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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS III: THE
DOUBLE TREE CONSTRUCTION

DROR BAR-NATAN AND ZSUZSANNA DANCSO

Abstract. This is the third in a series of papers studying the finite type invariants of
various w-knotted objects and their relationship to the Kashiwara-Vergne problem and
Drinfel’d associators. In this paper we present a topological solution to the Kashiwara-
Vergne problem. In particular we recover via a topological argument the Alkeseev-Enriquez-
Torossian

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula for explicit solutions of the Kashiwara-Vergne equations in terms

of associators.
We study a class of w-knotted objects: knottings of 2-dimensional foams and various

associated features in four-dimensioanl space. We use a topological construction which we
name the double tree construction to show that every expansion (also known as universal fi-
nite type invariant) of parenthesized braids extends first to an expansion of knotted trivalent
graphs (a well known result), and then extends uniquely to an expansion of the w-knotted
objects mentioned above.

In algebraic language, an expansion for parenthesized braids is the same as a Drinfel’d

associator Φ, and an expansion for w-knotted objects is the same as a solution V of the
Kashiwara-Vergne problem

KashiwaraVergne:Conjecture
[KV] as reformulated by Alekseev and Torossian

AlekseevTorossian:KashiwaraVerg
[AT]. Hence

our result provides a topological framework for the result of
AlekseevEnriquezTorossian:ExplicitSolutions
[AET] that “there is a formula

for V in terms of Φ”, along with an independent topological proof that the said formula
works — namely that the equations satisfied by V follow from the equations satisfied by Φ.
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1. Introduction

1.1. Executive Summary. This brief section is a large-scale overview of the main result
of this paper and the idea behind its proof; it is followed by a detailed introduction.

A homomorphic expansion for a class of topological objects K is an invariant
Z : K → A whose target space A is canonically associated with K (its associated graded). Ho-
momorphic expansions satisfy a certain universality property, and respect operations which
exist on K and therefore also on A. Such invariants are often hard to find, and when they are
found, they are often intimately connected with deep mathematics, in particular, quantum
algebra and Lie theory:

• For many classes of knotted objects in 3-dimensional spaces homomorphic expansions
don’t exist — for example, one would have loved ordinary tangles to have homomor-
phic expansions, but they don’t.

• Yet a certain class Ku of knotted objects in 3-space, parenthesized tangles, or nearly-
equivalently, knotted trivalent graphs – which we adopt in this paper and denote by
sKTG – do have homomorphic expansions. A homomorphic expansion Zu : Ku → Au

is defined by its values on a couple of elements of Ku which generate Ku using the
operations Ku is equipped with. The most interesting of these generators is the
tetrahedron ,, and Φ = Zu(,) turns out to be equivalent to a Drinfel’d associator.

• A certain class Kw of graphs, called w-foams and denoted wTF o in the paper –
the name is based on a conjectured equivalence to a class of 2-dimensional welded
knotted tubes in 4-dimensional space – also has homomorphic expansions. The most
interesting generator of Kw is the vertex b, and if Zw : Kw → Aw is a homomorphic
expansion, then it turns out that V = Zw(b) is equivalent to a solution of the
Kashiwara-Vergne problem in Lie theory.

u-ops u-ops

w-ops

Au

Φ

V

Aw

w-ops

Kw

,

Ku

I

Zu ⊆ Zw

Roughly speaking, Ku is a part of Kw and
Au is a part of Aw, as in the figure on the
right (more precisely, there are natural maps
a : Ku → Kw and α : Au → Aw). The main
purpose of this paper is to prove the following
theorem, whose precise version is stated later
as Theorem

thm:mainthm:main
1.1:

Theorem. Any homomorphic expansion Zu for Ku extends uniquely to a homomorphic
expansion Zw for Kw, and therefore, any Drinfel’d associator Φ gives rise to a solution V of
the Kashiwara-Vergne problem.

The proof of this theorem is conceptually simple: we show that the generators of Kw can
be explicitly expressed using the generators of Ku and the operations of Kw, and that the
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resulting explicit formulas for Zw(b) (and for Zw of the other generators) satisfies all the
required relations.

The devil is in the details. It is in fact impossible to express the generators of Kw in
terms of the generators of Ku — to do that, one first has to pass to a larger space K̃w

(in the paper w̃TF ) that has more objects and more operations, and in which the desired
explicit expressions do exist. But even in K̃w these expressions are complicated, and in
order to verify the relations they need to be expressed using the framework of a multi-step
“double tree construction”. A brief pictorial summary of the construction is below, and the
explanation takes up the bulk of this paper:

T = TTT

1.2. Detailed Introduction. This paper is the third in a sequence
Bar-NatanDancso:WKO1, Bar-NatanDancso:
[WKO1, WKO2, WKO3]

studying finite type invariants of w-knotted objects, and contains the strongest result: a topo-
logical construction for a homomorphic expansion of w-foams from the Kontsevich integral.
This in particular implies the Kashiwara-Vergne Theorem of Lie theory, more precisely, it
gives the

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula for solutions of the Kashiwara-Vergne equations in terms of Drinfel’d

associators.
The papers in this sequence need not be read consecutively. Readers broadly familiar with

finite type invariants will have no trouble reading
Bar-NatanDancso:WKO2
[WKO2] and this paper without having

read
Bar-NatanDancso:WKO1
[WKO1]. However, the setup and main results of

Bar-NatanDancso:WKO2
[WKO2] are used heavily in this paper.

Reproducing all necessary details would be lengthy, but we include concise summaries for
readers already familiar with the content, and otherwise refer to specific results or sections
of

Bar-NatanDancso:WKO2
[WKO2] throughout.
The Kashiwara-Vergne conjecture (KV for short) — proposed in 1978

KashiwaraVergne:Conjecture
[KV] and proven in

2006 by Alekseev and Meinrenken
AlekseevMeinrenken:KV
[AM] — asserts that solutions exist for a certain set of

equations in the space of “tangential automorphisms” of the free lie algebra on two genera-
tors. For a precise statement we refer the reader to

Bar-NatanDancso:WKO2
[WKO2, Section 4.4] or

AlekseevTorossian:KashiwaraVergn
[AT, Section 5.3].

The existence of such solutions has strong implications in Lie theory and harmonic analysis,
in particular it implies the multiplicative property of Duflo isomorphism, which was shown
to be knot-theoretic in

Bar-NatanLeThurston:TwoApplications, BDS:Duflo
[BLT, BDS].

In
AlekseevTorossian:KashiwaraVergne
[AT] Alekseev and Torossian give another proof of the KV conjecture based on a deep

connection with Drinfel’d associators. In turn, Drinfel’d’s theory of associators
Drinfeld:QuasiHopf
[Dr] can

be interpreted as a theory of well-behaved universal finite type invariants of parenthesized
tangles1

LeMurakami:Universal, Bar-Natan:NAT
[LM, BN2], or of knotted trivalent graphs

Dancso:KIforKTG
[Da]. In

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] Alekseev, Enriquez and

Torossian gave an explicit formula for solutions of the Kashiwara-Vergne equations in terms
of Drinfel’d associators.

In
Bar-NatanDancso:WKO2
[WKO2] we re-interpreted the Kashiwara-Vergne conjecture as the problem of finding

a “homomorphic” universal finite type invariant of a class of knotted trivalent tubes in

1“q-tangles” in
LeMurakami:Universal
[LM], “non-associative tangles” in

Bar-Natan:NAT
[BN2].
3



D
R
A
FT

4-dimansional space (called w-tangled foams), and explained the connection to Drinfel’d
associators in terms of a relationship between 3-dimensional and 4-dimensional topology.

Another topological interpretation for the KV problem in terms of the Goldman-Turaev
Lie bialgabre later emerged in

AKKN:GoldmanTuraev, AKKN:GTReverse
[AKKN1, AKKN2], and the papers

Massuyeau:GT
[M] and

AlekseevNaef:GTKZ
[AN] contain

constructions of Goldman-Turaev expansions from the Kontsevich integral and the Knizhnik-
Zamolodchikov connection, respectively.

In this paper we present a topological construction for a homomorphic universal finite type
invariant of w-tangled foams, thereby giving a new topological proof for the KV conjecture.
This construction also leads to an explicit formula for KV-solutions in terms of Drinfel’d
associators, which we prove agrees with the formula

AlekseevEnriquezTorossian:ExplicitSolutions
[AET, Theorem 4].

Finally, we mention that a circuit algebra, which provides the algebraic structure to w-
foams, were identified as equivalent to the operadic structure of a wheeled prop in

DHR:CircAlg
[DHR1].

The symmetry groups of Kashiwara-Vergne solutions, called the Kashiwara-Vergne groups,
are shown to be automorphism groups of the w-foam circuit algebra and its associated graded
arrow diagrams in

DHR:KVKRV
[DHR2]. The relationship between the symmetries of Drinfel’d associators

– the Grothendieck-Teichmuller groups – and the Kashiwara-Vergne groups is described in
the topological context of w-foams in the forthcoming paper

DHaR:GRTKRV
[DHaR]

1.2.1. Topology. We begin by describing a chain of maps from “parenthesized braids” to
“(signed) knotted trivalent graphs” to “w-tangled foams”:

K := {uPaB
cl

−→ sKTG
a

−→ w̃TF}.

Let us first briefly elaborate on each of these spaces and maps.
Parenthesized braids are braids whose ends are ordered along two lines, the “bottom”

and the “top”, along with parenthetizations of the endpoints on the bottom and on the
top. Two examples are shown in Figure

fig:PBexamplefig:PBexample
1. Parentehesized braids form a category whose

objects are parenthetizations, morphisms are the parenthesized braids themselves, and com-
position is given by stacking. In addition to stacking, there are several operations defined
on parenthesized braids: strand addition, removal and doubling. A detailed introduction to
parenthesized braids is in

Bar-Natan:GT1
[BN1].

−

+
+

+
−

−

Trivalent graphs are oriented graphs with three edges meeting at each vertex
and whose vertices are equipped with a cyclic orientation of the incident edges.
A knotted trivalent graph (KTG) is a framed embedding of a trivalent graph
into R3. KTGs are studied from a finite type invariant point of view in

Bar-NatanDancso:KTG
[BND1].

In this paper we use a version of KTGs that was introduced and studied in
Bar-NatanDancso:WKO2
[WKO2, Section 4.6], namely trivalent tangles with one or two ends and with
some extra combinatorial information: trivalent vertices are equipped with a
marked “distinguished edge” and signs. We call this space sKTG (for signed

Figure 1. Two examples of parenthesized braids. Note that by convention the parenthetiza-

tion can be read from the distance scales between the endpoints of the braid, and so we omit

the parentheses in parts of this paper. fig:PBexample
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KTGs), as in
Bar-NatanDancso:WKO2
[WKO2]. An example is shown on the right. The space sKTG is also equipped

with several operations: tangle insertion, sticking a 1-tangle onto an edge of another tangle,
disjoint union of 1-tangles, edge unzip, and edge orientation switch (see

Bar-NatanDancso:WKO2
[WKO2, Section 4.6]

for details).

The space w̃TF is a minor extension of the space wTF o studied in
Bar-NatanDancso:WKO2
[WKO2, Section 4.1

– 4.4], and will be introduced in detail in Section
sec:wTFesec:wTFe
2. It can be described as a circuit al-

gebra (similar to a planar algebra but with non-planar connections allowed, see
Bar-NatanDancso:WKO2
[WKO2,

Section 2.4]) generated by certain features (various kinds of crossings and vertices, as well
as “caps”) modulo certain relations (“Reidemeister moves”) and equipped with a number
of auxiliary operations beyond the circuit algebra compositions. This Reidemeister theory
conjecturally represents knotted tubes in 4-dimensional space with singular foam vertices,
caps, and attached one-dimensional strings.

