (hence “double

tree”), as shown. Note that the tree on the left always crosses over the tree on the right,

and all edges of both trees are oriented towards T . fig:dt

+
e

ue
−

The elements of uTT are usual – that is, classical – trivalent
tangles with ordered ends (the ordering is assumed to be counter-
clockwise from bottom left, unless otherwise stated), and signed
vertices with a total ordering of edges at each vertex. There are
no “virtual crossings” in planar algebras. The relations are the
usual Reidemeister relations which make sense in this context
(R1s, R2, R3 and R4). The planar algebra uTT is equipped with
auxiliary orientation switch and edge unzip operations. Edge unzips are defined for edges
that connect a positive and a negative vertex in as shown in the figure on the right. The
planar algebra uTT does not have a homomorphic expansion.

We define a double tree map [ : uTT → sKTG, as in Figure
fig:dtfig:dt
16. The map [ depends on

two choices of binary trees: in Figure
fig:dtfig:dt
16 we chose a particular example. It is important that,

regardless of the choice of trees, the “left side” tree crosses over the “right side” tree. We will
demonstrate that in fact the choice of trees becomes irrelevant after some post-compositions,
see Lemma

lem:TreeChangelem:TreeChange
3.7.

Working towards a construction of Zw
ξ , we post-compose [ with the following sequence of

maps, which are explained in the paragraph below:

T ∈ uTT
[

−→ sKTG
Zu

−→ Au([(T ))
α

−→ Asw([(T ))
κ,u,p
−→ Asw(Ť )

ϕ
∼= Asw(T ). (10) eq:dt

Here T stands for an arbitrary tangle in uTT . The double tree map [ maps T into sKTG,
and by applying Zu one obtains a value in Au, namely a chord diagram on the skeleton of
[(T ). We denote the space of chord diagrams on this skeleton by Au([(T )). Now α maps
this to arrow diagrams on the skeleton of [(T ), that is, to Asw([(T )). In order to revert the
skeleton back to that of T , we apply some operations in Asw: a cap attachment κ, unzips
and punctures (as shown in Figure

fig:pCufig:pCu
17 and explained below), resulting in a slightly modified

version of the desired skeleton, denoted Ť . Finally, we use that Asw(Ť ) ∼= Asw(T ) via the
sorting isomorphism ϕ of Lemma

lem:CapStringlem:CapString
2.5, and hence we obtain a value in Asw(T ), as needed,

which, we will later see, is almost Zw(a(T )). (Although the punctured strands connect in a
single binary tree, VI relations can be used as part of the sorting isomorphism.)

The cap attachment, unzip and puncture operations are done in the order shown in Fig-
ure

fig:pCufig:pCu
17. First attach a cap – a capped strand with no arrows on it – to the end of the right

vertical strand in α([(T )): this is a circuit algebra operation in Asw. If T has n ends,
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= TT

Ť

T

1

2

3

4

TT
κ
7→

u
7→

p
7→

Figure 17. The cap attachment, unzips and punctures. While these operations are applied

in Asw – there are arrows on these skeleta – for simplicity the figure only shows the effect on

the skeleton. fig:pCu

perform (n− 1) consecutive disc unzips on the capped strand, as shown in Figure
fig:pCufig:pCu
17. Then

puncture the left hand tree, for example by puncturing the left vertical strands marked “1,
2,...” in Figure

fig:pCufig:pCu
17 (these punctures also affect the connecting diagonal strands, as in Fig-

ure
fig:puncturesfig:punctures
5). Note that since the punctured tree had originally crossed over the capped tree, these

crossings become virtual after puncturing, hence the last equality in Figure
fig:pCufig:pCu
17.

Denote the composition of the maps and operations shown in Equation (
eq:dteq:dt
10) by ξ, that is,

ξ := ϕ ◦ p ◦ u ◦ κ ◦ α ◦ Zu ◦[ : uTT → Asw. (11) eq:xidef

Then, ξ(T ) ∈ Asw(T ). We first show that ξ(T ) is well-defined, that is, it doesn’t depend on
the choice of binary trees in [(T ).

lem:TreeChange Lemma 3.7. The choice of binary trees in the double tree construction does not affect ξ(T ).

Proof. Any binary tree can be changed into any other binary tree via
a sequence of “I to H” moves, as shown on the right. Hence, it is enough
to analyze how an I to H move on one of the trees affects the value of Zu([(T )), and prove
that the difference vanishes after the caping, unzip, and puncture operations.

1
2 u2Suppose τ1 and τ2 are two binary trees which differ by a single I to H

move, and let [τ1 and [τ2 denote the two resulting double-tree maps, as-
suming the “other side tree” is unchanged. The I to H move can be realised
by inserting15 an associator, followed by unzipping the edge marked ‘1’ on
the right, then the edge marked ‘2’. By the homomorphicity of Zu, the values Zu([τ2(T ))
and Zu([τ1(T )), only differ in an inserted horizontal chord associator Φ on the three strands
involved, we indicate this by writing Zu([τ2(T )) = Zu([τ1(T )) ∗ Φ. If the I to H move was
done on the left side tree, then all the strands involved are later punctured, killing any arrow
diagram that lived on them by the TF relation. As a result, the only surviving part of Φ is
its constant term, 1, and the resulting values of ξ are equal.

If the I to H move is done on the right side tree, then the all participating strands are
capped and disk unzipped. If α(Φ) is immediately adjacent to the caps, then it cancels by
the CP relation. However, it is a priori possible that there are other arrow ending separating
Φ from the caps. Note that in Au, any chord endings can be can be commuted from below
the associator to above, using V I relations and the invariance property of chord diagrams
shown in Figure

fig:Invariancefig:Invariance
18

Bar-Natan:NAT
[BN2, Lemma 3.4]. Thus, one can assume that α(Φ) is adjacent to the

caps and hence cancels. This concludes the proof. �

15See
Bar-NatanDancso:WKO2
[WKO2, Section 4.6] for a detailed description of the tangle insertion operation in sKTG.

26



D
R
A
FT

=D D D = D =D ∈ imα D ∈ imα

+

+

+

+

+

+

Figure 18. The invariance property of chord diagrams on the left, the head invariance and

tail invariance properties of arrow diagrams in the middle and right. Here D denotes a chord

or arrow diagram on any skeleton; for tail invariance there is a restriction that D ∈ imα

(with α : Au → Asw). The box labelled “+” denotes a sum of incoming chords or arrows,

whose other ends are in the same place. The equalities are understood locally: there may be

other skeleton components and chords/arrows elsewhere, which coincide on both sides. fig:Invariance

T T T=

∗

∗

[(σT )[(T )

Figure 19. Double tree construction for cyclically permuted ends of T . fig:welldef

There is an action of Z/nZ on elements of uTT with n ends, by cyclic permutations of the
ends. The following lemma will be useful later in proving that Zw is a planar algebra map;
we present it now because its proof is similar to that of Lemma

lem:TreeChangelem:TreeChange
3.7.

lem:CyclicPerm Lemma 3.8. The map ξ is invariant under cyclic permutation of the ends of T .

Proof. To show that ξ(T ) is invariat under cyclic permutations of ends of T , it is enough
to show that ξ(T ) does not change when the rightmost end of T is moved to the far left
(denote this by σT ), as shown in Figure

fig:welldeffig:welldef
19.

