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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS III:

ASSOCIATORS
DROR BAR-NATAN AND ZSUZSANNA DANCSO

ABSTRACT. This is the third in a series of papers studying the finite type invariants of
various w-knotted objects and their relationship to the Kashiwara-Vergne problem and

Drinfel’d associators. In this paper we present a topological solution to the Kashiwara-
Vergne problem, In patticylar we recover via 3 foRologigal azgument the Alkeseev-Enriquez-
ashiwara-Vergne equations in terms

Torossian }XET]'fdrfffﬁi‘é;'lfgxf"ékijliéiﬁ' solutions of the K

- of associators.
dimensional foams and various

We study a class of w-knotted objects: knottings of 2-
associated features in four-dimensioanl space. We use a topo
name the double tree construction to show that every expansion
of parenthesized braids extends first to an expansio
and then extends uniquely to an expansion of the w-

logical construction which we
(also known as universal fi-
nite type invariant) n of knotted trivalent
graphs (a well known result), knotted
objects mentioned above.
In algebraic language,
Drinfel’d associator ®, and an expansion for w-kn,fc.)zg‘;,’t‘;d; obje%t(
a solution, V. of the Kashivara;Vergne, problem, [KV], as refort
Torossian [AT]. Hence our result provides a topological framewor
that “there is a formula for V in terms of ®”, along with an independent topological proof

of the Kashiwara-Vergne Theorem and the Alekseev-Enriquez-Torossian formula.

uniquely determined by

an expansion for parenthesized braids is
is uniquely determined by
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In Sections 2.1 to 2.3 of ]F\X}I—{Iﬁ vgécgi%ﬁ%ésociated graded structures and expansions for
general algebraic structures. For any algebraic structure (think braids, or tangles with tangle
composition), one allows formal linear compositions of elements of the same kind (think, same
skeleton). Associated graded structures are taken with respect to the filtration by powers of

the augmentation ideal. For the spaces uFaB, sKTG and uﬁ, the associated graded spaces

AP A% and A% are the spaces of “horizontal chord diagrams on parenthesized strands”,
“chord diagrams on trivaler

nt skeleta”, and “arrow diagrams”, as described in [BNTEL[\VI;OZ, o
Section 4.6], and Section 2 of this paper, respectively. As a result, the associated graded
structure of K is

A= (A S5 g 2y gowy
where cl and « are the maps induced by cl and a, respectively. More specifically, cl is the
“closure of chord ngg_r[%pggzmg,pg%lo%ih »Teplacing e

ach chord with the sum of its two possible
orientations”, see, @rWKQZ*Séct ion 3.3].
Bar-RatdnDancso: WKHD

An expansion [WKO?2, ection 2.3] is a filtration-

ture to its associated graded structure, whose associ

respecting map from an algebraic struc-
theory,

ated graded map is the identity. In knot

that is, it intertwines each operation with its induced cqgwl{ll'_cg;pgng\gg_glge_@ﬁsociated graded
structure; for a detailed definition and introduction see [WKO2, Section 2.3]. Hence, a ho-
momorphic expansion Z : K — Ais a triple of homomorphic expansions Z° Z* and Zw

= ; = sKTG and K% := Wl'F, respectively, so that the following diagram
: commutes:

&
3
|
:
)

a

K- ’Cbi_lcu_,_mw

Fle T T

| A - Ahor cl Av 2 Aw
‘ Bar-Natan:GT1
We recall (see ’[BN I]Séllllat a homomorphic expansion Z°

for parenthesized braids is de-

termined by a “horizontal chord associator” & — z*(/). A homomorphic expansion Z* of =
% sKTG is also determined® by a Drinfel’d associator (horizontal chords or not; see [WKO2,
ﬁ} Section 4.6]), so the significance of the left commutative square is to force the associator

> corresponding to Z* to be a horizontal chord associator.

In turn, Zv is determinl_ed,_by_,a‘ )
solution F' (a close cousin of V = Z¥(J.)) to the Kashiwa

Section 4.4 - 4.5]). The goal of this paper is to prove the foll

owing theorem, which, via the
correspondence above, implies the KV conjecture:

tha:main] Theorem 1.1. (1) Assuming that Z : K — A ezists, it is determined® by Z*.

Vil 15 (2) There is a formula for V = Z*().)) and C = Z*(1) in terms of the Drinfel’d
T (—o//'\lj‘\ associator ® associated to Z*:

for C L

V = Cr'Cy o (7 (az13), —aaps) — ay(13)) - €°3/2®(ay;, a43)) C12), (3)

~

nar-HaranDancso:WEKQR
2With the exception of some minor normalization, see [WKO2[, Lemma 4:14 and the paragraph after.

3In fact, almost entirely determined by Z®, with the exception of some minor normalization of Z* which
* k]
is not determined by an associator.
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ekseeviEnricuezlorces

where a denotes a single arrow’®. This agrees® with the formula proven in [L\ET] '
(3) Every Z° extends to a Z.

The key to the proof of the theorem is to show that the generator J. of WTF can be
expressed in terms of the generator || of uPaB and the operations of K. Assuming that Z
] - A exists, this yields a formula for V' in terms of ®.

ec wlkF
\[ X Paper Structure. In Section b5 pr prov1de an overview of the space wI'F° of (ori-

ented) w-foams and its. extension with strings uTF. We provide a brief review of definitions
and crucial facts from [WI\O‘Z]Tnd details of the extension. We prove that homomorphic
expansions for uT’F° extend uniquely to homomorphic expansions for uTF.
Section 3. L[}gl_\gs_up the bulk of the paper and Js_devoted tq the proof of Theorem 1‘1
In Section me part (1). In Section 3.2 we deduce the formula for Kashl\ﬁ/ara-
Vergne solutions in terms of Drinfel’d associators, proving part (2). In Section 3. 3we prove
statement (3), the hardest part of the proof.
ﬁ Section  a short section of closing remarks, and in Appendix ! e glve an explicit
comparisolr-and equivalence between our, formula in Part (2) and the ALekseev-Enriquez—

NTiIgu

Torossian [AET] formula.

RTINS

———— 2. THE SPACES uIF' AND A®*" IN MORE DETAIL

__As mentioned in the introduction, ofF is a minor extension of the space WIF° studied in
[V\' KO? , Section 4.1 — 4. 4]. It can be introduced as a planar algebra or as a circuit algebra;
we will do the latter as it is simpler and more concise. Circuit algebras are defined in
[\VI\OQ “Section 2. 4] in short, they are snmlarP to planar algebras but without the planarity

NateanDan
requirement for “connecting strands”. As in [\VKOVTJ eaccg.; gsegatQI and relation of ulF
has a local topological interpretation. Recall from [WKUJ Sections 1.2, 3.4, 4.1] that wl'F°
diagrams represent certain ribbon knotted tubes with foam vertices in R4, and the circuit

algebra wI'F° is conjecturally a Reidemeister theory for this space (i.e., there is a surjection &
from the circuit algebra wTF* to ribbon knotted tubes with foam vertlces and ¢ is conjectured
to be an isomorphism). The space uTF extends uTF° by adding one-dimensional strands
to the picture. Note that in themselves, one dimensional strands in R* are never knotted,
however, they can be knotted with the two-dimensional tubes. In figures two-dimensional
tubes will be denoted by thick lines and one dimensional strings by thin red lines. With this
in mind, we define wTF as a circuit algebra defined in terms of generators and relations, and
with some extra operations beyond circuit algebra compositions. Each generator, relation
and operation has a local topological interpretation which provides much of the intuition
behind the proofs. However, the corresponding Reidemeister theorem is only conjectural.

lati uxili
=1 CA<y\, N, 1, jn’ \z, |y\(, N) 7&’ T re:g 11(])111:3-‘ OPZratloarE% >M_m5
1 2737 4 5 6 7 8 9 Section 2. f in Section 2.3 S

generators

Subsec:AETE
4The notation is explained in detail in Section 3.2

5Although tbe two formgla§ are. written in different languages, and checking that they agree takes effort.
See Section 3.2 anc and “Appendix A
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Figure 8. The Rl and CP relations, and the TF relation (which is not really a relation).
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Figure 9. The B IHJQ and the three STZj rerations. Note that in STﬁl, the skeleton

strand can be thin red or thick black, and that STi-J)3 is the same as the TC relation.

for wTF°°. We quickly recall these here, for details see [WI{”JO‘Z,
entation switch S, reverses the orientation of the skeleton strand e, and multiplies the ar-
row diagram by (—1)#{arrow heads and tails on e}y adjoint operation also reverses the skele-
ton strand e and multiplies the arrow diagram by (=1)#{arrowheadsone}  Gyyen a skele-
ton S with a distinguished strand e, unzip (or disc unzip, if e is capped) is an operation
Ue : A™(S) — A (u,(S)) which maps each arrow ending on e to a sum of two arrows, one
ending on each of the two new strands which replace e. Deleting a long strand e kills all
arrow diagrams with any arrow ending on e. The operation induced by puncture, denoted