The map cl : uPaB → sKTG is the “closure map”. Given a parenthesized braid, close
up its top and bottom each by gluing a binary tree according to the parentetization; this
produces a sKTG with the convention that all strands are oriented upwards, bottom vertices
are negative, and top vertices are positive. An example is shown below.

cl

−

−

+
++

−

The map a : sKTG → w̃TF arises combinatorially from the fact that all sKTG diagrams

can be interpreted as elements of w̃TF , and all sKTG Reidemeister moves are also imposed

in w̃TF . Topologically, it is an extended version of Satoh’s tubing map, described in Remark
3.1.1 of

Bar-NatanDancso:WKO2
[WKO2].

1.2.2. Algebra. The chain of maps K is an example of a general “algebraic structure”, as
discussed in

Bar-NatanDancso:WKO2
[WKO2, Section 2.1]. An algebraic structure consists of a collection of objects

belonging to a number of “spaces” or “different kinds”, and operations that may be unary,
binary, multinary or nullary, between these spaces. In this case there are many spaces
(or kinds of objects): for example, parenthesized braids with specified bottom and top
parenthetizations form one space, so do knottings of a given trivalent graph (skeleton).
There is also a large collection of operations, consisting of all the internal operations of

uPaB, sKTG and w̃TF , as well as the maps a and cl.
In Sections 2.1 to 2.3 of

Bar-NatanDancso:WKO2
[WKO2]we discuss associated graded structures and expansions for

general algebraic structures. For any algebraic structure (think braids, or tangles with tangle
composition), one allows formal linear compositions of elements of the same kind (think, same
skeleton). Associated graded structures are taken with respect to the filtration by powers of

the augmentation ideal. For the spaces uPaB, sKTG and w̃TF , the associated graded spaces
Ahor, Au and Asw are the spaces of “horizontal chord diagrams on parenthesized strands”,
“chord diagrams on trivalent skeleta”, and “arrow diagrams”, as described in

Bar-Natan:GT1
[BN1],

Bar-NatanDancso:WKO2
[WKO2,

Section 4.6], and Section
sec:wTFesec:wTFe
2 of this paper, respectively. As a result, the associated graded

5
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structure of K is

A := {Ahor cl
−→ Au α

−→ Asw},

where cl and α are the maps induced by cl and a, respectively. More specifically, cl is the
“closure of chord diagrams”, and α is “replacing each chord with the sum of its two possible
orientations”, see

Bar-NatanDancso:WKO2
[WKO2, Section 3.3].

An expansion
Bar-NatanDancso:WKO2
[WKO2, Section 2.3] is a filtration-respecting map from an algebraic struc-

ture to its associated graded structure, whose associated graded map is the identity. In knot
theory, expansions are also called universal finite type invariants. A homomorphic expansion
is an expansion which behaves well with respect to the operations of the algebraic structure,
that is, it intertwines each operation with its induced counterpart on the associated graded
structure; for a detailed definition and introduction see

Bar-NatanDancso:WKO2
[WKO2, Section 2.3]. Hence, a ho-

momorphic expansion Z : K → A is a triple of homomorphic expansions Zb, Zu, and Zw

for Kb := uPaB, Ku := sKTG and Kw := w̃TF , respectively, so that the following diagram
commutes:

K :

Z
��

Kb cl
//

Zb

��

Ku a
//

Zu

��

Kw

Zw

��

A : Ahor cl
// Au α

// Aw

(1) eq:MainDiag

We recall (see
Bar-Natan:GT1
[BN1]) that a homomorphic expansion Zb for parenthesized braids is de-

termined by a “horizontal chord associator” Φ = Zb( ). A homomorphic expansion Zu of
sKTG is also determined2 by a Drinfel’d associator (horizontal chords or not; see

Bar-NatanDancso:WKO2
[WKO2,

Section 4.6]), so the significance of the left commutative square is to force the associator
corresponding to Zu to be a horizontal chord associator. In turn, Zw is determined by a
solution F (a close cousin of V = Zw( )) to the Kashiwara-Vergne problem (see

Bar-NatanDancso:WKO2
[WKO2,

Section 4.4 – 4.5]). The goal of this paper is to prove the following theorem, which, via the
correspondence above, implies the KV conjecture:

thm:main Theorem 1.1. (1) Assuming that Z : K → A exists, it is determined3 by Zu.
(2) There is a formula for V in terms of the Drinfel’d associator Φ associated to Zu:

V = C−1
1 C−1

2 C(12)ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2Φ(a23, a43)
)
, (2) eqn:AET

where a denotes a single arrow4. This agrees5 with the formula proven in
AlekseevEnriquezTorossian
[AET].

(3) Every Zb extends to a Z.

The key to the proof of the theorem is to show that the generator of w̃TF can be
expressed in terms of the generator of uPaB and the operations of K. Assuming that Z
exists, this yields a formula for V in terms of Φ.

2With the exception of some minor normalization, see
Bar-NatanDancso:WKO2
[WKO2, Section 4.6], in particular Lemma 4.14

and the paragraph following it.
3In fact, almost entirely determined by Zb, with the exception of some minor normalization of Zu which

is not determined by an associator.
4The notation is explained in detail in Section

subsec:AETFormulasubsec:AETFormula
3.2

5Although the two formulas are written in different languages, and checking that they agree takes effort.
See Section

subsec:AETFormulasubsec:AETFormula
3.2 and Appendix

app:AETapp:AET
A.
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1.3. Paper Structure. In Section
sec:wTFesec:wTFe
2 we provide an overview of the space wTF o of (ori-

ented) w-foams and its extension with strings w̃TF . We provide a brief review of definitions
and crucial facts from

Bar-NatanDancso:WKO2
[WKO2], and details of the extension. We prove that homomorphic

expansions for wTF o extend uniquely to homomorphic expansions for w̃TF .
Section

sec:Proofsec:Proof
3 makes up the bulk of the paper and is devoted to the proof of Theorem

thm:mainthm:main
1.1.

In Section
subsec:Part1subsec:Part1
3.1 we prove part (1). In Section

subsec:AETFormulasubsec:AETFormula
3.2 we deduce the formula for Kashiwara-

Vergne solutions in terms of Drinfel’d associators, proving part (2). In Section
subsec:DTsubsec:DT
3.3 we prove

statement (3), the hardest part of the proof.
Section

sec:Rmkssec:Rmks
?? is a short section of closing remarks, and in Appendix

app:AETapp:AET
A we give an explicit

comparison and equivalence between our formula in Part (2) and the ALekseev–Enriquez–
Torossian

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula.

2. The spaces w̃TF and Asw in more detail
sec:wTFe

As mentioned in the introduction, w̃TF is a minor extension of the space wTF o studied in
Bar-NatanDancso:WKO2
[WKO2, Section 4.1 – 4.4]. It can be introduced as a planar algebra or as a circuit algebra;
we will do the latter as it is simpler and more concise. Circuit algebras are defined in
Bar-NatanDancso:WKO2
[WKO2, Section 2.4]; in short, they are similar to planar algebras but without the planarity

requirement for “connecting strands”. As in
Bar-NatanDancso:WKO2
[WKO2], each generator and relation of w̃TF

has a local topological interpretation. Recall from
Bar-NatanDancso:WKO2
[WKO2, Sections 1.2, 3.4, 4.1] that wTF o

diagrams represent certain ribbon knotted tubes with foam vertices in R4, and the circuit
algebra wTF o is conjecturally a Reidemeister theory for this space (i.e., there is a surjection δ
from the circuit algebra wTF o to ribbon knotted tubes with foam vertices, and δ is conjectured

to be an isomorphism). The space w̃TF extends wTF o by adding one-dimensional strands
to the picture. Note that in themselves, one dimensional strands in R4 are never knotted,
however, they can be knotted with the two-dimensional tubes. In figures two-dimensional
tubes will be denoted by thick lines and one dimensional strings by thin red lines. With this

in mind, we define w̃TF as a circuit algebra defined in terms of generators and relations, and
with some extra operations beyond circuit algebra compositions. Each generator, relation
and operation has a local topological interpretation which provides much of the intuition
behind the proofs. However, the corresponding Reidemeister theorem is only conjectural.

w̃TF = CA

〈

1 2 5 6 7 8 943
, , , ,,, ,,

generators

∣∣∣∣∣
relations
as in

Section
subsec:wrelssubsec:wrels
2.2

∣∣∣∣∣
auxiliary

operations as
in Section

subsec:wopssubsec:wops
2.3

〉

subsec:wgens

2.1. The generators of w̃TF . We begin by discussing the local topological meaning of each
generator shown above.
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Figure 2. A string-tube vertex. fig:MixedVertex

OC: CP:

Figure 3. The OC and CP relations. fig:wTFeRels

The first five generators are as described in
Bar-NatanDancso:WKO2
[WKO2, Sections 4.1.1], we briefly

recall their descriptions here. Knotted (more precisely, braided) tubes in R4 can
equivalently be thought of as movies of flying rings in R3. The two crossings
stand for movies where two rings trade places by the ring of the under strand flying
through the ring of the over strand. The dotted end represents a tube “capped off”
at the bottom by a disk. Generators 4 and 5 stand for singular “foam vertices”,
and will be referred to as the positive and negative vertex, respectively. The
positive vertex represents the movie shown on the left: the right ring approaches
the left ring from below, flies inside it and merges with it. The negative vertex
represents a ring splitting and the inner ring flying out below and to the right. To

be completely precise, w̃TF as a circuit algebra has more vertex generators than
shown above: the vertices appear with all possible orientations of the strands. However,
all other versions can be obtained from the ones shown above using “orientation switch”
operations (to be discussed in Section

subsec:wopssubsec:wops
2.3).

The thin red strands denote one dimensional strings in R4, or “flying points
in R3”. The crossings between the two types of strands (generators 6 and
7) represent “points flying through rings”. For example, the picture on the
left shows generator 6, where “the point on the right approaches the ring on
the left from below, flies through the ring and out to the left above it”. This
explains why there are no generators with a thick strand crossing under a
thin red strand: a ring cannot fly through a point.

Generator 9 is a trivalent vertex of 1-dimensional strings in R4. Finally,
the last generator is a mixed vertex: a one-dimensional string attached to the wall of a
2-dimensional tube, as shown in Figure

fig:MixedVertexfig:MixedVertex
2. All generators should be shown in all possible

strand orientation combinations; we are suppressing this to save space.
subsec:wrels

2.2. The relations. As a list, the relations for w̃TF are the same as the relations for wTF o
Bar-NatanDancso:WKO2
[WKO2, Section 4.5]: {R1s, R2, R3, R4, OC, CP}. Recall that R1s is the weak (framed)
version of the Reidemeister 1 move; R2 and R3 are the usual second and third Reidemeister
moves; R4 allowes moving a strand over or under a vertex. OC stands for Overcorssings
Commute, CP for Cap Pullout: these two relations are shown in Figure

fig:wTFeRelsfig:wTFeRels
3, for a detailed

explanation see
Bar-NatanDancso:WKO2
[WKO2, Section 4.1.2].
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In w̃TF all relations should be interpreted in all possible combinations of strand types and
orientations (tube or string), for example the lower strand of the R2 relation can either be
thick black or thin red, as shown below:

R2:

Similarly, any of the lower strands of the R3, R4, and OC relations may be thin red.

As in wTF o, the relations all have local topological meaning and conjecturally w̃TF is a
Reidemeister theory for ribbon knotted tubes in R4 with caps, singular foam vertices and
attached strings. For example, Reidemeister 2 with a thin red bottom strand is imposed
because the movie where a point flies in through a ring and then immediately flies back out
is isotopic to the movie where there is no interaction between the point and ring at all.

It is easy to verify that all relations represent local isotopies of welded (ribbon knotted)
tubes in R4 with singular vertices and attached strings. What is not clear at this stage is that
this is a complete Reidemeister theory, that is, whether this is a complete set of relations.
For more detail on this see

Bar-NatanDancso:WKO2
[WKO2, Section 1.2].

subsec:wops

2.3. The operations. Like wTF o, w̃TF is equipped with a set of auxiliary operations in
addition to the circuit algebra structure.