The rightmost picture of Figure
fig:welldeffig:welldef
19 is equivalent as sKTGs to [(σT ). It differs from [(T )

in three ways:

• the binary trees connecting the ends of T are different;
• two tree branches (marked with ∗ in Figure

fig:welldeffig:welldef
19) are connected to the trunk from the

opposite side: that is, these trivalent vertices have opposite cyclic orientation;
• one tree branch has a kink in it.

As before, we need to analyse how Zu([(σT )) differs from Zu([(T )), and show that the
difference vanishes after the puncture, cap and unzip operations.

To achieve this, we transform [(σT ) into [(T ) using tangle insertions. First, cancel the
kink by inserting an opposite kink I1 on the same strand, as shown in Figure

fig:welldef2fig:welldef2
20 in blue16.

16Or grey in black and white print.
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unzips T

[(T )

T

unzip

[(σT ) with inserts:

I2

I3

I1

Figure 20. The difference between [(T ) and [(σT ), understood via insertions. fig:welldef2

As Zu is compatible with insertion, the Zu values will differ by the value of a kink: a chord
diagram on the one strand involved. Later in the process this strand is punctured, so the
value of the kink cancels by the TF relation.

Similarly, switching the side that the tree branches are attached on amounts to inserting
twists I2 and I3, and unzipping the connecting edges, also shown in Figure

fig:welldef2fig:welldef2
20. Each of these

operations changes the value of Zu by inserting the value of a twist, which is ec/2 for any
Zu, where c denotes a single chord between the appropriate strands

Bar-NatanDancso:WKO2
[WKO2, Lemma 4.14].

Applying α maps this to e(aL+aR)/2, where aL and aR denote horizontal left and right arrows,
respectively. On the left side tree, this cancels after punctures, as before. On the right side
tree, the strand directly underneath the twist is capped and uzipped, and hence the value
of the twist cancels by the CP relation.

Now observe that the right side picture of Figure
fig:welldef2fig:welldef2
20 only differs from [(T ) in the choices

of binary trees, which do not change the value of ξ by Lemma
lem:TreeChangelem:TreeChange
3.7. �

The following lemma clarifies the relationship between the map ξ and the (partial) homo-
morphic expansion Zw

ξ that we’re aiming to construct:

lem:Compatibility Lemma 3.9. If there exists a homomorphic expansion Zw
ξ for w̃TF compatible with Zu, and

T ∈ uTT is a tangle with n ends, then Zw
ξ (a(T )) = ξ(T ) · (C−1)n, where C = Z( ), and ξ(T )

is multiplied by C−1 at each tangle end of T , as in Figure
fig:ZTCheckfig:ZTCheck
22.

Proof. Assume there exists a homomorphic expansion Zw
ξ compatible with Zu. We use,

as in Figure
fig:BigCompatfig:BigCompat
21, the homomorphicity of Zw

ξ and its compatibility with Zu to show that

ξ(T ) = Zw
ξ (Ť ), where Ť is as in Equation

eq:dteq:dt
10 and shown in Figure

fig:ZTCheckfig:ZTCheck
22 on the left.

If the diagram in Figure
fig:BigCompatfig:BigCompat
21 commutes, then for any T ∈ uTT and any Zu-compatible

Zw
ξ , we have ϕ(Zw

ξ (Ť )) = ξ(T ). Since Zw
ξ is a circuit algebra homomorphism, Zw

ξ (Ť ) can be
obtained from Zw

ξ (T ) by attaching the Zw
ξ -value of a left-punctured right-capped vertex at

each tangle end, as illustrated in Figure
fig:ZTCheckfig:ZTCheck
22. By Lemma

lem:pVlem:pV
2.9 we have Zw

ξ

( )
= 1, so the

only additions are C values at each capped end, as shown in Figure
fig:ZTCheckfig:ZTCheck
22. This can then be

interpreted as a value in Asw(T ) via the sorting isomorphism ϕ of Lemma
lem:CapStringlem:CapString
2.5. This implies

the statement of the Lemma.
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T

∈

7→
[(T )

∈

7→
[(T )

∈

7→ κ[(T )

∈

7→ T̂

∈
uTT

[

//

ξ
22

(4)

sKTG
a

//

Zu

��
(1)

w̃TF
κ

//

Zw

��
(2)

w̃TF
p◦u

//

Zw

��
(3)

w̃TF

Zw

��

Au([(T ))
α

//

(4)

Asw([(T ))
κ◦Ĉ

// Asw(κ[(T ))
p◦u

// Asw(T̂ )

ϕ

��

Asw(T )

Figure 21. Comparing ξ and Zwξ , assuming that Zwξ exists. fig:BigCompat

Zw(T )

Ť

T Zw(T )
ϕ
7→

Zw

7→ Zw(T ) = ξ(T )

C CC C C C C−1C−1 C−1

Figure 22. Computing Zwξ (Ť ) and Z
w
ξ (T ). fig:ZTCheck

It remains to show that the diagram in Figure
fig:BigCompatfig:BigCompat
21 commutes. The square (1) is the assumed

the compatibility of Zu and Zw
ξ . In square (2), recall the map κ denotes the circuit algebra

operation of attaching a cap at the bottom right end of the w-foam. The map Ĉ denotes the
circuit algebra operation which attaches a value C = Z( ) at the end of the strand. Thus,
the commutativity of square (2) is implied by the homomorphicity of Zw

ξ with respect to
circuit algebra composition (as a binary operation). The square (3) is commutative due to
the homomorphicity of Zw

ξ with respect to punctures and disc unzips.

T =

In imα

T

C C

The commutativity of the heptagon (4) would be true by defi-

nition, if not for the map Ĉ (multiplication by the cap value). We
show that, in fact, the value C cancels after punctures, by a prop-
erty of arrow diagrams in the image of α, called tail-invariance,
shown in Figure

fig:Invariancefig:Invariance
18 (see

Bar-NatanDancso:WKO2
[WKO2], Remark 3.14 and early in Sec-

tion 3.3). In the current situation tail invariance means that the
value C, which has only arrow tails, can be moved from one tangle
end to the other, as shown on the right. Consequently, C cancels when the left strand is
punctured. �

rem:CapOrientations Remark 3.10. In Lemma
lem:Compatibilitylem:Compatibility
3.9 we assume by convention that all tangle ends of T are oriented

upwards (towards T ). If k tangle ends are oriented down, the corresponding cap values
appear with their orientations switched: Zw

ξ (aT ) = ξ(T ) · (C−1)n−k(S(C)−1)k.

cor:ZTreefromxi Corollary 3.11. If there exists a homomorphic expansion Zw for w̃TF compatible with Zu,
then π(V ) = π(ξ(b)), where V is the Zw-value of the vertex, and π is the tree projection.
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+
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[

7→

=
Zu

7→ Φ−1

b

n

Φ

Φ−1

S3(Φ
−1)

R

Φ

Figure 23. The double tree map composed with Zu, applied to a single strand. To compute

Zu([(y)), we write [(y) as a composition of generators; this requires first expressing it

as a bottom-top tangle. See
Bar-NatanDancso:WKO2
[WKO2, Proposition 4.13] for details. fig:dtstrand

Next, we aim to show that Zw
ξ is compatible with Zu. This requires a technical lemma,

in which we compute the ξ-value of a vertical strand:

lem:xiofstrand Lemma 3.12. For a single un-knotted strand, ξ(y) = α(ν1/2), where ν ∈ Au(y) denotes
the Kontsevich integral of the un-knot17.