Pe, turns the formerly thick black e into a thin red strand, and kills any arrow diagram with
any arrow tails on e,

To summarise:

2 : 47, TC, VL' | OeAu; s, i i
wmeca(bol L LY b A T| B0 [ s
generators relations Operatlons
sar-NatanDancao  WKQQ Bl ; >
As in ?i\%fI(OT‘Z‘;" li)'éfi“ﬂitfdh 3.7], we define a “w-Jacobi diagram” (or just “arrow diagram”

by also allowing trivalent chord vertices, eaci,h\ of yg_llléch‘l__iﬁ equipped with a cyclic orientation,

ection 4.2.2]. The ori-

IS IAD

and modulo the STU relations of Figure 9. Denote the circuit algebra of formal, linear

combinations of these w-Jacobi diagrams by A, Then, as in [WKO2, Theorem 3.8], we
have the following “bracket-rise” theorem:

Theorem 2.1. The natural inclusion of diagrams induces a circuit N@qubzia'z'somorphism

Ao ASTRHXST

AV 2 A9t Purthermore, the AS and THX relations of Figure 9 hld i AT
Natanbancso: WK

By C 50 KD . s :
The proof is identical to the proof of ;[WKOQ','THéorem 3.8]. In light of this isomorphism,
we wil). drap the extra “¢” from the notation and use .A° to denote either of these spaces.
. BTt anDaicso s WAD2R o e denoted P**. and
As in !tW KO2], the primitive elements of A*“ are connected diagrams, A
12
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In the other direction, consider an arrow diagram on the capped/stringed vertex. One
may assume that there are only arrow tails on the capped strand under the vertex: any
arrow head may be commuted using STU relations towards the cap, where it is killed by
the CP relation®. On the thin red strand there are only arrow heads. To construct p, first
“push” the arrow tails (denoted “t") from the capped strand up across the vertex using the
VI relation. Since tails vanish on the thin red strand, they simply slide past the vertex.
Once the capped side is cleared, continue by sliding the arrow heads “f” up from the thin

red string to the strand above the vertex. Now the cap relation kills any arrow heads on
the capped strand, so once again they simpllyl.‘sligl'e| Past, the vertex. The result placed on a
single thick black strand is shown in Figure 11,

It is clear that 1 is well-defined, we leave it to the re

exercise. Given that both maps are well-
other.

ader to check that 5o is ¢ as a short
defined, it is clear that they are inverses of each

]
- Observe that in the image of ¢, all arrow tails are above arrow heads along the strand,
. 7 Arrow diagrams of this form appear in the context o@)ver-then-undep’lﬂ,}t@‘pgles, which have

applications in several contexts, including virtual braid classification :[BDV].

2.5. The homomorphic _expansion. As discussed in iliWI<l()t2:'. Section 5{"3], an expansion
for uTF is a map Z* . ofF — A® with the property that the associated graded map
BrZ¥ : A — Av i the identity map idgsw. A homomorphic expansion is an expansion
yv}}l_ch ka%ystqaip_tg;ty{idles each operation of WIF with its arrow diagrammatic counterpart. In
[WKO2, Theorems 4.9 and 4.11] we proved that the existence of solutions for the Kashiwara—

exsists a homomorphic expansion for wI'F°. In fact that

Vergne equations implies that there
homomorphic expansions? for wTF° are in one-to-one correspondence with solutions to the

Kahiwara-Vergne problem.

The point of this paper is to provide a topological construction for such a homomorphic
expansion (and hence for a solution of the’_\ISashiwara—Vergne conjecture), and this is easier
to do for the slightly more general space uTF.

Let A% C A*¥ denote arrow, diagram: o0 uTE" skeleta, the associated graded space of
wTF°. One of the key results of WKO2;, ection 4.3] is the characterisation of homomorphic
expansions of wTF°. For any (group-like) homomorphic expansion Zow - UlF° — A°% the
value Z°¥(}X) is uniquely determined and equals R = ¢
from the over strand 1 to the under strand 2.

To state the full characterisation, we use co-simplicial notation in subscripts. For example,
for R = "2 =¢ A®(12), Ri3 = ™3 and Ry3 = e in A*(13) are the diagrams where R
is placed on strands 1 and 3, and 2 and 3, respectively. R2)s € A*(1;) is obtained by
doubling the first strand of R and placing it on strands 1 and 2, and placing the second
strand of R on strand 3, that is, Razs = e*3%%3 Similarly for V e A(T2), Via € A(13)

| denotes V' placed on the first two starnds, et cetera.

‘ e S

tonstorz| Fact 2.5. A filtered, group-like map Z° : WTF° — A% s 4 homomorphic expansion if and

T l ? ow . . 3 5
‘‘‘‘‘ only if the Z°-values V = Z°().) and C = Z () satisfy the following equations:

(1) R4 Equation:

“12 where a;, denotes a single arrow

ViaRa2)s = RogRisVia  in A®(13). - <(R£|1) WL og: R4
e Bar-NatanDancso : WKO2 e fact:CaplaWhial;
6This argument also appears in ‘[st rKéé],Uf‘or‘%%a‘fﬁﬂe as the basic idea for the proof- Of. Fact ’2.2.
"Subject to the minor technical condition that the value of the vertex doesn’t contain isolated arrows.
14
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A1Ag(p1(b)) = pi(b). Each arrow has one head, so Ay Ay(p;(t)) = - (t).

Hence, using
commutativity, p;V - AjAg(p, V') = e = 1, which implies that pi(b) = 0. As for py(t)
one can show that there are no arrows pointing from t}
computation in degree 1.

)

1e right to the left strand by a direct
a

thm:main

3. PROOF OF THEOREM 1.1
3.1. Proof of Part (1). We prove P

art 1 in two steps: first verifying the easier “tree level”
case, which nonetheless contains the

main idea, then in general.

3.1.1. Tree level proof of Part (1 ). Let Abee denpte fhe guotient, of A4*" by all wheels, and

let m: A" — Alree denote the quotient map (cf ;[WKOZ, ection 3.2]). Part (1) of the main
theorem is the same as stating that Z" is determined hy. A ,g“”l,”jnot,ugpj,is determined by
the values V' and C of the positive vertex and the cap ’[WKO?, Sactions 4°3 and 4.5], so one
only needs to show that V and C are determined by Z*. Proving this “on the tree level”
means showing only that 7(V) and m(C) are determined by Z". In Jparticular, observe that
since C' is a linear combination of products of wheels (Fact 2.2), we have 7(C) = 1, so we
only need to show that m(V) is determined by Z*,

Let B* denote the “buckle” sKTG » 83 shown on the right (ignore the dotted
linrf\s fog:,‘}}gw)..w All edges are oriented up, and by the drawing conventions

of | WIQOZ, Section 4.6] all the vertices in the bottom half of the picture are B* —

negative and all the ones in the top half are positive. Let B¥ = a(BY) € uﬁ,
and B := Z*(B*)¥ Note that g

can be thought of as a chord diagram on
four strands: use VI relations to

move all chord endings to the “middle” of the skeleton,
between the dotted lines on the picture. Hence, we write 8% € A*(14). Let gv = a(fY),

and note that by the compatibility of Z* and Z* we have BY = Z*(B™). We will perform
a series of operations on B* and m(B") to recover 7(V) from it.
First, connect (a ﬁircuit alge])r\p, operation in wI'F) a positive vertex to the bottom of BY,

7 4 L T BUCERYIOV
as shown in Figure 12, Then unzip the edge marked by u, and puncture the edges marked

e and ¢’. Then attach a cap (once again a circuit algebra operation) to the thick black end
at the bottom. Finally, unzip the capped strand.

-G-8 A

u u U

N

Figure 12. From the “buckle” BY to the (modified) vertex.
fig:PuckleToV
Call the resulting w-foam K, as shown at the right in Figure T‘Z.—WlﬁtﬁZ"’(K )? Dufa to
the homomorphicity of Z, it is obtained from 8% by performing the same series of opera.tlor}s
in the associated graded: a circuit algebra composition with V, unzip, punctures, circuit

algebra composition with C, and disc unzip. Notice that the left strand of that attached
16
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rertex o " Hem:py
vertex got punctured, and hence by Lemma 2.8 the attached value V cancels.? Z¥(K) still

depends on the value C : i
7 by pidenin pmi X lﬁzstl;i;lee level, since ﬂ(f) =1, m(2"(K)) can be computed from
Sebniei D T unzips. Since " = «a(B"), this means that 7(Z¥(K)) is
AOn t}l;e other ha‘lilg,_:]g%t‘g;t‘lg%p_ the space of chord diagrams on the skeleton of I is the space
(T2) by Lemma 24 and VI. Note also that / is a circuit algebra combination of a vertex,
two left-punctured right-capped vertices and an all-red-strings vertex, and the Z*-values of
the latter three are trivial. So 7(Z*(K)) = n(V) € A*(1). Hence, 7(V) is determined by
—— Z" as needed. =

3.1.2. Complete proof of Part (1). In the previous subsection we showed that Z* determines
w(V) € A™¢(1;). The proof of Part (1) is completed by thg following Lemma:
A4

Lemma 3.1. For any homomorphic expansion Z* of . =2"(J)) and C = AC )l ﬂc”)
m(V) € Atee(1y) determines both V and C uniquely.