The first of these is orientation reversal. For the thin (red) strands, this simply means
reversing the direction of the strand. For the thick strands (tubes), orientation switch comes
in two versions. Recall from

Bar-NatanDancso:WKO2
[WKO2, Section 3.4] that in the topological interpretation of

wTF o, each tube is oriented as a 2-dimensional surface, and also has a distinguished “core”:
a line along the tube which is oriented as a 1-dimensional manifold and determines the
“direction” or “1-dimensional orientation” of the tube. Both of these are determined by the
direction of the strand in the circuit algebra, via Satoh’s tubing map.

Topologically, the operation “orientation switch”, denoted Se for a given strand e, acts by
reversing both the (1-dimensional) direction and the (2-dimensional) orientation of the tube
e. Diagrammatically, this corresponds to simply reversing the direction of the corresponding
strand e.

e e e e

Ae Ae

The “adjoint” operation, denoted Ae, on the other hand
only reverses the (1-dimensional) direction of the tube e,
not the orientation as a surface. Diagrammatically, this
manifests itself as reversing the strand direction and adding
two virtual crossings on either side of each crossing where e
crosses over another strand, as shown on the right (note that the strand below e may be thick
or thin). Note that virtual crossings don’t appear when e crosses under another strand. For
more details on orientations and orientation switches, see

Bar-NatanDancso:WKO2
[WKO2, Sections 3.4 and 4.1.3].

The unzip operation ue doubles the strand e using the blackboard framing, and then
attaches the ends of the doubled strand to the connecting ones, as shown in Figure

fig:DiscUnzipfig:DiscUnzip
4. We

restrict unzip to strands whose two ending vertices are of different signs. (For the definition of
crossing and vertex signs, see

Bar-NatanDancso:WKO2
[WKO2, Sections 3.4 and 4.1].) Topologically, the blackboard

framing of the diagram induces a framing of the corresponding tube in R4 via Satoh’s tubing
9
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ue
e

e ue

Figure 4. Unzip and disc unzip. fig:DiscUnzip

pe
e

pee

p

Figure 5. Puncture operations: the picture on the left shows which edges can be punctured

at each vertex. The middle and right pictures show the effect of puncture operations. fig:punctures

map, and unzip is the act of “pushing the tube off of itself slightly in the framing direction”.
Note that unzips preserve the ribbon property.

A related operation, disc unzip, is unzip done on a capped strand, pushing the tube off in
the direction of the framing (in diagram world, in the direction of the blackboard framing),
as before. An example is shown in Figure

fig:DiscUnzipfig:DiscUnzip
4; see

Bar-NatanDancso:WKO2
[WKO2, Section 4.1.3] for details on framings

and unzips.
So far all the operations we have introduced had already existed in wTF o. There is also

a new operation is called “puncture”, denoted pe, which diagrammatically simply turns the
thick black strand e into a thin red one. The corresponding topological picture is “puncturing
a tube”, i.e., removing a small disk from it and retracting the rest to its core. Any crossings
where e passes under another strand are not affected, while crossings in which e is the over
strand turn into virtual crossings.

For simplicity, we place a restriction on which strands can be punctured, namely at each
(fully thick black) vertex puctures are only allowed for one of the three meeting strands,
as shown on the left of Figure

fig:puncturesfig:punctures
5. More general puctures could be allowed in a theory with

more than one kind of “string to tube” vertex. The right of the same figure shows that when
puncturing one of the thick strands of a mixed vertex, the puncture “spreads”. Topologically,
this is because the mixed vertex represents a string attached to a tube, so when puncturing e,
the entire tube retracts to its core. Finally, a capped tube disappears (deformation retracts
to a point) when punctured.

10
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TC
+=+

−→

4T
=

Figure 6. The TC and
−→
4T relations. Note that the 3rd strand in each term of the

−→
4T relation

can be either thick black or thin red, the relation applies in either case. fig:TCand4T

± ± ± ±± ± = 0, and = 0.

Figure 7. The VI relation: the vertices and strands could be of any type, but the same

throughout the relation. fig:VI

In summary,

w̃TF = CA

〈

1 2 5 6 7 8 943
, , , ,,, ,,

generators

∣∣∣∣∣∣∣

R1s, R2, R3,
R4, OC, CP
relations

∣∣∣∣∣∣∣

Se, Ae, ue, de, pe
auxiliary
operations

〉

2.4. The associated graded structure Asw. As in
Bar-NatanDancso:WKO2
[WKO2], the space w̃TF is filtered by

powers of the augmentation ideal and its associated graded space, denoted Asw, is a “space
of arrow diagrams on foam skeletons with strings”. As a circuit algebra, Asw is presented as
follows:

Asw = CA

〈

1 42 3 6 75
,,, , ,,

generators

∣∣∣∣∣∣∣
relations
as below

∣∣∣∣∣∣∣

auxiliary
operations
as below

〉
.

Generators 1 and 5 are called single arrows and they are of degree one, while all others are
“skeleton features” of degree zero. The relations are almost the same as in

Bar-NatanDancso:WKO2
[WKO2, Section

4.2.1], which describes the relations for the associated graded of wTF o:
−→
4T (the 4-Term

relation), TC (Tails Commute), RI (Rotation Invariance), CP (the arrow Cap Pullout), and

VI (Vertex Invariance). For w̃TF there is an additional relation TF (Tails Forbidden on

strings). The TC and
−→
4T relations are shown in Figure

fig:TCand4Tfig:TCand4T
6. The Vertex Invariance relation is

shown in Figure
fig:VIfig:VI
7: here the ± signs depend on the strand orientations. Note that the type

of the vertex and the types of each strand (thick black or thin red) are left undetermined:
the VI relation applies in all cases. Figure

fig:RICPTFfig:RICPTF
8 shows the other relations: RI, CP and TF. Note

that technically TF is not a relation: there were no generators with an arrow tail on a thin
red strand, so saying that such an element vanishes is meaningless. However, without TF
the VI relation would have to be stated for all the sub-cases of 0, 1 or 3 thin red strands, so
we prefer this cleaner way, even if it is a slight abuse of notation.

Each operation on w̃TF induces a corresponding operation on Asw. Orientation switch,
adjoint, unzip, cap unzip, and long strand deletion act exactly the same way as they do

11
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=
RI CP TF

= 0 = 0

Figure 8. The RI and CP relations, and the TF relation (which is not really a relation). fig:RICPTF

TC

+ = 0

−→

AS
= −

−−−→
IHX

=

−−−→

STU2
= −

−−−→
STU1

− =

−−−→

STU3

Figure 9. The
−→
AS,

−−−→
IHX and the three

−−−→
STU rerations. Note that in

−−−→
STU1, the skeleton

strand can be thin red or thick black, and that
−−−→
STU3 is the same as the TC relation. fig:ASIHXSTU

for wTF oo. We quickly recall these here, for details see
Bar-NatanDancso:WKO2
[WKO2, Section 4.2.2]. The ori-

entation switch Se reverses the orientation of the skeleton strand e, and multiplies the ar-
row diagram by (−1)#{arrow heads and tails on e}. The adjoint operation also reverses the skele-
ton strand e and multiplies the arrow diagram by (−1)#{arrow heads on e}. Given a skele-
ton S with a distinguished strand e, unzip (or disc unzip, if e is capped) is an operation
ue : A

sw(S) → Asw(ue(S)) which maps each arrow ending on e to a sum of two arrows, one
ending on each of the two new strands which replace e. Deleting a long strand e kills all
arrow diagrams with any arrow ending on e. The operation induced by puncture, denoted
pe, turns the formerly thick black e into a thin red strand, and kills any arrow diagram with
any arrow tails on e.

To summarise:

Asw = CA

〈

1 42 3 6 75
,,, , ,,

generators

∣∣∣∣∣∣∣

−→
4T , TC, VI,
CP, RI, TF
relations

∣∣∣∣∣∣∣

Se, Ae, ue, de, pe
auxiliary
operations

〉

As in
Bar-NatanDancso:WKO2
[WKO2, Definition 3.7], we define a “w-Jacobi diagram” (or just “arrow diagram”)

by also allowing trivalent chord vertices, each of which is equipped with a cyclic orientation,

and modulo the
−−−→
STU relations of Figure

fig:ASIHXSTUfig:ASIHXSTU
9. Denote the circuit algebra of formal linear

combinations of these w-Jacobi diagrams by Aswt. Then, as in
Bar-NatanDancso:WKO2
[WKO2, Theorem 3.8], we

have the following “bracket-rise” theorem:

Theorem 2.1. The natural inclusion of diagrams induces a circuit algebra isomorphism

Asw ∼= Aswt. Furthermore, the
−→
AS and

−−−→
IHX relations of Figure

fig:ASIHXSTUfig:ASIHXSTU
9 hold in Aswt.

The proof is identical to the proof of
Bar-NatanDancso:WKO2
[WKO2, Theorem 3.8]. In light of this isomorphism,

we will drop the extra “t” from the notation and use Asw to denote either of these spaces.
As in

Bar-NatanDancso:WKO2
[WKO2], the primitive elements of Asw are connected diagrams, denoted Psw, and

12



D
R
A
FT

Figure 10. An example of a tree, left, and a wheel, right. fig:TreeAndWheel

x
ψx h

t
x

x
ϕ

h t

Figure 11. Inverse maps. fig:SlideUpLemma

Psw = {trees} ⊕ {wheels} as a vector space. Examples of trees and wheels are shown
in Figure

fig:TreeAndWheelfig:TreeAndWheel
10; for details see

Bar-NatanDancso:WKO2
[WKO2, Section 3.1]. Note that the RI relation can now be

rephrased (via
−−−→
STU2) as the vanishing of the wheel with a single spoke, or one-wheel.

We recall the following two crucial facts
Bar-NatanDancso:WKO2
[WKO2, Lemmas 4.6 and 4.7]:

fact:CapIsWheels Fact 2.2. Asw(℄), the part of Asw with skeleton a single capped strand, is isomorphic as a
vector space to the completed polynomial algebra freely generated by wheels wk with k ≥ 2.

fact:VTwoStrands Fact 2.3. Asw( ) ∼= Asw(↑2), where Asw( ) stands for the space of arrow diagrams whose
skeleton is a single vertex (the picture shows a positive vertex but the statement is true for
all kinds of vertices with thick black strands), and Asw(↑2) is the space of arrow diagrams on
two (thick black) strands.

The following Lemma – called the Sorting Lemma as we will see it “sorts” arrow tails above
arrow heads – will play an important role. In particular the second isomorphism stated is
the map ϕ appearing in Theorem

thm:mainthm:main
1.1, part (2). We will refer to the isomorphism ϕ of the

Lemma as the sorting isomorphism.

lem:CapString Lemma 2.4 (Sorting Lemma). There is a linear isomorphism ϕ : Asw
( )

∼=
−→ Asw(↑)

between the vector spaces of arrow diagrams on the indicated skeleta. On the left, the thin
red string is a tangle end. The black strand may continue past the arrow, and there may be
additional skeleton components: the same on both sides. Applying the isomorphism ϕ twice,

one obtains Asw
( ) ϕ

∼= Asw(↑2).

Proof. We construct inverse maps between the two spaces. There is a natural map

Asw(↑)
ψ
→ Asw

( )
, shown in Figure

fig:SlideUpLemmafig:SlideUpLemma
11: given an arrow diagram on a single thick black

strand, place all arrow endings (denoted “x”) on the strand above the tube/string vertex.
13
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In the other direction, consider an arrow diagram on the capped/stringed vertex. One
may assume that there are only arrow tails on the capped strand under the vertex: any

arrow head may be commuted using
−−−→
STU relations towards the cap, where it is killed by

the CP relation6. On the thin red strand there are only arrow heads. To construct ϕ, first
“push” the arrow tails (denoted “t”) from the capped strand up across the vertex using the
VI relation. Since tails vanish on the thin red strand, they simply slide past the vertex.
Once the capped side is cleared, continue by sliding the arrow heads “h” up from the thin
red string to the strand above the vertex. Now the cap relation kills any arrow heads on
the capped strand, so once again they simply slide past the vertex. The result placed on a
single thick black strand is shown in Figure

fig:SlideUpLemmafig:SlideUpLemma
11.