Proof. We apply [ to y, as shown in Figure
fig:dtstrandfig:dtstrand
23, and comupte Zu([(y)) using the finite

generation property of sKTG and the homomorphicity of Zu. In
Bar-NatanDancso:WKO2
[WKO2, Section 5.2] we

gave an algorithm for writing any sKTG as an sKTG-composition of generators (the primary
operation in sKTG is tangle insertion, see

Bar-NatanDancso:WKO2
[WKO2, Figure 22]). Feeding [(y) into this

algorithm, one needs to “curve up” one strand as in Figure
fig:dtstrandfig:dtstrand
23, in this case the strand on

the right (the choice of strand doesn’t affect the outcome).
The chord diagram Zu([(y)) is shown in Figure

fig:dtstrandfig:dtstrand
23, expressed in terms of the generators

of sKTG described in
Bar-NatanDancso:WKO2
[WKO2, Proposition 4.13]: the value Φ of the associator graph, which

is a Drinfel’d associator; the value R = ec/2 of the twist graph, where c is a single chord; and
the values n and b of the noose and balloon graphs, respectively.

In ξ(y), Zu is followed by α, a cap attachment, unzips and punctures. As explained in
Bar-NatanDancso:WKO2
[WKO2, Section 4.6], there is possibly a one-parameter freedom in the values of n and b,
but we know that and α(b) = ea/2α(ν)1/2, and α(n) = e−a/2α(ν)1/2. The exponential part
of n cancels by the CP relation once the cap is attached. The wheels part α(ν)1/2 can be
moved to the bottom left end by the tail invariance property (as in the last paragraph of
the proof of Lemma

lem:Compatibilitylem:Compatibility
3.9), where it cancels after punctures. For the associator S3(Φ

−1) at the
bottom in Figure

fig:dtstrandfig:dtstrand
23, there is an orientation switch S3 applied as the third strand is oriented

downwards. In fact, S3(Φ
−1) cancels by Fact (

it:Concatit:Concat
3) of Lemma

lem:PhiFactslem:PhiFacts
3.2.

Taking these cancellations into account, the value puκαZu
[(y) ∈ Asw is shown in Figure

fig:dtstrand2fig:dtstrand2
24 and explained below. Recall that α maps a chord to the sum of its two possible orien-
tations. However, when one supporting strand is punctured, only one of these orientations
survive. Hence, for example, p2(α(R23)) = (ea32/2). Figure

fig:dtstrand2fig:dtstrand2
24 shows a schematic picture

of puκαZu
[(y) with exponentials and associators indicated by single arrows. Recall that

Φ ∈ Ahor(↑3) can be written as a power series in any two of the three generators of Ahor(↑3):

17The value of ν was conjectured in
Bar-NatanGaroufalidisRozanskyThurston:WheelsWheeling
[BGRT] and proven in

Bar-NatanLeThurston:TwoApplications
[BLT]. Note that ν involves wheels only.
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1 2 3 4

α(Φ)324

(1)

(2)

(3)

(4)

(5)

ea/2
(6)

α(Φ)12(34)

α(Φ−1)234

(ea32/2) from α(R)

α(Φ−1)134

+

α(ν1/2)

Figure 24. The value of puκαZu[(y): the numbering (1) through (6) refer to the para-

graphs where each component is explained. fig:dtstrand2

c12, c23 and c13. For example, Φ(c12, c23) = Φ(c12,−c12 − c23). For each associator we chose
the presentation in which puκα(Φ) is of the simplest form.

(1) The top associator of Figure
fig:dtstrandfig:dtstrand
23, after applying a VI relation, is written as Φ−1

13(24) in

the strand numbering of Figure
fig:dtstrand2fig:dtstrand2
24. We write this in terms of c13 and c1(24) = c12+c14,

since after the puctures p1α(c13) = a31 and p1p2α(c1(24)) = a41, thus

p1p2αΦ
−1(c13,−c13 − c1(24)) = Φ−1(a31,−a31 − a41).

This is reflected in Figure
fig:dtstrand2fig:dtstrand2
24 in drawing only the a31 and a41 arrows. In turn,

the associator cancels, essentially by Fact (
it:Concatit:Concat
3) of Lemma

lem:PhiFactslem:PhiFacts
3.2: strand 5 acts as a

concatenation of strands 3 and 4, as the tail of a41 can be “pulled over the top along
strand 5” using the VI relations and the fact that ea/2α(ν) is a local arrow diagram
on a single strand, hence it is central. Thus, a41 = a31, and Φ−1(a31,−a31 − a41) =
Φ−1(a31,−2a31) = 1 as the arguments commute. Therefore

p1p2α(Φ
−1
13(24)) = 1.

(2) Second from top we have

p1p2α(Φ324) = p1p2α(Φ(c23, c24)) = Φ(a32, a42) = 1,

by the same modified version of Fact (
it:Concatit:Concat
3) (concatenation).

(3) For the exponential,

p1p2α(R23) = p1p2α(e
c23/2) = ea32/2.

(4) Next,

p1p2α(Φ
−1
234) = p1p2α(Φ

−1(c23,−c23 − c24)) = Φ(a32,−a32 − a42) = 1

by the modified Fact
it:Concatit:Concat
3, noting that the arrow tails also commute with the arrow tails

of the exponential.
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K

=

Figure 25. For K ∈ sKTG, [(K) is K inserted into [(↑). fig:InsertK

(5) By Fact (
it:TwoPuncturesit:TwoPunctures
2)

p1p2α(Φ)12(34) = 1.

(6) Finally, move the top exponential ea/2 to strands 3 and 2, using the VI relation at
both vertices. The tail of each arrow moves freely from strand 5 to strand 3. The
heads commute with α(ν), they are killed on strand 4 due to the CP relation, so they
slide onto strand 2 but acquire a negative sign due to opposite orientations. Hence,
(ea55/2) = (e−a32/2), and this cancels α(R). In summary, ξ(y) = α(ν1/2), as claimed.

�

As an aside, Lemma
lem:xiofstrandlem:xiofstrand
3.12 enables a quick computation of the even part of C = ec = Zw

ξ (℄).

Recall that c is a linear combination of wheels: c =
∑∞

n=2 γnwn. Let c = c0 + c1, where c0
denotes the even part of c (sum of all even wheels), and c1 denotes the odd part, that is,
c = c0 + c1. Let C0 = ec0 , the even part of C. Corollary

cor:CapValuecor:CapValue
3.13 shows in particular that

the even part of the C is independent of the choice of Zb (that is, the choice of Drinfel’d
associator) and Zu.

cor:CapValue Corollary 3.13. If C = Zw
ξ (℄), and C0 is the even part of C, then C0 = α(ν1/4), regardless

of the choice of expansion Zu used to construct Zw
ξ .