Proof.  We use a perturbative argument. By contradiction, assume this is not the case,
in particular, first assume that there exist V' # V', both of which are vertex values of Z"-
compatible homomorphic expansions, such that (V) = m(V’). Let v denote the lowest
degree term of V — V. Note that v is primitive and v € ker m,.50 v i8 a homogeneous linear

Quationsk or

combination of wheels. By the Unitarity Equation of Fact 2.5, we have A A (v) = —v.
Recall that A; reverses the direction of the strand i and multiplies each arrow diagram by
(=1) to the number of heads on that strand. Since v has only tails, A; Az(v) = v, so v = —v,

so v = 0, a contradiction. Therefore, w(V') determines V' uniquely.

Now we show that V determines C' uniquely. Assume there are different values C and
C' in As(}) so that (V,C) and (V,C’) are both vertex-cap value pairs of Z*-compatible
homomorphic expansions. Let ¢ denote the lowest degilrggtt:%gr\rlla of O = C',thencis a scalar
multiple of a single wheel. The Cap Equation of Fact 2.5 Tmplies Ciz) = ¢1 + ¢2 in A¥(49).

There is a well-defined linear map w : A%(l2) = Q[z,y] sending an arrow diagram —
which has arrow tails only on each strand — to “z to the power of the number of tails on
strand 1, times y to the power of the number of tails on strand 2”. Assume ¢ = aw,, where
w, denotes the r-wheel, and @ € Q. Then 0 = w(cuz) — a1 — c)=a(lz+y) —z"—y"), so
either r = 1 or a = 0. But w; = 0 in A®¥ by the RI relation, hence o = 0 and thus ¢ =0, a
contradiction. O

3.2. Proof of Part (2). In this section we compute V, the value of the vertex, from D, ggh(?ﬁ‘
Sl L Y 13 i : . dpp:AET
Drinfel’d associator determining Z°, using,the construction,of Part (1), In. Appepdix A we

also show that this result translates to the [AET] formula for Kashiwara-Vergne solutions in
terms of Drinfel’d associators.
In the computation of V from ®, as well as later in the paper, we use two facts about

Drinfel’é associators. We summarise these in the following Lemma:

Lemma 3.2. Let ® = ®(cpo,c03) € A*(13) be a Drinfel’d associator, where c;; denotes a
chord between strands i and j. Then, the following facts hold for a(®) € A (1s):
(1) p,-pjagfb) = 1, whenever i,j € {1,2,3}, i # j, and p; denotes puncture of the i-th
strand.

gAny short arrows would also cancel when the right strand is capped.
17




Cay /S KCA)/JIZ ‘S ||
use /Y)BZ, caaSapy (D))

U

Figure 13. A concatenated associator. l

:Concat | (2) 2p1(a(®)) = 1, where Sy stands for orientation switch of strand 2, and Cos 09 .

- rom. of strands 2 and 3 irewit algebra operation), a:  in Figure |13,
M“%ﬂ/’“hn {@n(ﬂfkm'ﬁfm i “c‘z:zl”“‘w(“a“‘c??:cml algebra operation), as shown in Figure 13
~p Pro.of. To show Property (I15,“recall that @D ® (z, y) Drinfel'd associator, then, +y—the-
b partEntEE, €(0, y) = B(z,0) = 0,
Sy herefore P1p2a(P) = 1, because pip2a(ern) = Pip2(aiz+ag) = 0, thereforerprpradd) < 1.,

€ salme reasoning shows that papaa(P) = 1.

Finally, P1pac(P(cra, c3)) = (a1, aq3), and since [@21,a25] = 0 by the TC relation,
@(0@1,(123) =L lit:Concat Kar—
For Property 2, note that P1(a(®)) = B(ag, —ay, — a31). Thus, strands 2 and BwppeaJ
only tails, and these commute by the TC relation, and Sop1(a(P)) = B(—ayy, a9 — asy).
Furthermore, tails on strand 3 can be pulled to strand 2 through the concatenation, which
identifies ay; with ag,. Therefore, ®(—ay;, ag — a31) = ®(—ay,0) = 1. O

Erm:main
To compute V and prove Part. Q)ﬂfu,Theorem ‘1.’ 1, consider once again the w-tangled foam
K on the right of Figure 12,
On one hand, Z¥(K) can be com

A*¥(12), since the values of the left-
we know V.

On the other hand, we can compute Z*(K), using the compatibility with Z*, as follows. |
Note that B* is the closure - in the sense of (1) = of the parenthesised braid B’ shown in
Figure 14, B = 4(B™). Using the notation p* = Z*(B*), and B* = Z*(B"), and by the
compatibility of Z* with Z*, we have

p* = 2"(B") = o(Z*(B")) = a(B").
How does Z*(K) differ from 8? To obtain K , a vertex and a cap, were aftached to Bv,
two strands were punctured and the cap unzipped, as in Figure 12. " The Z%-value of the
added vertex cancels when its left strand is punctured, however, the value of the cap remains
and is unzipped. Thus, in loose notation, Z¥(K) = u(C) - p*(BY), where p? denotes the two
punctures — we will compute this value explicitly in terms of associators shortly.

To equate the two approaches, we need to expreﬁﬁ_H(QQ p*(B“) as an element of A*(1,),
by applying the sorting isomorphism ¢ of Lemma 2.4. By doing so, we obtain

C1CaViz = p(u(C)p*(BY)). (4) [warpacid

’ . [ 1: A “: i .
Through a careful analysis of the right hand side, this will imply formula (75 stated in
Theorem 1.1. In summary, we want to compute

T w(u(lg')pz(ﬂ'”))-

is a

puted directly from the generators: ZY(K) = 0103V €
punctured vertices are trivial. Hence, if we know Z"(K),

.
.
)
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Digpq 27 (a8, —a209) ~ Ga03)
Figure 14. Computing 8°. Strands are numbered at the top and multiplication is read from
bottom to top; the rightmost column lists the images of the factors under pipza.

To achieve this, we use that % = a(8“), and compute f* in terms of the Drinfel’d
associator ® associated to Z*. By the compatibility of Z* and Zf’a it js eno, gh to compute
b := Z®(BP®). The result can be read from the picture in Figure 17/

pb = ‘I’(_l};m‘1’132332‘1’1—213‘1’(12)34-

Recall that the cosimplicial notation used in the subscripts show which strands the diagrams
c/2 SO

are placed on, for example, <I>('113)24 = & Ycyp + c39,024). Also recall that R = e“~,
R32 = 6023/ 2.
As A" is the tree closure of B, it is given by the same formula interpreted as an element

of A*(14). One then applies « to obtain 8¥ = a(B"). After the vertex and cap attachment,

of Figure 12, strands 1 and 3 are punctured and strands 2 and 4 are capped, and in this
strand numbering, u(C) = Ca4 Therefore, we have

T=¢p (024 'P1P3a(‘1’(_1§)24@132R32‘Pf2%q’(12)34)) s

Next, we analyse how the puctures and a act on factors of B°. First observe that
psa(Rs2) = ¢23/2 where a;; is a single arrow pointing fro‘ilji,n‘ ﬁt;@ng(% to gxtr@‘nd]”

Observe that pip;a(®r) = pipsc(Piys) = 1 by Fact (1) of Lemiia 3.2. iy

Since strands 1 and 3 are both punctured, no arrows can be supported between these two

strands, hence pip3a(Paz)s4) = ®(ags, au3).
Z/f A basic property of associators is that ®(z,y) = ®(z, —z — z) whenever (z+y+2)is
c

entral. Using this property we deduce <I>(‘1§)24 = &1 (c(1z)2, 1) = D7 (cazy2, —Cz)e —C(13)4),

s0 Plpaaq’(_lém = &Y (ag(13), —02013) — @4(13)). To summarise,
T=¢(Cou- 1 (ag(13), —2013) — A4(13)) * /% . &(as, ass)) -

Note that the expression ®~!(as(13), —a2(13) — G4(13)) .€%23/2. ®(ay3, ay3) has only arrow tails
on strands 2 and 4, and therefore commutes with Cy4 by the T'C' relation. Hence, by the

definition of ¢,
T = ¢ (2 (azqs), —a2013) — G4(13)) - e*2/2 . ®(ag3, a43) - Caa)
= ¢ (D7 (azq13), —@2013) — A4(13)) - /2 . B(ags, as3)) - (Cas).-
19
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is technical, and not used anywhere else in the p

) 8\//@‘1]/ V| Cd/vyr/ug +>

Figure 15. Strand numbering convention for K and V: arrow endings from strand 1 and 2
of K are “pushed” to strand 1 of V when applying ¢,

and arrow endings from strands 3 and
4 are pushed to strand 2.