It is clear that ψ is well-defined, we leave it to the reader to check that so is ϕ as a short
exercise. Given that both maps are well-defined, it is clear that they are inverses of each
other. �

2.5. The homomorphic expansion. As discussed in
Bar-NatanDancso:WKO2
[WKO2, Section 2.3], an expansion

for w̃TF is a map Zw : w̃TF → Asw with the property that the associated graded map
grZw : Asw → Asw is the identity map idAsw . A homomorphic expansion is an expansion

which also intertwines each operation of w̃TF with its arrow diagrammatic counterpart. In
Bar-NatanDancso:WKO2
[WKO2, Theorems 4.9 and 4.11] we proved that the existence of solutions for the Kashiwara–
Vergne equations implies that there exsists a homomorphic expansion for wTF o. In fact that
homomorphic expansions7 for wTF o are in one-to-one correspondence with solutions to the
Kahiwara-Vergne problem.

The point of this paper is to provide a topological construction for such a homomorphic
expansion (and hence for a solution of the Kashiwara–Vergne conjecture), and this is easier

to do for the slightly more general space w̃TF .
Let Aosw ⊆ Asw denote arrow diagrams on wTF o skeleta, the associated graded space of

wTF o. One of the key results of
Bar-NatanDancso:WKO2
[WKO2, Section 4.3] is the characterisation of homomorphic

expansions of wTF o. For any (group-like) homomorphic expansion Zow : wTF o → Aosw, the
value Zow(!) is uniquely determined and equals R = ea12 , where a12 denotes a single arrow
from the over strand 1 to the under strand 2.

To state the full characterisation, we use co-simplicial notation in subscripts. For example,
for R = ea12 =∈ Asw(↑2), R13 = ea13 and R23 = ea23 in Asw(↑3) are the diagrams where R
is placed on strands 1 and 3, and 2 and 3, respectively. R(12)3 ∈ Asw(↑3) is obtained by
doubling the first strand of R and placing it on strands 1 and 2, and placing the second
strand of R on strand 3. Similarly for V ∈ A(↑2), V12 ∈ A(↑3) denotes V placed on the first
two starnds, et cetera.

fact:EquationsForZ Fact 2.5. A filtered, group-like map Zow : wTF o → Aosw is a homomorphic expansion if and
only if the Zow-values V and C of the positive vertex and the cap, respectively, satisfy the
following equations:

(1) R4 Equation:

V12R(12)3 = R23R13V12 in Asw(↑3). (R4) eq:R4

6This argument also appears in
Bar-NatanDancso:WKO2
[WKO2], for example as the basic idea for the proof of Fact

fact:CapIsWheelsfact:CapIsWheels
2.2.

7Subject to the minor technical condition that the value of the vertex doesn’t contain isolated arrows.
14
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(2) Unitarity Equation:

V · A1A2(V ) = 1 in Asw(↑2), (U) eq:U

where A1 and A2 denote the antipode operations.
(3) Cap Equation8:

C(12)V
−1
12 = C1C2 in Asw(℄2), (C) eq:C

where the subscripts mean strand placements as in the R4 Equation.

We begin by showing that finding a homomorphic expansion for w̃TF is no harder than
finding one for wTF o.

thm:ExtendRestrict Theorem 2.6. Homomorphic expansions for wTF o are in one-to-one correspondence with

homomorphic expansions for w̃TF via unique extension and restriction.

wTF o � � //

Zow

��

w̃TF

Zw

��

Aosw � � // Asw

Proof. Every element of wTF o is also in w̃TF , hence any Zw restricts

to a homomorphic expansion Zow of wTF o. Every element of w̃TF is
the result of puncturing – possibly on multiple strands – an element of
wTF o, and Zw is required to commute with punctures. Hence any Zow

uniquely extends to a Zw. �

In
Bar-NatanDancso:WKO2
[WKO2, Section 4.4] we showed that short arrows – arrows whose head and tail is

not separated by any other arrow endings – supported on either strand of V don’t affect
whether Zw is a homomorphic expansion. That is, if Zw is a homomorphic expansion and
a is a linear combination of short arrows, then replacing V by eaV gives rise to another
homomorphic expansion. Hence, in

Bar-NatanDancso:WKO2
[WKO2] we typically assume there are no short arrows

in V , this motivates the following definition:

Definition 2.7. A homomorphic expansion Z is v-small if there are no short arrows in the
Z-value V of the positive vertex.

As it turns out, the value of the left-punctured vertex is trivial under any v-small homo-
morphic expansion. This fact will be useful later, so we prove it here.

lem:pV Lemma 2.8. For any v-small homomorphic expansion Zw, , that is, the Zw-value of a left
punctured vertex is trivial.

Proof. Recall from
Bar-NatanDancso:WKO2
[WKO2, Proof of Theorem 4.9] that the Zw-value V of the positive (not

punctured) vertex can be written as V = ebet, where b is a linear combination of wheels only
and t (denoted uD in

Bar-NatanDancso:WKO2
[WKO2]) is a linear combination of trees. Puncturing the left strand

of V kills all arrow diagrams with tails on the left strand. Diagrams that survive are wheels,
and trees all of whose tails are on the right side strand. However, if all tails of a tree are
supported on one strand, then the tree is a single arrow, due to TC and the anti-symmetry
of the trivalent arrow vertices, thus the only surviving trees are simple arrows directed from
right to left. Observe that all of these arrow diagrams commute with each other in Asw(↑2).

Denote the value of the punctured vertex by p1V = ep1(b)ep1(t). Recall that V must satisfy
the Unitarity Equation of Fact

fact:EquationsForZfact:EquationsForZ
2.5, so p1V · A1A2(p1V ) = 1. Since wheels have only tails,

A1A2(p1(b)) = p1(b). Each arrow has one head, so A1A2(p1(t)) = −p1(t). Hence, using

8For convenience we state the Cap Equation phrased for caps at the bottom of strands, hence the difference
from the equivalent formulation in

Bar-NatanDancso:WKO2
[WKO2].
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commutativity, p1V · A1A2(p1V ) = e2p1(b) = 1, which implies that p1(b) = 0. As for p1(t),
one can show that there are no arrows pointing from the right to the left strand by a direct
computation in degree 1. �

3. Proof of Theorem
thm:mainthm:main
1.1

sec:Proofsubsec:Part1

3.1. Proof of Part (1). We prove Part 1 in two steps: first verifying the easier “tree level”
case, which nonetheless contains the main idea, then in general.

subsec:Part1TreeProof
3.1.1. Tree level proof of Part (1). Let Atree denote the quotient of Asw by all wheels, and
let π : Asw → Atree denote the quotient map (cf

Bar-NatanDancso:WKO2
[WKO2, Section 3.2]). Part (1) of the main

theorem is the same as stating that Zw is determined by Zu. Zw, in turn is determined by
the values V and C of the positive vertex and the cap

Bar-NatanDancso:WKO2
[WKO2, Sections 4.3 and 4.5], so one

only needs to show that V and C are determined by Zu. Proving this “on the tree level”
means showing only that π(V ) and π(C) are determined by Zu. In particular, observe that
since C is a linear combination of products of wheels (Fact

fact:CapIsWheelsfact:CapIsWheels
2.2), we have π(C) = 1, so we

only need to show that π(V ) is determined by Zu.

Bu =

Let Bu denote the “buckle” sKTG, as shown on the right (ignore the dotted lines
for now). All edges are oriented up, and by the drawing conventions of

Bar-NatanDancso:WKO2
[WKO2,

Section 4.6] all the vertices in the bottom half of the picture are negative and all

the ones in the top half are positive. Let Bw = a(Bu) ∈ w̃TF , and βu := Zu(Bu).
Note that βu can be thought of as a chord diagram on four strands: use VI relations
to move all chord endings to the “middle” of the skeleton, between the dotted lines on the
picture. Hence, we write βu ∈ Au(↑4). Let β

w = α(βu), and note that by the compatibility
of Zu and Zw we have βw = Zw(Bw). We will perform a series of operations on Bw and
π(βw) to recover π(V ) from it.

First, connect (a circuit algebra operation in w̃TF ) a positive vertex to the bottom of Bw,
as shown in Figure

fig:BuckleToVfig:BuckleToV
12. Then unzip the edge marked by u, and puncture the edges marked

e and e′. Then attach a cap (once again a circuit algebra operation) to the thick black end
at the bottom. Finally, unzip the capped strand.

uu

e′
e

u

= K

Figure 12. From the “buckle” βw to the (modified) vertex. fig:BuckleToV

Call the resulting w-foam K, as shown at the right in Figure
fig:BuckleToVfig:BuckleToV
12. What is Zw(K)? Due to

the homomorphicity of Z, it is obtained from βw by performing the same series of operations
in the associated graded: a circuit algebra composition with V , unzip, punctures, circuit
algebra composition with C, and disc unzip. Notice that the left strand of that attached
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vertex got punctured, and hence by Lemma
lem:pVlem:pV
2.8 the attached value V cancels.9 Zw(K) still

depends on the value C. At the tree level, since π(C) = 1, π(Zw(K)) can be computed from
βw by performing punctures and unzips. Since βw = α(βu), this means that π(Zw(K)) is
determined by Zu.

On the other hand, note that the space of chord diagrams on the skeleton of K is the space
A(↑2) by Lemma

lem:CapStringlem:CapString
2.4 and VI. Note also that K is a circuit algebra combination of a vertex,

two left-punctured right-capped vertices and an all-red-strings vertex, and the Zw-values of
the latter three are trivial. So π(Zw(K)) = π(V ) ∈ Atree(↑2). Hence, π(V ) is determined by
Zu as needed. �

subsec:Part1Proof

3.1.2. Complete proof of Part (1). In the previous subsection we showed that Zu determines
π(V ) ∈ Atree(↑2). Now we show that in turn, π(V ) determines both V and C uniquely, using
a perturbative argument.

By contradiction, assume this is not the case, in particular, first assume that there exist
V 6= V ′, both of which are vertex values of Zu-compatible homomorphic expansions, such
that π(V ) = π(V ′). Let v denote the lowest degree term of V − V ′. Note that v is primitive
and v ∈ ker π, so v is a homogeneous linear combination of wheels. By the Unitarity Equation
of Fact

fact:EquationsForZfact:EquationsForZ
2.5, we have A1A2(v) = −v. Recall that Ai reverses the direction of the strand i and

multiplies each arrow diagram by (−1) to the number of heads on that strand. Since v has
only tails, A1A2(v) = v, so v = −v, so v = 0, a contradiction. Therefore, π(V ) determines
V uniquely.

Now we show that V determines C uniquely. Assume there are different values C and
C ′ in Asw(℄) so that (V, C) and (V, C ′) are both vertex-cap value pairs of Zu-compatible
homomorphic expansions. Let c denote the lowest degree term of C − C ′, then c is a scalar
multiple of a single wheel. The Cap Equation of Fact

fact:EquationsForZfact:EquationsForZ
2.5 implies c(12) = c1 + c2 in Asw(℄2).

There is a well-defined linear map ω : Asw(℄2) → Q[x, y] sending an arrow diagram –
which has arrow tails only on each strand – to “x to the power of the number of tails on
strand 1, times y to the power of the number of tails on strand 2”. Assume c = αwr, where
wr denotes the r-wheel, and α ∈ Q. Then 0 = ω(c(12) − c1 − c2) = α((x+ y)r − xr − yr), so
either r = 1 or α = 0. But w1 = 0 in Asw by the RI relation, hence α = 0 and thus c = 0, a
contradiction. �

subsec:AETFormula

3.2. Proof of Part (2). In this section we compute V , the value of the vertex, from Φ, the
Drinfel’d associator determining Zb, using the construction of Part (1). In Appendix

app:AETapp:AET
A we

also show that this result translates to the
AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formula for Kashiwara-Vergne solutions in

terms of Drinfel’d associators.