Proof. By Lemma
lem:Compatibilitylem:Compatibility
3.9 and Remark

rem:CapOrientationsrem:CapOrientations
3.10, we have Zw

ξ (↑) = C−1ξ(↑)S(C−1): see the fig-
ure on the right for the orientations. Note that S(w2k) = w2k and S(w2k+1) = −w2k+1,
and hence S(C) = ec0−c1. Also, by homomorphicity, Zw

ξ (↑) = 1. Thus, by Lemma
lem:xiofstrandlem:xiofstrand
3.12,

1 = ec0+c1α(ν1/2)ec0−c1, and therefore α(ν1/2) = e2c0 , which gives C0 = ec0 = α(ν1/4). �

Next we prove that Zw
ξ is indeed compatible with Zu:

prop:uwCompatibility Proposition 3.14. For any K ∈ sKTG, Zw
ξ (a(K)) = α(Zu(K)).

Proof. Note that sKTG ⊆ uTT , and for K ∈ sKTG, [(K) can be obtained by inserting K
into the top strand of [(↑): see Figure

fig:InsertKfig:InsertK
25. Since Zu is compatible with insertions, Zu([(K))

can be obtained by Zu(K) inserted into Zu([(↑)). Through the sequence of α, capping,
puncturing, ϕ and multiplications by C−1, all of Zu([(↑)) cancels, as in Lemma

lem:xiofstrandlem:xiofstrand
3.12. Note

that the cancellations still go through despite the fact that α(Zu(K)) is inserted on the top
strand: this follows from the fact that α(Zu(K)) is in the α-image of Au, and the appropriate
“commutativity” property holds in Au. Hence, Zw

ξ (K) = Zw
ξ (K) as required. �

Now, we show that Zw
ξ it is a planar algebra homomorphism on a(uTT ). This is tech-

nically challenging, but it implies the R4 equation immediately. For the proof, it will be
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Figure 26. In
Bar-NatanDancso:WKO2
[WKO2, Section 4.6.1] Zu is constructed from an invariant Zold by applying

vertex normalizations, which depend on vertex signs: these are shown along the top horizontal

arrow of each diagram (see also
Bar-NatanDancso:WKO2
[WKO2, Figure 29]). It follows Zu is only homomorphic up

to a correction term when deleting the top edge of a positive vertex (first in the total ordering

around the vertex) or the bottom edge of a negative vertex: see the top two diagrams. In

other edge deletions the normalizations cancel, and hence Zu is homomorphic with respect

to these edge deletions, as for example in the bottom two diagrams. fig:ZuDelete

necessary to know the behaviour of Zu with respect to edge deletions. When an edge e of a
knotted trivalent graph K ∈ sKTG is deleted, the two vertices at each end of e cease to be
vertices. The associated graded operation on chord diagrams deletes skeleton edge e, and
chord diagrams with any chord endings on e are set equal to 0.

fact:ZuDelete Fact 3.15. Zu commutes with edge deletions up to a possible correction term of e±c/4ν1/2

depending on the position of the edge, as in Figure
fig:ZuDeletefig:ZuDelete
26.

Proof sketch. In
Bar-NatanDancso:WKO2
[WKO2, Section 4.6.1] Zu is constructed from an invariant Zold by adding

vertex normalizations, as shown in Figure
fig:ZuDeletefig:ZuDelete
26. Note that the top two diagrams in figure

differ from
Bar-NatanDancso:WKO2
[WKO2, Figure 29] in a single edge orientation switch, which switches the vertex

sign and accordingly the normalization18. In fact, Zold commutes with edge deletions
Dancso:KIforKTG
[Da,

Proposition 6.7], so the edge deletion error (and hence, the correction term) for Zu arises
from the vertex normalisations implemented, as shown in Figure

fig:ZuDeletefig:ZuDelete
26. �

18The point of the normalization is to make Zu commute with unzips. The reader might wonder, why nor-
malize so that the expansion respects unzips, rather than deletions? The answer is that for finite generation
of knotted trivalent graphs, unzips are crucial but deletions are not.
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T

Figure 27. Basic planar algebra operations: disjoint union and contraction. fig:AtomicPAOps

rmk:wDelete Remark 3.16. There is also an “edge delete” operation of w̃TF : this is not required for the

finite presentation of w̃TF or Asw, but it is necessary for the proof of Theorem
thm:PAMapthm:PAMap
3.17. When

deleting an edge in w̃TF – which can be either a tube or a string – the vertices at either
end19 cease being vertices. The associated graded operation de : Asw → Asw deletes the
skeleton edge e and sends any arrow diagram with arrow endings on the deleted strand to
zero. The crucial fact we need is that edge delete operations for chord and arrow diagrams
are compatible via the map α, which is immediate from the definitions:

Au α
//

de

��

Asw

de

��

Au α
// Asw

thm:PAMap Theorem 3.17. The map Zw
ξ is a planar algebra map on a(uTT ).

Proof. Planar algebra operations can be written as compositions of two simpler, basic
operations: disjoint unions and contractions. In the disjoint union of two tangles T1 and T2,
the ends of T1 ⊔ T2 are ordered by declaring that the ordered ends of T1 come first, followed
by the ordered ends of T2. The contraction operation ci applies to any tangle with at least
i + 1 ends: it acts by joining the i-th and (i + 1)-st ends of T and re-numbering the rest,
resulting in a tangle with two less ends. Both operations are shown in Figure

fig:AtomicPAOpsfig:AtomicPAOps
27.

Thus, we only need to show that Zw
ξ commutes with these two operations, that is,

Zw
ξ (T1 ⊔ T2) = Zw

ξ (T1) ⊔ Zw
ξ (T2), and Zw

ξ (ci(T )) = ci(Z
w
ξ (T )). Note that the right sides

of these equalities make sense: arrow diagrams on the skeleta of a(uTT ), where Zw
ξ takes

values, also form a planar algebra, and in particular disjoint union and concatenation of
arrow diagrams is well defined.

Disjoint unions. We need to compute ξ(T1 ⊔ T2), where T1, T2 ∈ uTT . The value
[(T1 ⊔ T2) is shown in Figure

fig:DisjUnifig:DisjUni
28. The binary trees in [ can be chosen arbitrarily by

Lemma
lem:TreeChangelem:TreeChange
3.7: Figure

fig:DisjUnifig:DisjUni
28 shows the most convenient trees for this proof.

Observe that [(T1 ⊔ T2) can be obtained as an sKTG by inserting [(T1) and [(T2) into
a simpler sKTG, denoted H , as shown in the same figure (up to orientation switches which
don’t impact what follows and will be ignored). Hence, Zu([(T1 ⊔ T2)) is given by inserting
Zu([(T1)) and Z

u([(T2)) into Z
u(H).

One could compute Zu(H) explicitly using the same algorithm as before, but we can
avoid this work, as follows. All chords in Zu(H) can be assumed to be located in the

19It is also possible to delete a capped edge.
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H

T1 T2
[(T1) [(T2)
insert insert

Zu(H)

all chords

Figure 28. The double tree map applied to a disjoint union of uTT -s is the same as inserting

the double tree of each individual uTT into the sKTG H. In Zu(H) all chords can be pushed

into the rectangle shown, using VI relations when necessary. fig:DisjUni

uTT
[

//

c

��

(1)

sKTG
Zu

//

d3

��

(2)

Au α
//

(·e−
c
4 ν

1
2 )◦d3

��

(3)

Asw κ
//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(4)

Asw un−1
//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(5)

Asw pn−2

//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(6)

uTT
[

// sKTG
Zu

// Au α
// Asw κ

// Asw un−3
// Asw pn−2

//

diagram continues... // Asw p2
//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(7)

Asw ϕ
// Asw·C

−(n−1)SC−1
//

(·α(ν−
1
2 ))◦c

��

(8)

Asw

c

��
// Asw ϕ

// Asw
·C−(n−2)

// Asw

Figure 29. Summary of the proof that Zwξ commutes with contractions: Zwξ is the compo-

sition along the entire top and entire bottom horizontal edge of the diagram. fig:ContractCommutes

rectangle shown in Figure
fig:DisjUnifig:DisjUni
28 (using VI relations, if necessary). During the computation of

ξ both supporting strands are punctured, and therefore p2α(Zu(H)) = 1. This implies that
ξ(T1⊔T2) = ξ(T1)⊔ξ(T2), and it follows via Lemma

lem:Compatibilitylem:Compatibility
3.9 that Zw

ξ (T1⊔T2) = Zw
ξ (T1)⊔Z

w
ξ (T2).