. y s it Lig: lumberingX
Furthermore, by the strand numbering convention shown in Figure h5, we have p(Cyy) = Cis.

Viz = GGy = C7' G5y (€7 (agqus),

g [tho smadn
stated in part (2) of Theorem 1.1~
Matching this result to the Alekseev—Enriquez

—A5(13) — G4(13)) - €*5/% . B(ay, a43)) Cha,

it .f.,-m_m::r—,—“-.—v‘:,]— 3e ] e
~Torossian formula of [E&ETTT}@Tré""; -
aper, hence we defer this to Appendix A.

3.3. Proof of part (3):, the double tree constru
Z* of sKTG, in Section 3.1.2 We showed that if there is to exist a homomorphic expansion
Z" of uTF compatible with Z*, then V = Zz%().) and C = Z¥( 1), and hence Z* itself,
are uniquely determined by Z*. From here on we denote these unique values — which arose

from the “buckle” construction — by Vs and Cj, and the candidate homomorphic expansion
determined by them zg. ‘

ction. Given a homomorphic expansion

It remains to prove that Zjg is indeed a homomor
we need to show that Vz and Cj satisfy the equ
Unfortunatelyj(,d!(i)ﬂiing this directly seems difficult.

Note that (R4), which is in some sense the “main equation”, is an equality between different
circuit algebra — in fact, planar algebra — compositions of crossings. Hence, the proof would be
much easier if Z* were to be a circuit algebra — or planar algebra — map. This unfortunately
makes no sense, as sKTG is not a circuit or planar algebra but a different, more complicated
algebraic structure. The reader might ask, why work with a space as inconvenient as sKTG
instead of, say, a planar algebra of trivalent tangles? The answer is that the existence of a

phic exggggogﬂgiu’ﬂ\?‘ *,in other words, T
ations (R4), (U); and (C) of Fact 25— —

homomorphic expansion is a highly non-trivial property, and in particular ordinary trivalent
tangles do not have one. Even without trivalent vertices, ordinary tangles, or u-tangles,
do not have have, a,homomorphic expansion as a planar algebra'®. Parenthesized tangles
(o a-fangles) (L4 BNA] S0chaye HomomQrpl expamsions, veh i faot these are almost
equivalent to sK7G [T, BNDI, Da].

10we only mention that the planar algebra of u-tangles does not have a homomorphic expansion Z! so
as to explain why we are not using one. This said, the non-existance of Z* is easy to prove: by an explicit
calculation in degree 2 one shows that there is no linear combination of chord diagrams that can serve as
Z*(X), which satisfies the R3 relation.
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Figure 17. The cap attachment, unzips and punctures. While these operations are applied

in A™ — there are arrows on these skeleta — for simplicity the figure only shows the effect on
the skeleton.

Here T" stands for an arbitrary tangle in «I'T". The double tree map sends 7" into sKTG, and

by applying Z* one obtains a value in AY, namely a chord diagram on the skeleton of @ (7).
We denote the space of chord diagrams on this skeleton by A*(®(T)). Now o maps this

to arrow diagrams on the skeleton of @(T), that is, to A*(®(T)). In order to revert the

skeleton back to that of T, we auppﬁiyi Some operations in A®”: a cap attachment x, unzips
and punctures (as shown in Figure I1° )

7"and explained below), resulting in a slightly modified

version of the desired skeleton, de 1‘9‘59(&;@: lAlE;ig};ablly, we use that A%(T) = Asw(T ) via the

sorting isomorphism ¢ of Lemma A4, and hence we obtain a value in A*"(T), as needed,

which, we will later see, is almost Z “(a(T)). (Although the punctured strands connect in a
single binary tree, VI relations can be used as part of the sorting isomorphism.)

T;l\lglc_gp”attachment, unzip and puncture operations are done in the order shown in Fig-

ure 17. First attach a cap - a capped strand with no arrows on it — to the end of the right

vertical strand in o(®(T)): this is a circuit algebra operation in A**. If T has n ends,
perform (n — 1) consecutive disc unzips on the capped strand, as shown in Figure T7. Then
puncture the left, ]l}uqlg)g‘_ltree, for example by puncturing the left vertical strands marked “1,
2,;: (inml;’lilgggg).}'?(thése punctures also affect the connecting diagonal strands, as in Fig-
ure 5). Note that since the punctured tree had originally crossed over the capped tree, these
crossings become virtual after puncturing, hence the last equality in Figure e

Denote the composition of the maps and operations shown in Equation 5

)by &, that is,

=popouokoaoZto®. ! %TT\_?A(’”‘/ (6)
Then, £(T') € A**(T). We first show that ¢ (T) is well-defined, that is, it doesn’t depend on
the choice of binary trees in ®(T")

Lemma 3.3. The choice of binary trees in the double tree construction does not affect £(T).

Proof. Any binary tree can be changed into any other binary tree via \Y Y
a sequence of “I to H” moves, as shown on the right. Hence, it is enough

to analyze how an I to H move on one of the trees affects the value of Z*(®(T)), and prove
that the difference vanishes after the caping, unzip, and puncture operations.

Suppose 7; and 7, are two binary trees which differ by a single I to H S u?
move, and let ®., and ®,, denote the two resulting double-tree maps, as- {
suming the “other side tree” is unchanged. The I to H move can be realised

by inserting'! an associator, followed by unzipping the edge marked ‘1’ on

T 11 o HatvanDancso dWKO? : . o5 st

Ugee (W I(Oé:’ Section YI'IG] rf(;r a detailed description of the tangle insertion operation in sK7TG.
22
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Figure 22. Computing Z%(T) and Z“(T).

Proof.  Assume there exists a homomorphic expansion Z* compatible with Z*. We use,
as in Figure 21, ’th‘é'hvo"xhbmorphicity of Z* and its compatibili“ty;wilth_Z}‘ to show that
£(T) = Z*(T), where T is as in Equation. 5 and shown in Figure 22 on the left.

If the diagram in Figure 21 commutes, then for any T € «I'T and any Z “_compatible
Z¥, we have o(Z¥(T)) = &(T). Since 2% is a circuit algebra homomorphism, Z “(T) can

be obtained from Z*(T) by attaching the Z¥_value of a left-punctured right-capped vertex

fig:ZTCheck lem:pY
at each tangle end, as illustrated in Figure 22° By Temma ! 8 ‘we have VA (/(\) =1, so
the only additions are C values at each capped end, as shown in Figure ‘2‘2;‘_;'Tlhi‘§,l('fan then
be interpreted as a value in A®*¥(T) via the isomorphism ¢ of Lemma 2.4. This implies the

statement of the Lemma. it i1 BigCompat
[t remains to show that the diagram in Figure 21 commutes. The square (1) is the assumed

the compatibility of Z* and Z*. In square (2), recall the map & denotes the circuit algebra
operation of attaching a cap at the bottom right end of the w-foam. The map C denotes the
circuit algebra operation which attaches a value C' = Z(}) at the end of the strand. Thus,
the commutativity of square (2) is implied by the homomorphicity of Z* with respect to
circuit algebra composition (as a binary operation). The square (3) is commutative due to
the homomorphicity of Z* with respect to punctures and disc unzips.
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The commutativity of the heptagon (4) would be true by defi-
nition, if not for the map C' (multiplication by the cap value). We
show that, in fact, the value C cancels after plmctures, by a prop-
erty of arrow diag]raugg‘_in”t,l‘lne‘ image of qv,‘.:ﬁgllcd tail-inva.rmr'zce,
shown in Figure 18 (see [WI(O2T;'R,cmark 3.14 and early in Sec-
tion 3.3). In the current situation tail invariance means that the
value C, which has only arrow tails, can be moved from one tangle ,
end to the other, as shown on the right. Consequently, C' cancels when the left strand is
punctured. O

In ima

dtibal

wions | Remark 3.6. In Lemma 85 we assime by convention that all tangle ends of T are oriented
" upwards (towards T'). If k tangle ends are oriented down, the corrcsponcimg cap values
appear with their orientations switched: Z"(aT) = ¢&(T) - (C"l)""‘(S(C)”‘) "

Corollary 3.7. If there ezists a homomorphic expansion 2 Jor WI'F compatible with Z*,

then (V) = m(§(X)), where V is the Z"-value of the vertez, and 7 is the tree projection.
This uniquely determines Zv.