3.2.1. From Φ to V. To compute V , consider once again the w-tangled foam K on the
right of Figure

fig:BuckleToVfig:BuckleToV
12. On one hand, Zw(K) can be computed directly from the generators:

Zw(K) = C1C2V12 ∈ Asw(↑2), since the values of the left-punctured vertices are trivial.
On the other hand, one can compute Zw(K), using the compatibility with Zu. Recall

that Bu is the closure of the parenthesised braid Bb shown in Figure
fig:BuckleBraidfig:BuckleBraid
13, Bw = a(Bu),

βu = Zu(Bu), and βw = Zw(Bw). By the compatibility of Zw with Zu, we have

βw = Zw(Bw) = α(Zu(Bu)) = α(βu).

9Any short arrows would also cancel when the right strand is capped.
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1 2 3 4

Φ132

R32

Φ−1
123

Φ(12)34

−→ 1

−→ ea23/2

−→ 1

−→ Φ−1(a2(13),−a2(13) − a4(13))Φ−1
(13)24

−→ Φ(a23, a43)

Figure 13. Computing βb. Strands are numbered at the top and multiplication is read from

bottom to top; the rightmost column lists the images of the factors under p1p2α. fig:BuckleBraid

How does Zw(K) differ from βw? To obtain K, a vertex and a cap were attached to Bw,
two strands were punctured and the cap unzipped, as in Figure

fig:BuckleToVfig:BuckleToV
12. The Zw-value of the

added vertex cancels when its left strand is punctured, however, the value of the cap remains
and gets unzipped. Thus, in loose notation, Zw(K) = u(C) · p2(βw), where p2 denotes the
two punctures – we will compute this value explicitly in terms of associators shortly.

To equate the two approaches, we need to express this value as an element of Asw(↑2), by
applying the isomorphism of Lemma

lem:CapStringlem:CapString
2.4. We thus obtain

C1C2V12 = ϕ(u(C)p2(βw)). (3) eq:BuckleV

Through a careful analysis of the right hand side, this will imply the formula (
eq:AETeq:AET
6) stated in

Teorem
thm:mainthm:main
1.1. In other words, we want to compute

Υ := ϕ(u(C)p2(βw)).

To achieve this, we use that βw = α(βu), and compute βu in terms of the Drinfel’d
associator Φ associated to Zu. By the compatibility of Zu and Zb, it is enough to compute
βb := Zb(Bb). The result can be read from the picture in Figure

fig:BuckleBraidfig:BuckleBraid
13:

βb = Φ−1
(13)24Φ132R32Φ

−1
123Φ(12)34.

To interpret this formula, recall that the associator Φ is an element of Ahor(↑3), and the
cosimplicial notation used in the subscripts show which strands diagrams are placed on. For
example, the notation Φ−1

(13)24 means doubling the first strand of Φ−1 and placing the resulting

chord endings on strands 1 and 3, as well as placing the chord endings from the other two
strands of Φ−1 on strands 2 and 4. Also recall that R = ec/2, where c is a single horizontal
chord between two strands (and R32 means that this chord runs between strands 3 and 2).

As βu is the tree closure of βb, it is given by the same formula interpreted as an element
of Au(↑4). One then applies α to obtain βw = α(βu). After the vertex and cap attachment,
of Figure

fig:BuckleToVfig:BuckleToV
12, strands 1 and 3 are punctured and strands 2 and 4 are capped, and in this

strand numbering, u(C) = C24 Therefore, we have

Υ = ϕ
(
C24 · p1p3α(Φ

−1
(13)24Φ132R32Φ

−1
123Φ(12)34)

)
.

Next, we analyse how the puctures and α act on factors of βb. First observe that
p3α(R32) = ea23/2, where aij is a single arrow pointing from strand i to strand j.
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Figure 14. Strand numbering convention for K and V .

To compute p1p3(αΦ
−1
123), recall that Φ123 can be expressed as a power series in non-

commuting variables c12 and c23 (i.e., chords between strands 1—2 and 2—3, respectively):
Φ123 = Φ(c13, c23). Given that α(c12) = a12 + a23, we have p1(α(c12)) = a21. Similarly,
p3(α(c23)) = a23, therefore p1p3(αΦ

−1
123) = Φ−1(a21, a23). By the TC relation, a21 and a23

commute, and a basic fact about Drinfel’d associators is that image of Φ in a quotient where
its variables commute is 1. Thus, p1p3(αΦ

−1
123) = 1. Similarly, p1p3(αΦ132) = 1 because

p1p3α(c13) = 0.
Since strands 1 and 3 are both punctured, no arrows can be supported between these two

strands, hence p1p3α(Φ(12)34) = p3α(Φ234). Writing Φ as a power series, Φ234 = Φ(c23, c34),
and p3α(Φ(c23, c34)) = Φ(a23, a43).

Similarly, Φ−1
(13)24 = Φ−1(c(13)2, c24), where c(13)2 = c12+ c32. The cyclic symmetry property

of associators implies Φ(cij , cjk) = Φ(cij,−cij−cik). Hence, Φ
−1(c(13)2, c24) = Φ−1(c(13)2,−c(13)2−

c(13)4), so p1p3αΦ
−1
(13)24 = Φ−1(a2(13),−a2(13) − a4(13)). To summarise,

Υ = ϕ
(
C24 · Φ

−1(a2(13),−a2(13) − a4(13)) · e
a23/2 · Φ(a23, a43)

)
.

Note that the expression Φ−1(a2(13),−a2(13)−a4(13)) ·e
a23/2 ·Φ(a23, a43) has only arrow tails

on strands 2 and 4, and therefore commutes with C24 by the TC relation. Hence, by the
definition of ϕ,

Υ = ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43) · C24

)

= ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43)
)
· ϕ(C24).

Furthermore,since arrow endings from strand 2 are “pushed” to strand 1 when performing
ϕ, and arrow endings from strand 2 are pushed to strand 2, we have ϕ(C24) = C12. Terefore,

V12 = C−1
1 C−1

2 Υ = C−1
1 C−1

2 ϕ
(
Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43)
)
C12,

as stated in part (2) of Theorem
thm:mainthm:main
1.1.

Matching this result to the Alekseev–Enriquez–Torossian formula is technical, and not
used anywhere else in the paper, hence we defer this to Appendix

app:AETapp:AET
A.

subsec:DT
3.3. Proof of part (3): the double tree construction. It remains to prove that the
values of V and C, which we proved in Section

subsec:Part1Proofsubsec:Part1Proof
3.1.2 are determined by Zu, indeed give rise

to a homomorphic expansion of w̃TF . In other words, one needs to show that they satisfy
the three equations of Fact

fact:EquationsForZfact:EquationsForZ
2.5. Unfortunately, doing this directly seems difficult.

Note that (
eq:R4eq:R4
R4), which is in some sense the “main equation”, is an equality between

different planar algebra compositions of generators. Hence, the proof would be much easier
if Zu were to be a planar algebra map. This unfortunately makes no sense, as sKTG is not
a planar algebra but a different, more complicated algebraic structure. The reader might
ask, why work with a space as inconvenient as sKTG instead of, say, the planar algebra of
trivalent tangles? The answer is that the existence of a homomorphic expansion is a highly
non-trivial property, and in particular ordinary trivalent tangles do not have one. Even
without trivalent vertices, ordinary tangles, or u-tangles, do not have have a homomorphic
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[

7→T T

−

−

−

−

−

−

++ + +

Figure 15. The double tree map: connect the ends of T by two binary trees (hence “double

tree”), as shown. Note that the tree on the left always crosses over the tree on the right,

and all edges of both trees are oriented towards T . fig:dt

expansion as a planar algebra10. Parenthesized tangles (a.k.a. q-tangles)
LeMurakami:Universal, Bar-Natan:NAT
[LM, BN2] do have

homomorphic expansions, yet in fact these are almost equivalent to sKTG
Thurston:KTG, Bar-NatanDancso:KT
[T, BND1, Da].

Nonetheless, we put planar algebras to use in a less direct way to prove the R4 equation:
we map ordinary trivalent tangles into sKTG via a double tree construction, and use this to
define Zw for the a-images of all usual trivalent tangles. Then we use the planar algebra
structure to prove that this Zw is a homomorphic expansion (that is, satisfies the (

eq:R4eq:R4
R4), (

eq:Ueq:U
U)

and (
eq:Ceq:C
C) equations), and finally show that the Zw constructed this way is in fact the same

as the one arising from part (1).
subsubsec:ZwDef

3.3.1. Defining Zw. We start by defining (classical, or usual) trivalent tangles, denoted uTT :

uTT := PA
〈

+ −,, ,

∣∣∣ R1s, R2, R3, R4
∣∣∣ Se, ue

〉

Here PA stands for planar algebra: an algebra over the operad of planar tangles, that is,
an algebraic structure similar to a circuit algebra, except with planar wiring diagrams. (See
DHR:CircAlg
[DHR1, Section 3.1] for a detailed definition. This is a slightly more simple-minded notion
than the original use of the term in

Jones:PlanarAlgebras
[J], in particular we do not use checkerboard shadings.)

+
e

ue
−

The elements of uTT are usual – that is, classical – trivalent
tangles with ordered ends (the ordering is assumed to be counter-
clockwise from bottom left, unless otherwise stated), and signed
vertices with a total ordering of edges at each vertex. There are
no “virtual crossings” in planar algebras. The relations are the
usual Reidemeister relations which make sense in this context
(R1s, R2, R3 and R4). The planar algebra uTT is equipped with
auxiliary orientation switch and edge unzip operations. Edge unzips are defined for edges
that connect a positive and a negative vertex in as shown in the figure on the right. The
planar algebra uTT does not have a homomorphic expansion.

We define a double tree map [ : uTT → sKTG, as in Figure
fig:dtfig:dt
15. The map [ depends on

two choices of binary trees: in Figure
fig:dtfig:dt
15 we chose a particular example. It is important that,

10We only need to know that the planar algebra of u-tangles does not have a homomorphic expansion Zt

so as to explain why we are not using one. This said, the non-existance of Zt is easy to prove: by an explicit
calculation in degree 2 one shows that there is no linear combination of chord diagrams that can serve as
Zt(!), which satisfies the R3 relation.
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= TT

Ť

T

1

2

3

4

TT
κ
7→

u
7→

p
7→

Figure 16. The cap attachment, unzips and punctures. While these operations are applied

in Asw – there are arrows on these skeleta – for simplicity the figure only shows the effect on

the skeleton. fig:pCu

regardless of the choice of trees, the “left side” tree crosses over the “right side” tree. We will
demonstrate that in fact the choice of trees becomes irrelevant after some post-compositions,
see Lemma

lem:TreeChangelem:TreeChange
3.1.

Working towards a construction of Zw, we post-compose [ with the following sequence of
maps, which are explained in the paragraph below:

T ∈ uTT
[

−→ sKTG
Zu

−→ Au([(T ))
α

−→ Asw([(T ))
κ,u,p
−→ Asw(Ť )

ϕ
∼= Asw(T ). (4) eq:dt

Here T stands for an arbitrary tangle in uTT . The double tree map sends T into sKTG, and
by applying Zu one obtains a value in Au, namely a chord diagram on the skeleton of [(T ).
We denote the space of chord diagrams on this skeleton by Au([(T )). Now α maps this
to arrow diagrams on the skeleton of [(T ), that is, to Asw([(T )). In order to revert the
skeleton back to that of T , we apply some operations in Asw: a cap attachment κ, unzips
and punctures (as shown in Figure

fig:pCufig:pCu
16 and explained below), resulting in a slightly modified

version of the desired skeleton, denoted Ť . Finally, we use that Asw(Ť ) ∼= Asw(T ) via the
sorting isomorphism ϕ of Lemma

lem:CapStringlem:CapString
2.4, and hence we obtain a value in Asw(T ), as needed,

which, we will later see, is almost Zw(a(T )). (Although the punctured strands connect in a
single binary tree, VI relations can be used as part of the sorting isomorphism.)