Contractions. Proving that Zw
ξ commutes with contractions is more involved. By

Lemma
lem:CyclicPermlem:CyclicPerm
3.8, we can assume that the ends contracted are the last (rightmost) two ends

of the n ends of T . Hence we will drop the subscript from ci and denote this operation
simply by c.

We need to show that Zw
ξ (cT ) = cZw

ξ (T ), for any T ∈ uTT . Since Zw
ξ is given by the

composition of many maps, so this can be restated as the commutativity of the perimeter
of a large diagram (shown in Figure

fig:ContractCommutesfig:ContractCommutes
29), which in turn can be broken down to its smaller

parts. Throughout this proof, let T ∈ uTT denote an arbitrary trivalent tangle.
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·e−
a

2α(ν
1

2 )·e−
a

2α(ν
1

2 )

T

T

d3

·C
−→

·C
−→

un−3

−−→

un−1

−−→

(4) (5) (6)

pn−2

−−→

pn−2

−−→

·e−
a

2α(ν
1

2 )

∗

T

T

d3

T

T

d3

·e−
a

2α(ν
1

2 )

d3

T

T

Figure 30. The squares (4) (5) and (6). Strands to be deleted are drawn in dashed lines

throughout. The ∗ denotes a cap of interest: see the proof paragraph on square (5). fig:456

c

T

T

d3

T

T

[

−→

(1)

[

−→

Square (1). This square plays out in uTT and sKTG, and commutes
by inspection, as shown on the right. The three strands to be deleted
are indicated by broken lines. Therefore, d3[(T ) = [c(T ).

Square (2). Square (2) is shown schematically below on the left: for
the Zu-values skeleta are indicated but chords are not shown. To prove
that square (2) commutes, we use the properties of Zu with respect to
deleting edges in sKTG, as stated in Fact

fact:ZuDeletefact:ZuDelete
3.15 and Figure

fig:ZuDeletefig:ZuDelete
26.

T

T Zu

−→ T

T

d3(2)

·e−
c
4ν

1
2

d3

Zu

−→

∗

Only one of the three edge deletions requires a correction term:
this is the edge marked with ∗ in the diagram on the left. This
edge ends in a e−c/4ν1/2 inserted at the place of the vertex, where
c stands for a single chord. In square (2), this correction term
appears at the bottom right corner of the square, where the two
ends of T are contracted (see in the diagram showing skeleta in

Figure
fig:ContractCommutesfig:ContractCommutes
29). In summary:

(
d3Zu

[(T )
)
· (e−

c
4 ν

1
2 ) = Zu

[c(T ).
Square (3). Square (3) is essentially the commutativity of edge

deletions stated in Remark
rmk:wDeletermk:wDelete
3.16, combined with applying α to the

correction term. So we have:(
d3αZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = αZu

[c(T ).

Square (4). Squares (4), (5), and (6) are shown in detail in Figure
fig:456fig:456
30. Square (4) plays

out in Asw and it is commutative as the deletions and the cap attachments (denoted by κ)
affect different strands: see the diagram on the right. Therefore,

(
d3καZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = καZu

[c(T ).

Square (5). The only difference between d3 ◦un−1 and un−3 ◦d3 is what happens to arrows
on the caped skeleton edge marked by ∗ in Figure

fig:456fig:456
30. Following the diagram right and

down, this edge is unzipped n− 1 times, then the last two of its daughter edges are deleted.
On the other hand, following the diagram down and right, the same edge is unzipped n− 3
times. The results of these compositions are the same by definition of the unzip and delete
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insertT

unzips

T

S

A

Figure 31. Computing the top left corner of Square 7, Step 1: [(T ) can be expressed as

the sKTG denoted S inserted into the sKTG denoted A, followed by unzips, as shown. Zu

respects insertions, hence computing Zu(A) determines the value of Zu([(T )) outside of S. fig:Square7Comm

operations. Thus, we have
(
d3un−1καZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = un−3καZu

[c(T ).

Square (6).The deletions and punctures occur on different strands, as shown in Figure
fig:456fig:456
30,

hence these operations commute commute. One detail to note is that when a tube strand is
deleted at a “tube-and-string” vertex, all that is left is a string (as in the case of puncturing
the tube at a tube-string vertex, see Figure

fig:puncturesfig:punctures
5). In summary:

(
d3pn−2un−1καZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = pn−2un−3καZu

[c(T ).

d3

T

T

T
∼=
−→

p2

−→

(7)

T

c
·α(ν−

1

2 )

·e−
a

2 α(ν
1

2 )

∼=
T

Pentagon (7). The pentagon (7) is shown on
the left. This is the most delicate part of the
proof. We first show that – for the specific input
of pn−2un−1καZu

[(T ) – the pentagon (7) com-
mutes up to a single possible error on the con-
tracted (u-shaped) strand, and later prove that
this error is necessarily zero.

To begin, a better understanding of the arrow
diagram pn−2un−1καZu

[(T ) in the top left corner
is necessary. All of the operations performed on

T , with the exception of Zu, are “easy” in the sense that we have a complete understanding
of their effect. Zu is “hard”, but we can compute the relevant part of its value using the
finite generation of sKTG (

Bar-NatanDancso:WKO2
[WKO2, Proposition 4.13]). The computation is shown in Figures

fig:Square7Commfig:Square7Comm
31 and

fig:Square7Comm2fig:Square7Comm2
32 and their captions.

In summary, Zu([(T )) is given by inserting Zu(A) into the chord diagram D of Figure
fig:Square7Comm2fig:Square7Comm2
32.

Now we need to analyze what happens when one applies α, the cap attachment, unzips and
punctures to this value: this is an exercise similar to what has been done for Lemma

lem:xiofstrandlem:xiofstrand
3.12 for

example. The result is shown in Figure
fig:Square7Bigfig:Square7Big
33, and explained below. First note that the n value

in D of Figure
fig:Square7Comm2fig:Square7Comm2
32 cancels after punctures by the tail-invariance property (Figure

fig:Invariancefig:Invariance
18), as in

the last paragraph of the proof of Lemma
lem:Compatibilitylem:Compatibility
3.9; so does the bottom Φ−1 in D , by Fact (

it:Concatit:Concat
3) of

Lemma
lem:PhiFactslem:PhiFacts
3.2. These components are not shown in Figure

fig:Square7Bigfig:Square7Big
33.