Proof.  The first statement is an immediate consequence of Lemma 3.5, The second ‘was
+ Aoni# shown in Section 3.1.2. ) O

wnders? ‘,J"‘d Thus, the map & uniquely determines Z, assuming that Z* exists: from here on we denote
hns Zé this candidate homomorphic expansion by Z¢. We have shown how to explicitly compute
)

U,\ A;F#"‘/ ?.;L/W(V ) from Z° through £. What remains to be proven r1)s LEI;](.?J!'IJ)V‘M Bt

¥ [ot$ Z-VU (1) Zg' is compatible with Z*: see Proposition éirlr‘()‘below. T
i 3 (2) The restriction of Z¢ to a(dI'T) is a planar algebra map (see Theorem 3.13 below),
4 and thus Zg satisfies the (R4) equation.

(3) Zp satisfies the (Ua'ténd (C);équatigyis,7h(ggg§x]itlj§,'a homomorphic expansion of WTF
compatible with Z*: see Theorem 3.18 belgw >
(4) The expansion Z is the same as Z¥ obtained from the “buckle” construction of
—> Section 3.1.1: V = J=
below.
(5) Thus, there exists a unique

tams /e

with Z*, see Proposition 3.18 below. —— . )
2 R4 eq.lU
While the construction of Z¢ enables us to prove the (R4) and (US“equ:at‘i‘ons, Zg is

computationally simpler, and thus we use step (4) and Cj to prove that the (CS‘Equation is
— - satisfied.

momorphic expansion Z% = Z¢ = ZY¥, compatible

3.3.2. Z¢ is a homomorphic ezpansion. The goal for this subsection is to complete the sketch

above. We begin by showing that Z¢ is compatible with Z*, This requires a technical lemma,
in which we compute the £-value of a vertical strand:

cisirznd Lemma 3.8. For g single un-knotted strand, £(~) = a(v'?), where v € A*(~) denotes
the Kontsevich integral of the un-knot'®,
{ig:dtgtrand
Proof. We apply ® to ~, as shown in Figure bé‘, and éopn‘upte Z";fl(ﬁ?(Q)_)l]g§§‘fgpg“t11g‘..ﬁluite

generation property of sKTG and the homomorphicity of Z In [WKO2. Section 5.2] we

RRE e 2 . Bar=NatanGarouf 1 LdlBaRedan sk it b aw Aptill dedaii o s
13The value of v was conjectured in [BGRT] and proven in [BLT]. Note that v involves wheels only.
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Flfure 23. The double tree map composed with Z*, applied to a single strand. To compute
ZH®@(~)), we write ®(~) as a composition of generators; this requires first expressing it
as a bottom-top tangle. See [WKO2, Proposition 4.13] for details.

gave an algorithm for writing any sK7G as an slqg-pplpl)qgitir)tl, of generators (the primary
operation in sKTG is tangle insertion, see [WKO2, Figure 22]) Feeding #(~) into this
algorithm, one needs to “curve up” one strand as in Figure E23', “in this case the strand on
the right (the choice of strand doesn’t affect the outcome).

The chord diagram Z*(%(~)),is shown in Figure 23, 'e;‘éﬁr'ééséd in terms of the generators
of sKTG described in [WKO2, Proposition 4.13]: the value ® of the associator graph, which
is a Drinfel’d associator; the value R = e%/? of the twist graph, where ¢ is a single chord; and
the values n and b of the noose and balloon graphs, respectively.

.. In & (), 2" is._f(qllowed by o, a cap attachment, unzips and punctures. As explained in
[WKO?2, Section 4.6], there is possibly a one-parameter freedom in the values of n and b,
but we know that and a(b) = e*/?a(v)"/?, and a(n) = e~*2a(v)"/2. The exponential part
of n cancels by the CP relation once the cap is attached. The wheels part a(v)Y? can be
moved to the bottom left, end by.the tail invariance property (as in the last paragraph of
the proof of Lemma 3.5); where 1t cancels after punctures. For the associator S3(®~') at the
bottom in Figure 23, ‘there is an orientation switch. 53 applied as the third strand is oriented
downwards. In fact, S3(®~!) cancels by Fact (2) of Lemma 3.2

aking these cancellations into account, the value pukaZ*®(~) € A®" is shown in Figure

2%a 1d-explained below. Recall that o maps a chord to the sum of its two possible orien-

tations. However, when one supportin strand is punctured, only one of these orientations
g ’&w.{.dua rand

survive. Hence, for example, pa(a(HRa3)) = (e%s2/?). Figure 24 shows a schematic picture
of pukaZ*®(rv) with exponentials and associators indicated by single arrows. Recall that
® € A" (13) can be written as a power series in any two of the three generators of A" (13):
¢12, co3 and cj3. For example, ®(c12, C23) = P(c12, —C12 — cp3). For each associator we chose
the presentation in which pura(®P) is of the simplest form.

fgidbstrand, o :
(1) The top associator of Figure Q’i: ‘aﬂftg aﬁglx;/ng a VI relation, is written as (I>f31(24) in

RRRERAS) il
the strand numbering of Figure 04, We write this in terms of ¢;3 and ¢1(24y = €12+ €14,

since after the puctures pja(ci3) = as; and p1p20(Ci(24)) = aa1, thus

-1 — H~1
p1p20P (013, —C13 — 01(24)) = (631, —a31 — G41)-
T . J [f bz atatrand?
This is reflected in Figure 24 in drawing only the as and, aa, 3ITOWS. In turn,
X i Jd s il LOm T 1 AL
the associator cancels, essentially by Fact (2) of Lemma 3.2 strand 5 acts as a

Z Thik s for a. it
/(léjo;/).

gl.ansn
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J \(/;\ O .................. d () 324 (2)

i J S (e®2/?) from a(R)  (3)
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1|/2 4

Figure 24. The value of pukaZ®®@(~): the numbering (1) through (6) refer to the para-
graphs where each component is explained.

concatenation of strands 3 and 4, as the tail of a4 can be “pulled over the top along

strand 5” using the VI relations and the fact that e/ 2a(v) is a local arrow diagram

on a single strand, hence it is central. Thus, fr@, and ®~(as;, —as; — aq1) = Z

<I>_1(a31,@131) =1 as the arguments commute. Therefore <3
N

~ -1 ;
Thn SCQfl/Wl/( plpga(<1>13(24)) =18

(2) Second from top we have

P1p20(P324) = P1pace(®(cas, €24)) = P(asz, agn) = 1,
. : s Lo el
by the same modified version of: —(concatenation). NS

(3) For the exponential,

p1p20(Ra3) = prpacu(e®®/?) = ¢%2/2,
(4) Next,

plp2a(q)2_3142 = p1p2a(q)—1g0235, —C33 — C4)) = P(azy, —a3g —ag) =1
emmas Aiolc £ ¢ :
by the modified Fact2, noting that the arrow tails also commute with the arrow tails
of the exponential. ‘
priwerinctures
(5) By-Fact(1) Lciam< 2 2 (1]

P1P20(®)1230) = 1.

(6) Finally, move the top exponential e%/? to strands 3 and 2, using the VI relation at
both vertices. The tail of each arrow moves freely from strand 5 to strand 3. The
heads commute with a(v), they are killed on strand 4 due to the CP relation, so they
slide onto strand 2 but acquire a negative sign due to opposite orientations. Hence,
(e%55/2) = (¢=22/2), and this cancels a(R). In summary, {(~) = a(v?), as claimed.

O
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Figure 25. For K € sKTG, ®(K) is K inserted into ®(1).

i xiofatral

: llem: trand | , .

As an aside, Lemma 3.8 enables a quick computation of the even part of C=ef=ZP(4).
Recall that c is a linear combination of wheels: ¢ = Y ey YnWn. Let ¢ = co + 1y where ¢
denotes the even part of ¢ (sum of all even wheels), and ¢, 1(%9;_19{@95 the odd part,-thatisy

>  e=—cyter Let Cp = e, the even part of C. Corollary 3} hows in particular that the even
part of the C is independent of the choice of Z° (that is] ii’eE hoice of Drinfel’d associator)

and Z*.
“.-vain-| Corollary 3.9. If C = Z¢(4), and C, is the even part of C, then Co=a
" of the choice of expansion Z* used to construct Z¢'.