The cap attachment, unzip and puncture operations are done in the order shown in Fig-
ure

fig:pCufig:pCu
16. First attach a cap – a capped strand with no arrows on it – to the end of the right

vertical strand in α([(T )): this is a circuit algebra operation in Asw. If T has n ends,
perform (n− 1) consecutive disc unzips on the capped strand, as shown in Figure

fig:pCufig:pCu
16. Then

puncture the left hand tree, for example by puncturing the left vertical strands marked “1,
2,...” in Figure

fig:pCufig:pCu
16 (these punctures also affect the connecting diagonal strands, as in Fig-

ure
fig:puncturesfig:punctures
5). Note that since the punctured tree had originally crossed over the capped tree, these

crossings become virtual after puncturing, hence the last equality in Figure
fig:pCufig:pCu
16.

Denote the composition of the maps and operations shown in Equation (
eq:dteq:dt
4) by ξ, that is,

ξ := ϕ ◦ p ◦ u ◦ κ ◦ α ◦ Zu ◦[. (5) eq:xidef

Then, ξ(T ) ∈ Asw(T ). We first show that ξ(T ) is well-defined, that is, it doesn’t depend on
the choice of binary trees in [(T ).

lem:TreeChange Lemma 3.1. The choice of binary trees in the double tree construction does not affect ξ(T ).

Proof. Any binary tree can be changed into any other binary tree via
a sequence of “I to H” moves, as shown on the right. Hence, it is enough
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=D D D = D =D ∈ imα D ∈ imα

+

+

+

+

+

+

Figure 17. The invariance property of chord diagrams on the left, the head invariance and

tail invariance properties of arrow diagrams in the middle and right. Here D denotes a chord

or arrow diagram on any skeleton; for tail invariance there is a restriction that D ∈ imα

(with α : Au → Asw). The box labelled “+” denotes a sum of incoming chords or arrows,

whose other ends are in the same place. The equalities are understood locally: there may be

other skeleton components and chords/arrows elsewhere, which coincide on both sides. fig:Invariance

to analyze how an I to H move on one of the trees affects the value of Zu([(T )), and prove
that the difference vanishes after the caping, unzip, and puncture operations.

1
2 u2Suppose τ1 and τ2 are two binary trees which differ by a single I to H

move, and let [τ1 and [τ2 denote the two resulting double-tree maps, as-
suming the “other side tree” is unchanged. The I to H move can be realised
by inserting11 an associator, followed by unzipping the edge marked ‘1’ on
the right, then the edge marked ‘2’. By the homomorphicity of Zu, the values Zu([τ2(T ))
and Zu([τ1(T )), only differ in an inserted horizontal chord associator Φ on the three strands
involved, we indicate this by writing Zu([τ2(T )) = Zu([τ1(T )) ∗ Φ. If the I to H move was
done on the left side tree, then all the strands involved are later punctured, killing any arrow
diagram that lived on them by the TF relation. As a result, the only surviving part of Φ is
its constant term, 1, and the resulting values of ξ are equal.

If the I to H move is done on the right side tree, then the all participating strands are
capped and disk unzipped. If α(Φ) is immediately adjacent to the caps, then it cancels by
the CP relation. However, it is a priori possible that there are other arrow ending separating
Φ from the caps. Note that in Au, any chord endings can be can be commuted from below
the associator to above, using V I relations and the invariance property of chord diagrams
shown in Figure

fig:Invariancefig:Invariance
17

Bar-Natan:NAT
[BN2, Lemma 3.4]. Thus, one can assume that α(Φ) is adjacent to the

caps and hence cancels. This concludes the proof. �

There is an action of Z/nZ on elements of uTT with n ends, by cyclic permutations of the
ends. The following lemma will be useful later in proving that Zw is a planar algebra map;
we present it now because its proof is similar to that of Lemma

lem:TreeChangelem:TreeChange
3.1.

lem:CyclicPerm Lemma 3.2. The map ξ is invariant under cyclic permutation of the ends of T .

Proof. To show that ξ(T ) is invariat under cyclic permutations of ends of T , it is enough
to show that ξ(T ) does not change when the rightmost end of T is moved to the far left
(denote this by σT ), as shown in Figure

fig:welldeffig:welldef
18.

The rightmost picture of Figure
fig:welldeffig:welldef
18 is equivalent as sKTGs to [(σT ). It differs from [(T )

in three ways:

• the binary trees connecting the ends of T are different;

11See
Bar-NatanDancso:WKO2
[WKO2, Section 4.6] for a detailed description of the tangle insertion operation in sKTG.
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T T T=

∗

∗

[(σT )[(T )

Figure 18. Double tree construction for cyclically permuted ends of T . fig:welldef

unzips T

[(T )

T

unzip

[(σT ) with inserts:

I2

I3

I1

Figure 19. The difference between [(T ) and [(σT ), understood via insertions. fig:welldef2

• two tree branches (marked with ∗ in Figure
fig:welldeffig:welldef
18) are connected to the trunk from the

opposite side: that is, these trivalent vertices have opposite cyclic orientation;
• one tree branch has a kink in it.

As before, we need to analyse how Zu([(σT )) differs from Zu([(T )), and show that the
difference vanishes after the puncture, cap and unzip operations.

To achieve this, we transform [(σT ) into [(T ) using tangle insertions. First, cancel the
kink by inserting an opposite kink I1 on the same strand, as shown in Figure

fig:welldef2fig:welldef2
19 in blue12.

As Zu is compatible with insertion, the Zu values will differ by the value of a kink: a chord
diagram on the one strand involved. Later in the process this strand is punctured, so the
value of the kink cancels by the TF relation.

Similarly, switching the side that the tree branches are attached on amounts to inserting
twists I2 and I3, and unzipping the connecting edges, also shown in Figure

fig:welldef2fig:welldef2
19. Each of these

operations changes the value of Zu by inserting the value of a twist, which is ec/2 for any
Zu, where c denotes a single chord between the appropriate strands

Bar-NatanDancso:WKO2
[WKO2, Lemma 4.14].

Applying α maps this to e(aL+aR)/2, where aL and aR denote horizontal left and right arrows,
respectively. On the left side tree, this cancels after punctures, as before. On the right side

12Or grey in black and white print.
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T

∈

7→
[(T )

∈

7→
[(T )

∈

7→ κ[(T )

∈

7→ T̂

∈
uTT

[

//

ξ
22

(4)

sKTG
a

//

Zu

��
(1)

w̃TF
κ

//

Zw

��
(2)

w̃TF
p◦u

//

Zw

��
(3)

w̃TF

Zw

��

Au([(T ))
α

//

(4)

Asw([(T ))
κ◦Ĉ

// Asw(κ[(T ))
p◦u

// Asw(T̂ )

ϕ

��

Asw(T )

Figure 20. Comparing ξ and Zw, assuming that Zw exists. fig:BigCompat

Zw(T )

Ť

T Zw(T )
ϕ
7→

Zw

7→ Zw(T ) = ξ(T )

C CC C C C C−1C−1 C−1

Figure 21. Computing Zw(Ť ) and Zw(T ). fig:ZTCheck

tree, the strand directly underneath the twist is capped and uzipped, and hence the value
of the twist cancels by the CP relation.

Now observe that the right side picture of Figure
fig:welldef2fig:welldef2
19 only differs from [(T ) in the choices

of binary trees, which do not change the value of ξ by Lemma
lem:TreeChangelem:TreeChange
3.1. �

The following lemma clarifies the relationship between the map ξ and the homomorphic
expansion Zw that we’re aiming to construct:

lem:Compatibility Lemma 3.3. If there exists a homomorphic expansion Zw for w̃TF compatible with Zu, and
T ∈ uTT is a tangle with n ends, then Zw(a(T )) = ξ(T ) · (C−1)n, where C = Z( ), and ξ(T )
is multiplied by C−1 at each tangle end of T , as in Figure

fig:ZTCheckfig:ZTCheck
21.

Proof. Assume there exists a homomorphic expansion Zw compatible with Zu. We use,
as in Figure

fig:BigCompatfig:BigCompat
20, the homomorphicity of Zw and its compatibility with Zu to show that

ξ(T ) = Zw(Ť ), where Ť is as in Equation
eq:dteq:dt
4 and shown in Figure

fig:ZTCheckfig:ZTCheck
21 on the left.

If the diagram in Figure
fig:BigCompatfig:BigCompat
20 commutes, then for any T ∈ uTT and any Zu-compatible

Zw, we have ϕ(Zw(Ť )) = ξ(T ). Since Zw is a circuit algebra homomorphism, Zw(Ť ) can
be obtained from Zw(T ) by attaching the Zw-value of a left-punctured right-capped vertex

at each tangle end, as illustrated in Figure
fig:ZTCheckfig:ZTCheck
21. By Lemma

lem:pVlem:pV
2.8 we have Zw

( )
= 1, so

the only additions are C values at each capped end, as shown in Figure
fig:ZTCheckfig:ZTCheck
21. This can then

be interpreted as a value in Asw(T ) via the isomorphism ϕ of Lemma
lem:CapStringlem:CapString
2.4. This implies the

statement of the Lemma.
All that’s left to show is the commutativity of the diagram in Figure

fig:BigCompatfig:BigCompat
20. The square (1)

is the assumed the compatibility of Zu and Zw. In square (2), recall the map κ denotes the
circuit algebra operation of attaching a cap at the bottom right end of the w-foam. The
map Ĉ denotes the circuit algebra operation which attaches a value C = Z( ) at the end
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of the strand. Thus, the commutativity of square (2) is implied by the homomorphicity of
Zw with respect to circuit algebra composition (as a binary operation). The square (3) is
commutative due to the homomorphicity of Zw with respect to punctures and disc unzips.

T =

In imα

T

C C

The commutativity of the heptagon (4) would be true by defi-

nition, if not for the map Ĉ (multiplication by the cap value). We
show that, in fact, the value C cancels after punctures, by a prop-
erty of arrow diagrams in the image of α, called tail-invariance,
shown in Figure

fig:Invariancefig:Invariance
17 (see

Bar-NatanDancso:WKO2
[WKO2], Remark 3.14 and early in Sec-

tion 3.3). In the current situation tail invariance means that the
value C, which has only arrow tails, can be moved from one tangle
end to the other, as shown on the right. Consequently, C cancels when the left strand is
punctured. �

rem:CapOrientations Remark 3.4. In Lemma
lem:Compatibilitylem:Compatibility
3.3 we assume by convention that all tangle ends of T are oriented

upwards (towards T ). If k tangle ends are oriented down, the corresponding cap values
appear with their orientations switched: Zw(aT ) = ξ(T ) · (C−1)n−k(S(C)−1)k.

cor:ZTreefromxi Corollary 3.5. If there exists a homomorphic expansion Zw for w̃TF compatible with Zu,
then π(V ) = π(ξ(b)), where V is the Zw-value of the vertex, and π is the tree projection.
This uniquely determines Zw.

Proof. The first statement is an immediate consequence of Lemma
lem:Compatibilitylem:Compatibility
3.3. The second was

shown in Section
subsec:Part1Proofsubsec:Part1Proof
3.1.2. �

Thus, the map ξ uniquely determines Zw, assuming that Zw exists, and we have shown
how to explicitly compute π(V ) from Zb through ξ. What remains to be proven is that:

(1) Zw, as constructed from ξ, is compatible with Zu: see Proposition
prop:uwCompatibilityprop:uwCompatibility
3.8.

(2) The restriction of Zw to a(uTT ) is a planar algebra map (see Theorem
thm:PAMapthm:PAMap
3.11), and

thus Zw satisfies the (
eq:R4eq:R4
R4) equation.

(3) Zw satisfies the (
eq:Ueq:U
U) and (

eq:Ceq:C
C) equations, hence it is a homomorphic expansion of w̃TF

compatible with Zu: see Theorem
thm:ZwExpansionthm:ZwExpansion
3.16.