Working downwards from the top left of the pentagon in Figure
fig:Square7Bigfig:Square7Big
33, the three edge deletions

cancel both buckle (βw) values. The value b value at the top of the diagram D is pulled
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unzips Zu

A A

D

b

n

βu

βu

S3(Φ
−1)

Figure 32. Computing the top left corner of Square 7, Step 2: computing Zu(A). The

sKTG A can be obtained by inserting the buckle sKTG twice into a simpler sKTG, and

unzipping, as shown on the left. The value of the buckle was computed in Figure
fig:BuckleBraidfig:BuckleBraid
14. Using

this value—denoted βu—and the algorithm in
Bar-NatanDancso:WKO2
[WKO2, Section 5.2], one computes Zu(A).

The result is denoted D and shown on the right. fig:Square7Comm2

U

U

T

e−a/2

T

(7)

Tp2

−→

U

α(Φ−1)

e
a/2
α(Φ)

S ∼= ϕ

c

T

e−a/2

ϕ(U)

T

∼= ϕ

ϕ(U)

·e−
a

2 α(ν
1

2 )
d3

·α(ν−1/2)

βw

pu(βw) pu(βw)

+

α(ν1/2)

p(βw)

α(ν1/2)

S2αu(b) S2αu(b)

ϕ(p(βw))

ϕ(pu(βw))

S2αu(b)

Figure 33. The more detailed picture of the Pentagon 7. fig:Square7Big
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= 0+ −

Figure 34. Unzip, switch orientation and connect kills arrows on the strand. fig:KillAnArrow

T
ϕ

7−→ = 0

T c
7−→

T

+ +− −

Figure 35. The cancellation of ϕ(pu(βw)).

down across the vertex using a V I relation: this has the same effect as an unzip and an
orientation switch on the second stand (as this is oriented downwards). The resulting value
Sαu(b) cancels by the following reasoning – essentially by definition of unzips and orientations
switches – which is illustrated in Figure

fig:KillAnArrowfig:KillAnArrow
34:

Given an arrow ‘a’ ending on strand ‘e’, unzipping e produces a sum of two arrows a1+a2:
one ending on each daughter strand. Reversing the orientation of the first daughter strand
gives −a1 + a2. Contracting the two daughter strands to form a U-shape identifies a1 and
a2, making a1 − a2 vanish.

This is exactly what happens to the arrow diagram S2αu(b) (just under the tangle T in
Figure

fig:Square7Bigfig:Square7Big
33) after the edge deletions or contraction, hence this component cancels it in both

directions of the pentagon (7).
The bottom arrow on the left is the Sorting Isomorphism ϕ of Lemma

lem:CapStringlem:CapString
2.5.

On the other hand, working from the top left corner of the pentagon (7) to the right: from
Section

subsec:AETFormulasubsec:AETFormula
3.2, using the strand numbering convention of Figure

fig:NumberingKfig:NumberingK
15, we have

p1p3β
w = Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43).

This is shown in the enlarged rectangle at the top right corner of Figure
fig:Square7Bigfig:Square7Big
33. The same is

true for pu(βw) at the bottom, except with more unzips.
From here, the first downward arrow applies the Sorting Isomorphism ϕ of Lemma

lem:CapStringlem:CapString
2.5,

followed by the contraction and correction term along the second downward arrow. At the
bottom of the diagram, ϕ(pu(βw)) cancels altogether after contraction, in a similar fashion
to Figure

fig:KillAnArrowfig:KillAnArrow
34. Namely, ϕ and the contraction annihilates any arrow ending on the diagonal

red strand, or the double capped strand on the right, as shown in Figure
fig:puBucklefig:puBuckle
?? for the diagonal

red strand. This cancels each factor of pu(βw).
Of the top ϕ(p(βw)) shown in the enlarged rectangle, the Φ−1 component cancels by

the same contraction argument; only the exponential and the Φ component remains. The
arrow in the exponent of ea/2 switches sign due to the reversed orientation: this is the e−a/2
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Φ(a12, a23) =:

321

µ

Figure 36. The Φ component of ϕ(p(βw)) after contraction. fig:mu

component at the bottom of the pentagon in Figure
fig:Square7Bigfig:Square7Big
33. After contraction, the Φ component

gives rise to a “local” arrow diagram on a single strand shown in Figure
fig:mufig:mu
36 and denoted µ.

In summary, we see that the pentagon (7) commutes if and only if µ = α(ν), and otherwise
commutes up to a localised error on the contracted strand, of value α(ν)−1µ.

T T

T T

c
·α(ν−

1

2 ) c
(8)

·C−(n−2)

−−−−−→

·C−(n−1)SC−1

−−−−−−−−→ Square (8). Finally, for square (8) we need to check that
C−1S(C−1) = α(ν−1/2). Note that the orientation switch negates
odd wheels and preserves even wheels, therefore in C−1S(C−1)
the odd part of C−1 cancels, and C−1S(C−1) = C−2

0 = α(ν−1/2)
by Corollary

cor:CapValuecor:CapValue
3.13. This verifies Square (8).

We have therefore shown that Zw commutes with contraction up to an error α(ν)−1µ on
the contracted strand. It remains to show that this error is 1. This follows from the facts
that Zw(↑) = 1, and that Zw commutes with disjoint unions:

1 = c(Zw(↑↓)) = α(ν)−1µZw(c(↑↓)) = α(ν)−1µ · Zw(y) = α(ν)−1µ.

This completes the proof. �

Note that as a side result we have proven the following curious fact about associators:

Proposition 3.18. For any Φ horizontal chord associator, µ defined from Φ as in Figure
fig:mufig:mu
36,

and ν the Kontsevich integral of the unknot, µ = α(ν). �

The value V = Zw
ξ ( ) differs, on first glance, from the value Vβ constructed in Section

subsec:Part1subsec:Part1
3.1.

In the next lemma we show that in fact V = V β: this serves both as a reality check, and as
a technical tool for showing – in Theorem

thm:ZwExpansionthm:ZwExpansion
3.22 – that Zw

ξ satisfies the Cap equation.

lem:TwoConstructions Lemma 3.19. The two vertex values from the buckle and the double tree constructions co-
incide: Vβ = V .

Proof. Notice that [(b) – as in Figure
fig:DTandBucklefig:DTandBuckle
37 – can be obtained from simpler sKTGs by

inserting the buckle Bu into [(y) followed by an unzip. We computed ξ(y) in Lemma
lem:xiofstrandlem:xiofstrand
3.12.

Since Zu is compatible with insertions and unzips, Zu(b) can be computed by inserting the
buckle value βu (computed in Section

subsec:AETFormulasubsec:AETFormula
3.2) into Zu([(b)).

To compute ξ(b) we then apply α and the cap, unzip and puncture operations. Because
βw = α(βu) is local (is confined to the skeleton of the inserted Bu graph) and is in the image
of α, all other arrow endongs commute with it by the head- and tail-invariance properties of
Asw (Figure

fig:Invariancefig:Invariance
18). Therefore, all of the cancellations in the computation of ξ(y) still occur,

and ξ(b) is as shown in Figure
fig:DTandBucklefig:DTandBuckle
37. Writing this in Asw(↑2) we obtain ϕ(p1p3(β

w))u(α(ν1/2)).
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u puκαZu

α(ν1/2)

p1p3(β
w)

ϕ(p1p3(β
w))

u(α(ν1/2))

C−1 C−1 S(C−1)

Figure 37. On the left we show how to obtain [(b) via an unzip from Bu insterted into

[(y). From this we compute ξ(b), and finally V on the right. fig:DTandBuckle

To obtain V = Zw
ξ ( ), one multiplies ξ(b) at each end by C−1 or S(C−1) depending on

orientation, as shown in Figure
fig:DTandBucklefig:DTandBuckle
37 on the right. Thus,

V = C−1
1 C−1

2 ϕ(p1p3β
w)u(αν1/2)u(S(C−1).