Docs

(V1/*), regardless

Tams Campat1bilityem:C vt ont.a 4 Q/ 4

IIN\ Proof. By Lemma b&5a('ndDPne‘nkr151uk§:(%,w’e; have Zéa’ Q/: C-16(X)S(C): see the fig- m W/ﬂ,i—)

(onfsc4  \ure on the right for the orientations. Note that S(wak) = wax and S(waks1) = —Wak+1s | N L gonctuadh
(1) = 1. Thus, by Lemma 3.8, ] M

Letv" o and hence S(C) = e®~ . Also, by homomorphicity, Z¢
1 = ew+ag(py/?)e® ™, and therefore a(v}?) = e, which gives Co = €% = @

(v'/%). O

o Z ‘V’?
Next we prove that Z¢’ is indeed compatible with Z*: ‘
77 Proposition 3.10. For any K € sKIG, Z¢(a(K)) = a(Z*(K)).

Proof.  Note that sKTG C I’ T, and for K Epst{G,r@(K ) can be obtained by inserting 7}

K into the top strand of @?@: Yee Figure 25, Since Z* s compatible with insertions, "_’/\)/
Z¥(®(K)) can be obtained by Z*(K) inserted into Z*(® ()Y, Through the sequence of a, . 1.’!2:9;;;.(,5,“/
capping, puncturing, ¢ and multiplications by C~1, all of Z*(®(1)) cancels, as in Lemma38.
Note that the cancellations still go through despite the fact that a(Z"(K )) is inserted on
the top strand: this follows from the fact that a(Z%(K)) is in the a-image of A*, and the
appropriate “commutativity” property holds in A*. Hence, Z¢(K) = Z¢(K) as required. O

it is a planar algebra homomorphism on a(uI'T). This is tech-

nically challenging, but it implies the R4 equation immediately. For the proof, it will be

necessary to know the behaviour of Z* with respect to edge deletions. When an edge e of a

knotted trivalent graph K € sKTG is deleted, the two vertices at each end of e cease to be

vertices. The associated graded operation on chord diagrams deletes skeleton edge e, and

chord diagrams with any chord endings on e are set equal to 0.

Dolete Fact 3.11. Z* commutes with edge deletions up to, .6 pos sible 6)correction term of e
depending on the position of the edge, as in Figure26. ~

wCan: Wi2

Bayv-Nata a

Yav-latanl)
Proof sketch. In [WKOQ,!Secti'on' 4.6.1] Z* is, ﬂggg%qgfﬁ%d from an invariant Z° by adding
vertex normalizations, as shown in Figure 96°“Note that the top two diagrams in figure
29

Now, we show that Z¢’

ic/4yl/2

2



atanDancso: WK

Bar =N 02
Figure 26. In [WKO?2, Section 4.6.1] Z" is constructed from an invariant Z°/4 by applying
vertex normalizations, which depqggpg,_\yeﬁrtex Ws(i»ggs: these are shown along the top horizontal

anbancya : WKU

arrow of each diagram (see also [WKG2ii"'Fig‘LJT'é”29']')T"I'Ht follows Z% is only homomorphic up
to a correction term when deleting the top edge of a positive vertex (first in the total ordering

around the vertex) or the bottom edge of a negative vertex: see the top two diagrams.

In

other edge deletions the normalizations cancel, and hence Z* is homomorphic with respect

to these edge deletions, as for example in the bottom two diagrams.

rn

differ from [\VI%OZ%%‘ IE&m‘?Qﬁn a single edge orientation switch, which switches the vertex

sign and accordingly the normalization'?. In fact, Z¢ commutes with edge deletions [Da, —
Proposition 6.7], so the edge deletion error (and hence, the correction term) for Z* arises

hefors

from the vertex normalisations implemented, as shown in Figure 26, — —

Remark 3.12. There is also an “edge delete” operation of wTF: this is not require

finite presentation of wI'F or A®*“, but it is necessary for the proof of Theorem 3.13
deleting an edge in WTF — which can be either a tube or a string — the vertices at either
end' cease being vertices. The associated graded operation d, : A — A deletes the
skeleton edge e and sends any arrow diagram with arrow endings on the deleted strand to
zero. The crucial fact we need is that edge delete operations for chord and arrow diagrams

4The point of the normalization is to make Z* commute with unzips. The reader might wonder, why nor-
malize so that the expansion respects unzips, rather than deletions? The answer is that for finite generation

of knotted trivalent graphs, unzips are crucial but deletions are not.
151t is also possible to delete a capped edge.
30
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Figure 27. Basic planar algebra operations: disjoint union and contraction. |fig:ATes

Tl T2
1 T2 I3 Ta s I I7
T
I a8

are compatible via the map a, which is immediate from the definitions:

_Au. o Asw
de de
Au @ Asw
e S o)
~iiap. Theorem 3.13. The restriction of Z¢ to a(ul'T) is a planar algebra map.
e a1 () LF _ _

Proof. fiar algebra operations can be written as compositions of two simpler, basic
and 75,

operationsY disjoint uni

the ends of T, LI T are ordered by declaring that the ord
by the ordered ends of T>. The contraction operation ¢;
i + 1 ends: it acts by joining the i-th and

resulting in a tangle with twod@sﬁd?%

Thus, we only need to show that Zy commutes with
29(T UTy) = 28(T) L Z2(T), and Z8(&(T)) = e(ZE (D))

of these equalities make sense: arrow.
values, also form a planar algebra, an
arrow diagrams is well defined.

Disjoint unions. We need to compute £(Ty U T3), where Th, T3
g}{e,?28'f"" The binary trees in ® can be chosen arbitrarily by

®(Ty U T3) is shown, in, Figure

ons and contractions. In the disjoint union of two tangles 11
ered ends of 7} come first, followed

applies to any tangle with at least
(i +1)-st ends of T" and re-numbering .the rest,
% 3 . J;~7=/ TATCEILICIACRL

=T

these two operations, that is,
Note that the right sides

diagrams on the skeleta of a(uI'T), where Zg’ takes

d in particular disjoint union and concatenation of

€ «I'T. The value

# s the most convenient trees for this proof.

Lemma 3.37 Figure 28 shows
Observe that @(77 U T3

a simpler sKTG, denoted H, as shown in the same figure (

) can be obtained as an sKTG by inserting ®(T;) and ®(T3) into
up to orientation switches which

don’t impact what follows and will be ignored). Hence, Z%(®(Ty UTy)) is given by inserting

Z4(®(T})) and Z4(®(T;)) into Z*(H).

One could compute Z*(H) explicitly using the same algorithm as before, but we can
avoid this work, as follows. All chords in Z*(H) can be assumed to be located in the
rectangle shown in Figure bB"(ﬁé’i’ﬁg‘VI relations, if necessary). During the computation of

¢ both supporting strands are punctured, and therefore (%21%(“2; H))
§(TyUTy) = €(T1)UE(T?), and it follows via Lemma 3.5 that Z ]

= 1. This implies that

(TiUTy) = Z2 (T)UZE(Th).

Contrjaﬁg@t%g{:llsic? eIzg;r?ving that Z¢ commutes with contractions is more involved. By
Lemma 3.4,"wé can assume that the ends contracted are the last (rightmost) two ends
of the n ends of 7. Hence we will drop the subscript from ¢; and denote this operation

simply by c.
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T insert  insert
2 ®(T1) *(T2)

o

/ /
//

H Z"(H)
Figure 28. The double tree map applied to a disjoint union of «I'T-s is the same as inserting

the double tree of each individual ¥I'T into the sKTG H. In Z"(H) all chords can be pushed
into the rectangle shown, using VI relations when necessary.

UT —— sKTG —Z s pv @, pow & | pow W7 pow P

—_—

(-c_%ué)od3 (-e_%a(u&))ods (-e-‘Zl’a(IJ%))Od3 ('e_’ja(l’%)”d3
c (1) d3 (2) (3) (4) (5) (6)

UT ——KIG L pr & | pou &, gow_ " o "7

diagram continues. .. A P Asw L4 Asw @ "TDSC oy
(e~ Fa(d))od® (-a(v™))oc

(7) (3) c

Asw L4 Asw ) Asw

Figure 29. Summary of the proof that Zg' commutes with contractions: Z¥

is the compo-
sition along the entire top and entire bottom horizontal edge of the diagram.

We need to show that 2¢(cT) = cZ¢(T), for any T € oI'T. Since Zg is given by the
composition of many maps, 38(this can be restated .2s the commutativity of the perimeter
of a large diagram (shown in Figure 29}, which in turn can be broken down to its smaller

parts. Throughout this proof, let 7' € «I'T denote an arbitrary trivalent tangle.

Square (1). This square plays out in «I'T and sKTG, and commutes | BT
by inspection, as shown on the right. The three strands to be deleted
are indicated by broken lines. Therefore, d*®(T) = ®@c(T).