(4) The versions of Zw obtained from the buckle construction of Section
subsec:Part1TreeProofsubsec:Part1TreeProof
3.1.1 and the

double tree construction (i.e., the map ξ) coincide: see Lemma
lem:TwoConstructionslem:TwoConstructions
3.14.

subsubsec:ZwGood
3.3.2. Zw is a homomorphic expansion. The goal for this subsection is to carry out the proof
outlined above. We begin by proving that Zw, as given by ξ, is compatible with Zu. This
requires a technical lemma, in which we compute the ξ-value of a vertical strand:

lem:xiofstrand Lemma 3.6. For a single un-knotted strand, ξ(↑) = α(ν1/2), where ν ∈ Au(↑) denotes the
Kontsevich integral of the un-knot13.

Proof. We apply [ to ↑, as shown in Figure
fig:dtstrandfig:dtstrand
22, and comupte Zu([(↑)) using the finite

generation property of sKTG and the homomorphicity of Zu. In
Bar-NatanDancso:WKO2
[WKO2, Section 5.2] we

gave an algorithm for writing any sKTG as an sKTG-composition of generators (the primary
operation in sKTG is tangle insertion, see

Bar-NatanDancso:WKO2
[WKO2, Figure 22]). Feeding [(↑) into this

algorithm, one needs to “curve up” one strand as in Figure
fig:dtstrandfig:dtstrand
22, in this case the strand on

the right (the choice of strand doesn’t affect the outcome).

13The value of ν was conjectured in
Bar-NatanGaroufalidisRozanskyThurston:WheelsWheeling
[BGRT] and proven in

Bar-NatanLeThurston:TwoApplications
[BLT]. Note that ν involves wheels only.
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−

Zu

7→

Φ−1

Φ

b

n

Φ

Φ−1

Φ−1

R

Figure 22. The double tree map composed with Zu, applied to a single strand. fig:dtstrand

3 4

α(ν1/2)(34)

α(Φ)12(34)

α(Φ−1)234

(ea32/2) from α(R)

α(Φ−1)134

5
ea/2

α(Φ)324

1 2

+

α(ν1/2)

Figure 23. The value of puκαZu[(↑). fig:dtstrand2

The chord diagram Zu([(↑)) is shown in Figure
fig:dtstrandfig:dtstrand
22, expressed in terms of the generators

of sKTG described in
Bar-NatanDancso:WKO2
[WKO2, Proposition 4.13]:

• the value Φ of the (right) associator graph: Φ is a (horizontal-chord) Drinfel’d asso-
ciator

• the value R of the (right) twist graph: R = ec/2, where c is a single chord, and
• the values n and b of the noose and balloon graphs, respectively.

In ξ(↑), Zu is followed by α, a cap attachment, unzips and punctures. As explained in
Bar-NatanDancso:WKO2
[WKO2, Section 4.6], there is possibly a one-parameter freedom in the values of n and b, but
we know that and α(b) = ea/2α(ν)1/2, and α(n) = e−a/2α(ν)1/2. Note that the exponential
part of n cancels by the CP relation once the cap is attached. The value puκαZu

[(↑) ∈ Asw

is shown in Figure
fig:dtstrand2fig:dtstrand2
23 and explained below.

Recall that α maps a chord to the sum of its two possible orientations. However, when one
supporting strand is punctured, only one of these orientations survive. Hence, for example,
p2(α(R23)) = (ea32/2). Figure

fig:dtstrand2fig:dtstrand2
23 shows a schematic picture of puκαZu

[(↑) with exponentials
and associators indicated by single arrows. To explain the notation for associators, recall
that Φ ∈ Ahor(↑3) can be written as a power series in any two of the three generators of
Ahor(↑3): c12, c23 and c13. For example, Φ(c12, c23) = Φ(c12,−c12 − c23). For each associator
above, we chose the presentation in which puκα(Φ) is of the simplest form, as follows.

The top associator of Figure
fig:dtstrandfig:dtstrand
22, after applying a VI relation, is written as Φ−1

13(24) in the

strand numbering of Figure
fig:dtstrand2fig:dtstrand2
23. We write this in terms of c13 and c1(24) = c12 + c14, since
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after the puctures p1α(c13) = a31 and p1p2α(c1(24)) = a41, thus

p1p2αΦ
−1(c13,−c13 − c1(24)) = Φ−1(a31,−a31 − a41).

This is reflected in Figure
fig:dtstrand2fig:dtstrand2
23 in drawing only the a31 and a41 arrows for this associator.

Notice that the tail of a41 can be “pulled over the top along strand 5” using the VI relations
and the fact that ea/2α(ν) is a local arrow diagram on a single strand, hence it is central.
Thus, a41 = a31, making the second argument of Φ vanish, and therefore

p1p2α(Φ
−1
13(24)) = 1.

Second from top we have

p1p2α(Φ324) = p1p2α(Φ(c23, c24)) = Φ(a32, a42).

Applying the same “pull over the top” trick to a42, we obtain a32 = a42, and since two
arguments of Φ commute, we have

p1p2α(Φ324) = 1.

For the exponential we have,

p1p2α(R23) = p1p2α(e
c23/2) = ea32/2.

Next,
p1p2α(Φ

−1
234) = p1p2α(Φ

−1(c23,−c23 − c24)) = Φ(a32,−a32 − a42).

Once again, this associator cancels by the “pull over the top” trick, noting that the arrow
tail also commutes with the arrow tails of the exponential.

Observe that

p1p2α(Φ)12(34) = p1p2α(Φ)(−c1(34) − c2(34), c2(34)) = Φ(−a(34)1 − a(34)2, a(43)2) = 1,

as the two arguments of Φ commute by the TC relation, as strands 3 and 4 support only
tails.

WHAT IS THE SIMPLEST ARGUMENT THAT THE BOTTOM WEIRD ASSOCIA-
TOR DIES?

Next we show that α(ν1/2)(34), which remains from n, cancels as well. Since ν is an

exponential of wheels, so is α(ν1/2) ∈ Asw(↑). Recall from
Bar-NatanDancso:WKO1
[WKO1, Section 3.8] that wheels

in Asw have two possible orientations. For odd wheels these are negatives of each other by
the AS relation, for even wheels they are equal. Hence, α kills odd wheels and multiplies
even wheels by 2, as well as orienting them. Let us write α(ν1/2) as ew(x), where w(x) is
an (even) power series in x with constant term 0: interpret each monomial xk as a k-wheel.
Then u(α(ν1/2)) = α(ν1/2)(34) = ew(x3+x4), where monomials are read as cyclic words and
interpreted as wheels on strands 3 and 4. Now slide this arrow diagram up on strands 3 and
4 to strand 5 by VI. Since α(R) has only tails on strand 3, there is no obstruction to doing
this. Tails on the punctured strand 1 are zero (TF relation), so each tail on strand 3 slides
onto strand 5, whose orientation is compatible with strand 3. In other words we replace x3
by x5 in the expression ew(x3+x4). On the other side, tails again slide onto strand 5 but now
the orientations are opposite, and hence x4 is replaced by −x5. Thus,

p1p2α(ν
1/2)(34) = ew(x5−x5) = 1.

Finally, move the top exponential ea/2 to strands 3 and 2, using the VI relation at both
vertices. The tail of each arrow moves freely from strand 5 to strand 3. The heads commute
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insert

K

K

=

Figure 24. For K ∈ sKTG, [(K) is K inserted into [(↑). fig:InsertK

with α(ν), they are killed on strand 4 due to the CP relation, so they slide onto strand 2
but acquire a negative sign due to opposite orientations. Hence, (ea55/2) = (e−a32/2), and this
cancels α(R). In summary, ξ(↑) = α(ν1/2), as claimed. �

As an aside, Lemma
lem:xiofstrandlem:xiofstrand
3.6 enables a quick computation of the even part of C = ec = Zw(℄).

Recall that c is a linear combination of wheels: c =
∑∞

n=2 γnwn. Let c = c0 + c1, where c0
denotes the even part of c (sum of all even wheels), and c1 denotes the odd part, that is,
c = c0+ c1. Let C0 = ec0 , the even part of C. Corollary

cor:CapValuecor:CapValue
3.7 shows in particular that the even

part of the C is independent of the choice of Zb (that is, the choice of Drinfel’d associator)
and Zu.

cor:CapValue Corollary 3.7. If C = Zw(℄), and C0 is the even part of C, then C0 = α(ν1/4) for any Zw.

Proof. By Lemma
lem:Compatibilitylem:Compatibility
3.3 and Remark

rem:CapOrientationsrem:CapOrientations
3.4, we have Zw(↑) = C−1ξ(↑)S(C−1): see the fig-

ure on the right for the orientations. Note that S(w2k) = w2k and S(w2k+1) = −w2k+1,
and hence S(C) = ec0−c1. Also, by homomorphicity, Zw(↑) = 1. Thus, by Lemma

lem:xiofstrandlem:xiofstrand
3.6,

1 = ec0+c1α(ν1/2)ec0−c1, and therefore α(ν1/2) = e2c0 , which gives C0 = ec0 = α(ν1/4). �

Next we prove that Zw is indeed compatible with Zu:

prop:uwCompatibility Proposition 3.8. For any K ∈ sKTG, Zw(a(K)) = α(Zu(K)).

Proof. Note that sKTG ⊆ uTT , and for K ∈ sKTG, [(K) can be obtained by inserting
K into the top strand of [(↑): see Figure

fig:InsertKfig:InsertK
24. Since Zu is compatible with insertions,

Zu([(K)) can be obtained by Zu(K) inserted into Zu([(↑)). Through the sequence of α,
capping, puncturing, ϕ and multiplications by C−1, all of Zu([(↑)) cancels, as in Lemma

lem:xiofstrandlem:xiofstrand
3.6.

Note that the cancellations still go through despite the fact that α(Zu(K)) is inserted on
the top strand: this follows from the fact that α(Zu(K)) is in the α-image of Au, and the
appropriate “commutativity” property holds in Au. Hence, Zw(K) = Zw(K) as required. �

Now, we show that Zw it is a planar algebra homomorphism on a(uTT ). This is tech-
nically challenging, but it implies the R4 equation immediately. For the proof, it will be
necessary to know the behaviour of Zu with respect to edge deletions. When an edge e of a
knotted trivalent graph K ∈ sKTG is deleted, the two vertices at each end of e cease to be
vertices. The associated graded operation on chord diagrams deletes skeleton edge e, and
chord diagrams with any chord endings on e are set equal to 0.

fact:ZuDelete Fact 3.9. Zu commutes with edge deletions up to a possible correction term of e±c/4ν1/2

depending on the position of the edge, as in Figure
fig:ZuDeletefig:ZuDelete
25.
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Figure 25. In
Bar-NatanDancso:WKO2
[WKO2, Section 4.6.1] Zu is constructed from an invariant Zold by applying

vertex normalizations, which depend on vertex signs: these are shown along the top horizontal

arrow of each diagram (see also
Bar-NatanDancso:WKO2
[WKO2, Figure 29]). It follows Zu is only homomorphic up

to a correction term when deleting the top edge of a positive vertex (first in the total ordering

around the vertex) or the bottom edge of a negative vertex: see the top two diagrams. In

other edge deletions the normalizations cancel, and hence Zu is homomorphic with respect

to these edge deletions, as for example in the bottom two diagrams. fig:ZuDelete

Proof sketch. In
Bar-NatanDancso:WKO2
[WKO2, Section 4.6.1] Zu is constructed from an invariant Zold by adding

vertex normalizations, as shown in Figure
fig:ZuDeletefig:ZuDelete
25. Note that the top two diagrams in figure

differ from
Bar-NatanDancso:WKO2
[WKO2, Figure 29] in a single edge orientation switch, which switches the vertex

sign and accordingly the normalization14. In fact, Zold commutes with edge deletions
Dancso:KIforKTG
[Da,

Proposition 6.7], so the edge deletion error (and hence, the correction term) for Zu arises
from the vertex normalisations implemented, as shown in Figure

fig:ZuDeletefig:ZuDelete
25. �

rmk:wDelete Remark 3.10. There is also an “edge delete” operation of w̃TF : this is not required for the

finite presentation of w̃TF or Asw, but it is necessary for the proof of Theorem
thm:PAMapthm:PAMap
3.11. When

deleting an edge in w̃TF – which can be either a tube or a string – the vertices at either
end15 cease being vertices. The associated graded operation de : Asw → Asw deletes the
skeleton edge e and sends any arrow diagram with arrow endings on the deleted strand to

14The point of the normalization is to make Zu commute with unzips. The reader might wonder, why nor-
malize so that the expansion respects unzips, rather than deletions? The answer is that for finite generation
of knotted trivalent graphs, unzips are crucial but deletions are not.