On the other hand, from Section
subsec:AETFormulasubsec:AETFormula
3.2, we have:

V β = C−1
1 C−1

2 ϕ(p1p3β
w)u(C).

Thus, we need to show that:

C−1
1 C−1

2 ϕ(p1p3β
w)u(αν1/2)u(S(C−1) = C−1

1 C−1
2 ϕ(p1p3β

w)u(C),

in Asw(↑2). Multiplying with (ϕ(p1p3β
w)))−1C1C2 on the left (bottom) and by u(S(C)) on

the right (top), this simplifies:

u(αν1/2) = u(C)u(S(C)).

Since unzips commute with orientation switches, it is sufficient to prove that

CS(C) = α(ν1/2).

Recall that in CS(C) all odd wheels cancel, hence CS(C) = (C0)
2, where C0 denotes the

even part of C. Indeed, by Corollary
cor:CapValuecor:CapValue
3.13, C2

0 = α(ν1/2). �

cor:SameResult Corollary 3.20. The “buckle” amd “double tree” constructions lead to the same result, that
is, Zw

ξ = Zw
β .

Proof. Since any homomorphic expansion Zw of w̃TF is uniquely determined by Zw( ),
this is immediate from Lemma

lem:TwoConstructionslem:TwoConstructions
3.19. �

The next lemma implies that V satisfies the Unitarity (
eq:Ueq:U
U) equation:

lem:Unzip Lemma 3.21. The map Zw
ξ commutes with strand unzips in uTT .

Proof. We first note that in uTT unzip is only defined for internal edges, that is, edges
which end in a vertex20 at both ends. By construction, Zw

ξ is a composition of several maps.
We show that edge unzips commute with every one of these, hence with Zw

ξ .

20In fact, there are further restrictions, eg the two vertices must be of opposite signs, but this is not
important for the proof.
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The [ map involves only the tangle ends, which are unchanged by unzipping an internal
strand, hence these operations commute. The homomorphic expansion Zu commutes with
edge unzips, as shown in

Bar-NatanDancso:WKO2
[WKO2, Section 4.6]. The map α commutes with edge unzips

by definition. Cap attachments, cap unzips and the isomorphism ϕ commute with internal
unzips for the same reason as [, because they are performed at the tangle ends while unzip
is internal. This completes the proof. �

Finally, the following Theorem completes the proof of part Part (3) of the Main Theo-
rem

thm:mainthm:main
1.1:

thm:ZwExpansion Theorem 3.22. The map Zw
ξ : w̃TF → Aw is the unique homomorphic expansion of w̃TF ,

which is compatible with Zu in the sense of the commutative diagram (
eq:MainDiageq:MainDiag
2).

Proof. By Proposition
lem:Compatibilitylem:Compatibility
3.9, Zw

ξ is compatible with Zu. By Part (1) (Section
subsec:Part1subsec:Part1
3.1) and

Corollary
cor:SameResultcor:SameResult
3.20, Zw

ξ = Zw
β and uniquely determined by Zu.

To show that Zw
ξ is a homomorphic expansion, by Fact

fact:EquationsForZfact:EquationsForZ
2.6 and Theorem

thm:ExtendRestrictthm:ExtendRestrict
2.7, one only

needs to verify that it satisfies the (
eq:R4eq:R4
R4), Unitarity (

eq:Ueq:U
U) and Cap (

eq:Ceq:C
C) equations of Fact

fact:EquationsForZfact:EquationsForZ
2.6.

Of these, R4 follows from the fact that Zw
ξ is a planar algebra map, Theorem

thm:PAMapthm:PAMap
3.17. The

Unitarity equation (
eq:Ueq:U
U) is equivalent to the statement that Zw

ξ commutes with strand unzips
Bar-NatanDancso:WKO2
[WKO2, Section 4.3], and hence it is satisfied by Lemma

lem:Unziplem:Unzip
3.21.

This leaves the Cap Equation, �

Appendix A. The Alekseev–Enriquez–Torossian formula
app:AET

This appendix is mainly for readers familiar with the Alekseev–Enriquez–Torossian for-
mula for Kashiwara–Vergne solutions in terms of Drinfel’d associators

AlekseevEnriquezTorossian:ExplicitS
[AET].

For a quick re-cap of
AlekseevEnriquezTorossian:ExplicitSolutions
[AET] notions, let lie2 denote the degree completed free Lie algebra

on two generators x and y. Let tder2 denote tangential derivations of this Lie algebra, that
is, derivations d with the property that d(x) = [x, a1] and d(y) = [y, a2], where a1, a2 ∈ lie2.
Let TAut2 := exp(tder2) denote the group of tangential automorphisms of lie2.

There is a linear “interpretation map” (not a map of Lie algebras) θ : lie
2
2 → tder2,

sending a pair (a1, a2) to the derivation d given by d(x) = [x, a1], d(y) = [y, a2]. The kernel
of this map consists only of pairs of the form (αx, βy) for α, β constants. A one-sided
inverse η : tder2 → lie

2
2 which sends a tangential derivation to a pair whose first component

has no linear x term and second component has no y term. We denote the exponential
of θ by Θ : U(lie22)exp → TAut2. For an element (eλ1 , eλ2) ∈ U(lie22)exp, we have G =
Θ((eλ1 , eλ2)) ∈ TAut2 given by G(x) = e−λ1xeλ1 , and G(y) = e−λ2yeλ2. Just as θ is not a
Lie algebra map, Θ is not a group homomorphism: composition in TAut2 is not given by
piecewise multiplication of the conjugators. However, θ and Θ present a convenient way to
denote tangential derivations and tangential automorphisms as pairs in lie

2
2 and (exp(lie2))

2,
respectively.

Given a Drinfel’d associator Φ,
AlekseevEnriquezTorossian:ExplicitSolutions
[AET, Theorem 4] gives an explicit formula for a Kashiwara-

Vergne solution F as follows21:

F = (Φ−1(x,−x− y), e−(x+y)/2Φ(−x− y, y)ey/2). (12) eq:AETEx

21There are some notational differences between
AlekseevTorossian:KashiwaraVergne
[AT] and

AlekseevEnriquezTorossian:ExplicitSolutions
[AET]. There are sign differences between the

formula (
eq:AETExeq:AETEx
12) and

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] due to notational misalignment, for example our Φ is

AlekseevEnriquezTorossian:ExplicitSolutio
[AET]’s Φ−1. Our notation is

consistent with the other papers in this series and the formulas are computationally verified in
Bar-Natan:WKO4
[WKO4].
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In other words,

F (x) = (Φ−1(x,−x− y))−1xΦ−1(x,−x− y),

and similarly

F (y) = (e−(x+y)/2Φ(−x− y, y)ey/2)−1ye−(x+y)/2Φ(−x − y, y)ey/2.