Square (2). Square (2) is shown schematically below on the left: for

o e N

1
the Z“-values skeleta are indicated but chords are not shown. To prove lc )
that square (2) commutes, we use.the propgggi;ezsuﬁ)&fl@ with respect to
deleting edges in sKTG, as stated in Fact 3.11 and Figure 26. i Bl o R A
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=2
LAY

and (6). Strands to be deleted are drawn in dashed lines
paragraph on square (5)

Figure 30. The squares (4) (5)
throughout. The x denotes a cap of interest: see the proof

the three edge deletions requires a correction term:
this is the edge marked with * in the diagram on the left. This
edge ends in a e~*/1v/!/? inserted at the place of the vertex, where
¢ stands for a single chord. In square (2), this correction term
appears at the bottom right corner of the square, where the two
ends ofi{T are contracted (_sgae in the diagram showing skeleta in

Only one of

) 1

1 L6 COLLRAN e
Y* Figure Qé)—gf)f;lbsilur;ﬁ;léry“("dsZ“w(T)) (e"ivE) = Z*xc(T).
Square (3). Square (3) isi(qﬁ§§5}§j?2};}x,ﬁthe commutativity of edge
deletions stated in Remark 3.12, combined with applying a to the
correction term. So we have:
(Baz @ (T)) - (e~3a(v?)) = aZ*®c(T).
(4), (5), and (6) are shown in detail in Figure 30. Square (4) plays

£ ‘1&& Square (4). Squares
out in A and it is commutative as the Jeletions and the cap attachments (denoted by K)
5 affect different strands: ‘ i ight. Therefore,
a 1
(d%aZ”@?(T)) (e7za(v?)) = rkaZ @c(T).
Square (5). The only difference between doun! a{lgi,.,u;‘gﬁ od? is what happens to arrows
ked by * in Figure 30. Following the diagram right and

on the caped skeleton edge mar
— 1 times, then the last two of its daughter edges are deleted.

own and right, the same edge is unzipped n — 3
the same by definition of the unzip and delete

down, this edge is unzipped n
On the other hand, following the diagram d
times. The results of these compositions are
operations. Thus, we have

(Pu" ka2 ®(T)) - ("5 a(v?)) = u"3kaZ ®c(T).

Square (6).The deletions and punctures occur on different strands, as shown in Figure %(l))f =

hence these operations commute commute. One detail to note is that when a tube strand is
deleted at a “tube-and-string” vertex, all thz%t is loft is a string (as in the case of puncturing

the tube at a tube-string vertex, see Figure )‘}Irnsummary
(d3p"“2u"_1f:aZ"¢?(T)) A (6_%01(11%)) P pn~2un—3nazu@C(T).
33



Figure 31. Computing the top left corner of Square 7, Step 1: ®(T') can be expressed as
the sKTG denoted S inserted into the sKTG denoted A, followed by unzips, as shown. Z*
respects insertions, hence computing Z"(A) determines the value of Z*(#(T)) outside of S.

Figure 32. Computing the top left corner of S
sKIG A can be obtained by inserting the buck.

quare 7, Step 2: computing Z*(A). The
le sKIG twice into a simpler sK1G, and

unzipping, as shown on the left. The value of the buckle w.

this value—denoted $“—and the algorithm in [WKOZ:
The result is denoted D and shown on the right.

cKle was computed in Figure 14~ Using

al.CS0:;

. Section 5.2]; one computes Z*(A).

Pentagon (7). The pentagon (7) is shown on P
the left. This is the most delicate part of the &)
proof. We first show that — for the specific input Z
of p"*u"'kaZ*®(T) — the pentagon (7) com-

Q
mutes up to a single possible.error on the con- A
tracted (u-shaped) strand, and later prove that ﬂ/af{c

this error f@itbcessarily-£&5. 7 -

To begin, a better understanding of the arrow
diagram p"~*u""'kaZ"®(T) in the top left corner
is necessary. All of the operations performed on

T, with the exception of Z*, are “easy” in the sense that we have a complete understanding
of their effect. Z* is “hard”, but we can compute the relevant part of its value using the

T 1

31 and 32 and their captions.

ite generation of sKT(G ([WKOZ2, Proposition 4.13]). The computation is shown in Figures

In summary, Z*(®(T)) is given by inserting Z“(A) into the chord diagram D of Figure 32-—

Now we need to analyze what happens when one applies «, the cap attachment, unzip§ artd‘ g
punctures to this value: this is an exercise similar to what has been done for Lemma 3.8 for
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Figure 33. The more detailed picture of the Pentagon 7.

exampte. The result.is shown in Figure 3

iLipioguares -OmnZ X 1b
in D of Figure 32 cancels after punctures b m?@&;‘%@%l{%‘}‘ﬁq
the last pg;agﬁrﬁg}% of the proof of Lemma 3.5; so does fl@b

Lemma 32. These components are not shown in Figure 33. ot
Working downwards from the top left of the pentagon in Figure E'B%ﬁﬂHRFéng deletions

cancel both buckle (%) values. The value b value at the top of the diagram D is pulled
down across the vertex using a VI relation: this has the same effect as an unzip and an
orientation switch on the second stand (as this is oriented downwards). The resulting value
Sau(b) cancels by the following reasoning - 9?%%‘}?@&@} definition of unzips and orientations
switches — which is illustrated in Figure 34:

Given an arrow ‘a’ ending on strand ‘e’, unzipping e produces a sum of two arrows a; + as:
one ending on each daughter strand. Reversing the orientation of the first daughter strand
gives —a; + ap. Contracting the two daughter strands to form a U-shape identifies a; and

a», making a; — a, vanish.

@—1
9%%%%%é731:
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riance property (Figure 18),asin =
in D , by Fact (2) of

fig:Square?Big .
3, and explained below. First note that the n yalue,
I variance




T T 14

S l ] ‘ e, O N T | B{‘;i]* 5

Figure 35. The cancellation of o(pu(BY)).

Thjs;§s;g>§§%gl%,yghgt happens to the arrow diagram Szau(b) (just under the tangle T in

Figure 33) after the edge deletions or contraction, hence this component cancels it in both
directions of the pentagon (7).

lem:CapString
The bottom arrow on the left i i i DA
On thg,gtélggr_ Pl’g‘&u‘_;glhwogldng from the top left corner of th

v : € pentagon (7) to the right: from
Section 3.2, Using the strand numbering convention of Fj 15, We have —

gure 15, we have
mp3fY = ‘Irl(az(ls), —ap(13) — ay(13)) - €°23/2 . D(a23, a43).
fig:Souare7Bic

This is shown in the enlarged rectangle at the top right corner of Figure 337"The same is

true for pu(8®) at the bottom, except with more unzips. b e
From here, the first downward arrow applies the Sorting Isomorphism ¢ of Lemma, Bs i

followed by the contraction and correction term along the second downward arrow. At the

bottom Of,:’t}ig }giig;g{%glm(g(pu(ﬂw)) cancels altogether after contraction, in a similar fashion

to Figure 34."Namely, ¢ and the contraction annihilates any arrow endine on the diagonal

red strand, or the double capped strand on the right, as shown in Figm]ﬁdiagonal%
red strand. This cancels each factor of pu(f®).

Of the top ¢(p(8*)) shown in the enlarged rectangle, the ®-! component cancels by
the same contraction argument; only the exponential and the ® component remains. The
arrow in the exponent of €*/? switches sign due to tllel ggyggggv,ggigntation: this is the e—9/2
component at the bottom of the pentagon in Figure BB’?’?’&'&E?’EGE’t’ractionf the ® component
gives rise to a “local” arrow diagram on a single strand shown in Figure 36 and denoted L.

In summary, we see that the pentagon (7) commutes if and only if ;1 — a(v), and otherwise
commutes up to a localised error on the contracted strand, of value a(v)~14.
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®(a12, ans)

Figure 36. The ® component of p(p(3")) after contraction.

o-(n-1 50~

ey e s Square (8). Finally, for square (8) we need to check that

C-18(C~1) = a(v~Y/?). Note that the orientation switch negafflés

odd wheels and preserves even wheels, therefore in 018 (01/2;
=

i b ® jc the odd part prfll(l(’,'l cancels, and C~18(C7') = C5* =al

oy TCanya

by Corollary 3.9. This verifies Square (8).

) . g
We have therefore shown that Z* commutes with contraction up to an error a(v)™ p on
the contracted strand. It remains to show that this error is 1. This follows from the facts

that Z¥(1) = 1, and that Z* commutes with disjoint unions:

1= c(Z*(1) = a(v) " uZ¥(c(T) = aw)p- Z%(~) = av) " p-
O

This completes the proof.

Note that as a side result we have proven the following curious fact about associators:

ociator, p defined from @ as in Figure 96

Proposition 3.14. For any o horizonzfal chord ass
(]

and v the Kontsevich integral of the unknot, ji = a(v). 1n 4.