The point of this Appendix is to show that this formula agrees with our Part (2) of the
Main Theorem

thm:mainthm:main
1.1, via the correspondences between Drinfel’d associators and expansions

Zu
Bar-Natan:GT1
[BN1, Proposition 3.4] and between KV-solutions and expansions Zw

Bar-NatanDancso:WKO2
[WKO2, Theorem

4.9].
We first relateAsw(↑2) (where V lives) to TAut2 (where F lives). A Lie word in x and y can

be represented by a binary tree with cyclically oriented vertices, and edges oriented towards
a single “head”: the leaves (tails) are labeled by the letters x and y and the vertices represent
brackets. For details see

Bar-NatanDancso:WKO2
[WKO2, Theorem 3.16] and the discussion following it. There is a

tree attaching map l : tder2 → Psw(↑2), where Psw denotes the primitive elements of Asw,
as follows. Given d ∈ tder2, we have η(d) = (a1, a2) ∈ (lie2)

2. Represent the components of
η(d) by binary trees, and label the heads with x for Lie words coming from a1, and y for a2.
Then, attach all x-labeled leaves to strand 1, y-labeled leaves to strand 2, and the head of
each tree below all tails. The order of tails is irrelevant by the TC relation.

Conversely, elements of Psw(↑2) act as tangential derivations on lie2
Bar-NatanDancso:WKO2
[WKO2, Proposition

3.19]. The action is by adding a third strand and embedding lie2 →֒ A(↑2) as x 7→ a13
and y 7→ a23. Then Psw(↑2) embedded in Psw(↑3) on the first two strands acts on lie2

by the adjoint action (taking commutators). Wheels act trivially, and thus one obtains a
homomorphism δ : P tree(↑2) → tder2, whose kernel consists of short arrows on either strand.
The map δ is a one-sided inverse to l, namely, δ ◦ l = Idtder2 .

Extending δ to exponentials gives a group homomorphism ∆ : Aw(↑2)exp → TAut2, where
Aw(↑2)exp denotes the group-like part of Asw. For D ∈ Aw(↑2)exp, the map ∆ can be
described diagrammatically as follows. Add an extra (third) strand, and embed lie2 →֒ A(↑2)
as before. Then D, embedded in A(↑3) on the first two strands, acts on lie2 by conjugation;
this defines ∆(D).

We construct a map L which completes a commutative triangle as in Figure
fig:ATInterpretationfig:ATInterpretation
38. At the

level of primitives, the map l ◦ θ has the property that δ ◦ (l ◦ θ) = θ. Extend this to the

(completed) enveloping algebra Û(lie22) as follows. An element of Û(lie22) is an (infinite) linear
combination of products of Lie words. As with l, represent each Lie word as a labeled tree,
but then attach the products of these labeled trees to the two strands by attaching all heads
below all tails. The order of tails doesn’t matter, the order of heads is in the order in which
the words are multiplied. Call this map L, and note that L is not an algebra homomorphism:
it does not respect multiplication in Û(lie22). However, the restriction of L to the group-like

part Û(lie22)exp, also denoted L fits into a commutative triangle Θ = ∆◦L. Note that L 6= el.
Let Zu be an expansion of sKTG given by the Drinfel’d associator Φ. Let V be the Zw-

value of the vertex for the unique homomorphic expansion Zw compatible with Zu. Then
F = ∆(V ) is a solution to the Kashiwara-Vergne problem

Bar-NatanDancso:WKO2
[WKO2]. Our goal is to relate the

Θ-image of the
AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula Θ(Φ−1(x,−x− y), e−(x+y)/2Φ(−x− y, y)ey/2) to ∆(V ). Note

that wheels are in the kernel of ∆ and the
AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula only concerns the tree component

V tree.
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Figure 38. The connection between Asw(↑2) and TAut2. fig:ATInterpretation

= χ

ea/2 ea/2

I III III II

ϕ

= ψ

ea/2 TAILS

HEADS

Φ(a23, a43) χ1 χ2 χ3

ψ1 ψ2 ψ4ψ3

χ3

ψ4

ψ3

χ1

ψ2

ψ1

χ2

Φ−1(a2(13),−a2(13))− a4(13))

Figure 39. To compute ϕ(Φ−1(a2(13),−a2(13) − a4(13)) · e
a23/2 · Φ(a23, a43)) we switch to

a placement notation in which we mark on each skeleton strand the elements that have

arrows ending on it. For this purpose we denote Φ−1(a2(13),−a2(13) − a4(13)) =: ψ and

Φ(a23, a43) =: χ. fig:ValueV

The accomplish this, we need to compute V tree = ϕ(Φ−1(a2(13),−a2(13) − a4(13)) · e
a23/2 ·

Φ(a23, a43)) more explicitly, as shown in Figure
fig:ValueVfig:ValueV
39, and explained in the caption. The first

strand of Asw(↑2) joins strands 1 and 2 in a vertex, and the second strand of Aw(↑2) joins
strands 3 and 4. Strands 1 and 3 are punctured and strands 2 and 4 are capped. Let us
call the two strands of Aw(↑2) strand I and strand II to avoid confusion. Recall from the
construction of ϕ that one first slides arrow tails from the capped strands “up” through the
vertices, then slides all the heads up from the punctured strands 1 and 3. Thus one obtains
an element of Aw(↑2) in which all arrow heads are below all tails on both strands.

Now we are ready to compute how π(V ) ∈ Aw(↑2) acts on the generator x of lie2 and
match this to the formula

eq:AETExeq:AETEx
12. Recall the value of π(V ) shown in Figure

fig:ValueVfig:ValueV
39. The generator

x is represented by an arrow from the first strand to the added third strand, and the action
is by conjugation, as shown in Figure

fig:ActOnxfig:ActOnx
40. To compute this, one commutes the tail of x to

the top of the strand across π(V ) using
−−−→
STU relations, thereby π(V ) and π(V )−1 cancel,

and the result of the action remains. Observe that due to the TC relation, only arrows
with heads on strand I act nontrivially on x, in other words only ψ1 matters, which came
from Φ−1(a2(13),−a2(13)−a4(13)). The arrows a23 and a43 act trivially on x, so, more simply

stated, the action on x is by ϕ(Φ−1(a21,−a21 − a41)). Note that L(Φ−1(x,−x − y), 0) =
ϕ(Φ−1(a21,−a21 − a41)), so Theorem

thm:mainthm:main
1.1 agrees with Formula (

eq:AETExeq:AETEx
12) in the first component.

One can proceed similarly for the second component: the action on y is by

ϕ(Φ−1(a23,−a23 − a43)e
a23Φ(a23, a43)) = L(0,Φ−1(x,−x− y)ex/2Φ(x, y)).
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π(V )−1

π(V )
x

Figure 40. The action of π(V ) on the generator x of lie2. fig:ActOnx
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−1
34

12 3 4

Figure 41. A different expression of βb. fig:BuckleBraid2

While this does not match the second component of Formula (
eq:AETExeq:AETEx
12), it only differs from it by

a hexagon relation. Alternatively, note that one can obtain the second component of the
Formula (

eq:AETExeq:AETEx
12) “on the nose” by starting from an equivalent (isotopic) expression22 of βb, as

shown in Figure
fig:BuckleBraid2fig:BuckleBraid2
41. This completes the proof.
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