The value V = Z¢( J.) differs, on first glance, from the value ‘@Zonstructed in Section 3. 32-.4;( //7‘,,-
In the next lemma we show that in fact Vii-;—;m . this serves both as a reality check, and as 4 ‘7‘4‘(//')/ 7
a technical tool for showing — in Theorem 3.18 — that "Zg""“satisﬁes the Cap equation. .

c:Pax

~ . Tonc Lemma 3.15. The two vertez values from the buckle and the double tree constructions co-
incide: Vg =V.
Proof. Notice that ®@(L) — as in Figure %7‘ ca 3ﬁtained from simpler sKTGs, by . . . _ .
inserting the buckle B* into @(~) followed by an unzip. We computed £(~) in Lemma B
Since Z* is compatible with insertions [qgglunz1y§,)Zﬁ(4\) can be computed by inserting the
buckle value * (computed in Section 8.2) into Z*(®(X)).
To compute ¢(A) we then apply o and the cap, unzip and puncture operations. Because
B* = a(B") is local (is confined to the skeleton of the inserted B* graph) and is in the image
of a, all other arrow endongs commute with it by the head- and tail-invariance properties of
A (Figure 18). Therefore, all of the cancellations in the computation of () still occur,
and £(\) is as shown in Figure 37-Writing this in A°®(15) we obtain @(p1ps(8Y))u(a(v*/?)).
To obtain V = Z¢(/J.), one multiplies.£( ) at each end by C~! or S(C™') depending on

3D+

Ky

orientation, as shown in Figure 37 on the right. Thus,

V = Cr'Cy to(pipsBY)ulan?)u(S(C7).
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B*in @) R(A)
Figure 37. On the left we show how to obtain ®(A) via an unzip from B" insterted into
®(~). From this we compute (X)), and finally V on the right.

: . gubsec: AETFormula
On the other hand, from Section 3.2, we have:

VP = CrCy o(pipsB)u(C).
Thus, we need to show that:
103 "o (1psf®Yu(e2)u(S(C) = C71C5 o (pipsf)u(C),

in A (). Multiplying with (io(pyps8))) ™ C1C; on the left (botto d by u(S
the right (top), this simplifies: G i : ( zn) andiby o (€)) on

u(avt’?) = u(C)u(S(C)).
Since unzips commute with orientation switches, it is sufficient to prove that
CS(C) = a(v'?).

Recall that in CS(C) all odd wheels cancel, hence CS(C) = (Cp)?, where C; denotes the
even part of C. Indeed, by Corollary 39, Ca (V1/?), O

Corollary 3.16. The “buckle” amd “double tree” constructions lead to the same result, that
i, 23 =72 l
i B-

Proof.  Since any homomorph_ijg‘T‘e:}ciggg)ks)!i7qgriz<?‘;' ofurﬂ\’ﬁ‘ is uniquely determined by Z¥(J,),
this is immediate from Lemma 3.15." " O

i : o et
The next lemma implies that V satisfies the Unitarity (U) équation:
Lemma 3.17. The map Zg commutes with strand unzips in WI'T.

Proof. ~ We first note that in «I'T unzip is only defined for internal edges, that is, edges
which end in a vertex'® at both ends. By construction, Z¢ is a composition of several maps.
We show that edge unzips commute with every one of these, hence with zZg.

The ® map involves only the tangle ends, which are unchanged by unzipping an internal
strand, hence these operations commute. The_homomorphic expansion Z* commutes with

o par=datanliancgo TWrU: X g

edge unzips, as shown in a[WKO‘Z, Section 4.6]. The map o commutes with edge unzips
by definition. Cap attachments, cap unzips and the isomorphism ¢ commute with internal

1611 fact, there are further restrictions, eg the two vertices must be of opposite signs, but this is not

important for the proof.
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T o :

un.ZipS for the same reason as @, because they are performed at the tangle ends while unzip
is internal. This completes the proof. N

Finally, the following Theorem completes the proof of part Part (3) of the Main Theo-
rem 1.1:

hic expansion of ul'F,
([FIvRa Ay

19011/

Theorem 3.18. The map Z¢' : WlF — AY is the unique homomorp
which is compatible with Z* in the sense of the commutative diagram 2). | -
Section 3.1) and

Lem: Comprtibi Lty

Proof. | By Proposition !BIS,“ Z¢ 1s compatible with Z*. By Part (1) (

Corollary 3.16, Zg = Zy and uniquely determined by Z%. ., . jauaiiensiorZst s ondip s L\/lj o
To show that Z¢' is a homomorphic expansion, by, Fact 2.5 and, fl;}leorefn 2.6, one O, /- b pesy
leen i Wi d Cap (C) 'equatlons of,FaC,l} Zlé' 7[—

needs to verify that it satisfies the (ﬂﬁl), Unitarity (U) an 1 PATAD
Of these, R4 follows from the fact that Z¢ is a planar algibra map, Th?f;e;:ri'lclﬁmzzs pe
Ugit;@yétX(Qﬂ,}}%EiQ}},}(JU):'i's equivalent to the statement tha,t“%:jgg{g{nutes with ¢ :
[WKO?2, Section 4.3], and hence it is satisfied by Lemma 3.17- o TupConpmugtions | o .

This leaves the Cap Equation, which we verify directly. By 'Lemma 3.15, V —-S ICJJ; ) r31 1,:, renrIc
it is sufficient to work with Vj, which has a simpler expression computed in Section .22

Substituting this into the Cap equation (C) Teads:
U(C)(U(C))-l(@(Pwsﬂw))—lc'lcz = 10y,

C)(u(C))™" on the left, and multiply on the right by Cj (@5 1_1(as
hen we only need to show that (p(p1p3f*))” =
p1psBY), hence it’s enough to see that
ds are below all tails

O

in A*®( l;) We cancel u(
A( lp) is aright A(f2)-module by stacking). T
1 in A(t2). To show this, multiply on the right by o( 1p3f°
1 = ¢(p1psB®). This, in turn, is clear by the CP relation since all hea

in the image of ¢.

APPENDIX A. THE ALEKSEEV—ENRIQUEZ——TOROSSIAN FORMULA

This appendix is mainly for readers familiar with the Alekseev—Eng@grgg_g{:ngggs;%g for=_ e
mula for Kashiwara-Vergne solutions in. terms of Drinfel'd associators [AET].
For a quick re-cap of [AET] notions, et fie, denote the degree completed free Lie algebra

on two generators z and y. Let tders denote tangential derivations of this Lie algebra, that
is, derivations d with the property that d(z) = [z,a] and d(y) = [y, az], where ay,az € lies.
Let TAut, := exp(tdet;) denote the group of tangential automorphisms of lies.

There is a linear “interpretation map” (not a map of Lie algebras) 6 : [ieg — t0ery,
sending a pair (a1,az) to the derivation d given by d(z) = [z,a1],d(y) = [y, az]. The kernel
of this map consists only of pairs of the form (az, By) for a,B constants. A one-sided
inverse 7 : tdety — lie3 which sends a tangential derivation to a pair whose first component
has no linear z term and second component has no y term. We denote the exponential
of § by © : U(lie})esp — TAuty. For an element (eM,e*) € U(lie))erp, We have G =
O((eM, e™)) € TAut, given by G(z) = e *ze™, and G(y) = e 2ye*2, Just as 6 is not a
L.ie algebra map, © is not a group homomorphism: composition in TAut, is not given by
piecewise multiplication of the conjugators. However, f and © present a convenient way to
denote .tangential derivations and tangential automorphisms as pairs in lie2 and (exp(fies))?,
respectively.
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Figure 40. The action of (V') on the generator z of lics.

12 34
¢ 4 Ry Rz}
¢(21)43

~1
(1)214

= Rz)(aa

Figure 41. A different expression of 2.

from q)—l(0,2(13),_,12(13)_“4(13)). The arrows as; and 43 act trivially on z, so, more simply

stated, the action on z is by ‘p@‘l(&%ﬁq‘%l — aq1)). Note that L(®~Y(z, -z — ¥),0) =

P(® Y agy, —ag; — a41)), so Theorem 1.1 agrees with Formula (s’?")]“'i;ﬁihe first component.
e can proceed similarly for the second component: the action on y is by

PP ams, ~a — a)e™ B(am, ax)) = L(0, 873,z — y)e’2 (s, y)),

While this does not match the second component of Formula (ﬁ)‘f

a hexagonlﬂrel'e)tj:fion. Alternatively, note that one can obt

Formula (7) “on the Rose’’ by starting from an equivalen
; 4 e NG LeBraids

shown in Figure 41, This completes the proof.

'ié“only differs from it by
ain the second component of the
t (isotopic) expression!® of B°, as

/A‘
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