15It is also possible to delete a capped edge.
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⊔

3

T1

1 2 3 4

T2

5 6 7
,

T2

4 1 2

T1

1 2 3

c3

1 2 3

T

1 2 3 4 5

T

Figure 26. Basic planar algebra operations: disjoint union and contraction. fig:AtomicPAOps

zero. The crucial fact we need is that edge delete operations for chord and arrow diagrams
are compatible via the map α, which is immediate from the definitions:

Au α
//

de

��

Asw

de

��

Au α
// Asw

thm:PAMap Theorem 3.11. The restriction of Zw to a(uTT ) is a planar algebra map.

Proof. Planar algebra operations can be written as compositions of two simpler, basic
operations: disjoint unions and contractions. In the disjoint union of two tangles T1 and T2,
the ends of T1 ⊔ T2 are ordered by declaring that the ordered ends of T1 come first, followed
by the ordered ends of T2. The contraction operation ci applies to any tangle with at least
i + 1 ends: it acts by joining the i-th and (i + 1)-st ends of T and re-numbering the rest,
resulting in a tangle with two less ends. Both operations are shown in Figure

fig:AtomicPAOpsfig:AtomicPAOps
26.

Thus, we only need to show that Zw commutes with these two operations, that is,
Zw(T1 ⊔ T2) = Zw(T1) ⊔ Zw(T2), and Zw(ci(T )) = ci(Z

w(T )). Note that the right sides
of these equalities make sense: arrow diagrams on the skeleta of a(uTT ), where Zw takes
values, also form a planar algebra, and in particular disjoint union and concatenation of
arrow diagrams is well defined.

Disjoint unions. We need to compute ξ(T1 ⊔ T2), where T1, T2 ∈ uTT . The value
[(T1 ⊔ T2) is shown in Figure

fig:DisjUnifig:DisjUni
27. The binary trees in [ can be chosen arbitrarily by

Lemma
lem:TreeChangelem:TreeChange
3.1: Figure

fig:DisjUnifig:DisjUni
27 shows the most convenient trees for this proof.

Observe that [(T1 ⊔ T2) can be obtained as an sKTG by inserting [(T1) and [(T2) into
a simpler sKTG, denoted H , as shown in the same figure (up to orientation switches which
don’t impact what follows and will be ignored). Hence, Zu([(T1 ⊔ T2)) is given by inserting
Zu([(T1)) and Z

u([(T2)) into Z
u(H).

One could compute Zu(H) explicitly using the same algorithm as before, but we can
avoid this work, as follows. All chords in Zu(H) can be assumed to be located in the
rectangle shown in Figure

fig:DisjUnifig:DisjUni
27 (using VI relations, if necessary). During the computation of

ξ both supporting strands are punctured, and therefore p2α(Zu(H)) = 1. This implies that
ξ(T1⊔T2) = ξ(T1)⊔ξ(T2), and it follows via Lemma

lem:Compatibilitylem:Compatibility
3.3 that Zw(T1⊔T2) = Zw(T1)⊔Z

w(T2).
Contractions. Proving that Zw commutes with contractions is more involved. By

Lemma
lem:CyclicPermlem:CyclicPerm
3.2, we can assume that the ends contracted are the last (rightmost) two ends
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H

T1 T2
[(T1) [(T2)
insert insert

Zu(H)

all chords

Figure 27. The double tree map applied to a disjoint union of uTT -s is the same as inserting

the double tree of each individual uTT into the sKTG H. In Zu(H) all chords can be pushed

into the rectangle shown, using VI relations when necessary. fig:DisjUni

uTT
[

//

c

��

(1)

sKTG
Zu

//

d3

��

(2)

Au α
//

(·e−
c
4 ν

1
2 )◦d3

��

(3)

Asw κ
//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(4)

Asw un−1
//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(5)

Asw pn−2

//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(6)

uTT
[

// sKTG
Zu

// Au α
// Asw κ

// Asw un−3
// Asw pn−2

//

diagram continues... Asw p2
//

(·e−
a
2 α(ν

1
2 ))◦d3

��

(7)

Asw ϕ
// Asw·C

−(n−1)SC−1
//

(·α(ν−
1
2 ))◦c

��

(8)

Asw

c

��

Asw ϕ
// Asw

·C−(n−2)
// Asw

Figure 28. Summary of the proof that Zw commutes with contractions: Zw is the compo-

sition along the entire top and entire bottom horizontal edge of the diagram. fig:ContractCommutes

of the n ends of T . Hence we will drop the subscript from ci and denote this operation
simply by c.

We need to show that Zw(cT ) = cZw(T ), for any T ∈ uTT . Since Zw is given by the
composition of many maps, so this can be restated as the commutativity of the perimeter
of a large diagram (shown in Figure

fig:ContractCommutesfig:ContractCommutes
28), which in turn can be broken down to its smaller

parts. Throughout this proof, let T ∈ uTT denote an arbitrary trivalent tangle.

c

T

T

d3

T

T

[

−→

(1)

[

−→

Square (1). This square plays out in uTT and sKTG, and commutes
by inspection, as shown on the right. The three strands to be deleted
are indicated by broken lines. Therefore, d3[(T ) = [c(T ).

Square (2). Square (2) is shown schematically below on the left: for
the Zu-values skeleta are indicated but chords are not shown. To prove
that square (2) commutes, we use the properties of Zu with respect to
deleting edges in sKTG, as stated in Fact

fact:ZuDeletefact:ZuDelete
3.9 and Figure

fig:ZuDeletefig:ZuDelete
25.
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1

2 )·e−
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T
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·C
−→

·C
−→

un−3

−−→

un−1

−−→

(4) (5) (6)

pn−2

−−→

pn−2

−−→

·e−
a

2α(ν
1

2 )

∗

T

T

d3

T

T

d3

·e−
a

2α(ν
1

2 )

d3

T

T

Figure 29. The squares (4) (5) and (6). Strands to be deleted are drawn in dashed lines

throughout. The ∗ denotes a cap of interest: see the proof paragraph on square (5). fig:456

T

T Zu

−→ T

T

d3(2)

·e−
c
4ν

1
2

d3

Zu

−→

∗

Only one of the three edge deletions requires a correction term:
this is the edge marked with ∗ in the diagram on the left. This
edge ends in a e−c/4ν1/2 inserted at the place of the vertex, where
c stands for a single chord. In square (2), this correction term
appears at the bottom right corner of the square, where the two
ends of T are contracted (see in the diagram showing skeleta in

Figure
fig:ContractCommutesfig:ContractCommutes
28). In summary:

(
d3Zu

[(T )
)
· (e−

c
4 ν

1
2 ) = Zu

[c(T ).
Square (3). Square (3) is essentially the commutativity of edge

deletions stated in Remark
rmk:wDeletermk:wDelete
3.10, combined with applying α to the

correction term. So we have:(
d3αZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = αZu

[c(T ).

Square (4). Squares (4), (5), and (6) are shown in detail in Figure
fig:456fig:456
29. Square (4) plays

out in Asw and it is commutative as the deletions and the cap attachments (denoted by κ)
affect different strands: see the diagram on the right. Therefore,

(
d3καZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = καZu

[c(T ).

Square (5). The only difference between d3 ◦un−1 and un−3 ◦d3 is what happens to arrows
on the caped skeleton edge marked by ∗ in Figure

fig:456fig:456
29. Following the diagram right and

down, this edge is unzipped n− 1 times, then the last two of its daughter edges are deleted.
On the other hand, following the diagram down and right, the same edge is unzipped n− 3
times. The results of these compositions are the same by definition of the unzip and delete
operations. Thus, we have

(
d3un−1καZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = un−3καZu

[c(T ).

Square (6).The deletions and punctures occur on different strands, as shown in Figure
fig:456fig:456
29,

hence these operations commute commute. One detail to note is that when a tube strand is
deleted at a “tube-and-string” vertex, all that is left is a string (as in the case of puncturing
the tube at a tube-string vertex, see Figure

fig:puncturesfig:punctures
5). In summary:

(
d3pn−2un−1καZu

[(T )
)
· (e−

a
2α(ν

1
2 )) = pn−2un−3καZu

[c(T ).
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insert

T

unzips

T

S

A

Figure 30. Computing the top left corner of Square 7, Step 1: [(T ) can be expressed as

the sKTG denoted S inserted into the sKTG denoted A, followed by unzips, as shown. Zu

respects insertions, hence computing Zu(A) determines the value of Zu([(T )) outside of S. fig:Square7Comm

unzips Zu

D

A A

b

n

Φ−1

βu

βu

Figure 31. Computing the top left corner of Square 7, Step 2: computing Zu(A). The

sKTG A can be obtained by inserting the buckle sKTG twice into a simpler sKTG, and

unzipping, as shown on the left. The value of the buckle was computed in Figure
fig:BuckleBraidfig:BuckleBraid
13. Using

this value—denoted βu—and the algorithm in
Bar-NatanDancso:WKO2
[WKO2, Section 5.2], one computes Zu(A).

The result is denoted D and shown on the right. fig:Square7Comm2

d3

T

T

T
∼=
−→

p2

−→

(7)

T

c
·α(ν−

1

2 )

·e−
a

2 α(ν
1

2 )

∼=
T

Pentagon (7). The pentagon (7) is shown on
the left. This is the most delicate part of the
proof. We first show that – for the specific input
of pn−2un−1καZu

[(T ) – the pentagon (7) com-
mutes up to a single possible error on the con-
tracted (u-shaped) strand, and later prove that
this error is necessarily zero.

To begin, a better understanding of the arrow
diagram pn−2un−1καZu

[(T ) in the top left corner
is necessary. All of the operations performed on

T , with the exception of Zu, are “easy” in the sense that we have a complete understanding
of their effect. Zu is “hard”, but we can compute the relevant part of its value using the
finite generation of sKTG (

Bar-NatanDancso:WKO2
[WKO2, Proposition 4.13]). The computation is shown in Figures

fig:Square7Commfig:Square7Comm
30 and

fig:Square7Comm2fig:Square7Comm2
31 and their captions.

In summary, Zu
[(T ) is given by inserting Zu(A) into the chord diagram D of Figure

fig:Square7Comm2fig:Square7Comm2
31.

Now we need to analyze what happens when one applies α, the cap attachment, unzips and
punctures to this value:this is an exercise very similar to what has been done for Lemma

lem:xiofstrandlem:xiofstrand
3.6
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Tp2

−→

U

α(Φ−1)

e
a/2
α(Φ)

S ∼= ϕ

c

T

e−a/2

ϕ(U)

T

∼= ϕ

ϕ(U)

·e−
a

2 α(ν
1

2 )
d3

·α(ν−1/2)

βw

pu(βw) pu(βw)

+

α(ν1/2)

p(βw)

α(ν1/2)

Sαu(b) Sαu(b)

ϕ(p(βw))

ϕ(pu(βw))

Sαu(b)

Figure 32. The more detailed picture of the Pentagon 7. fig:Square7Big

for example. The result is shown in Figure
fig:Square7Bigfig:Square7Big
32, and explained below. The n value in D

cancels after punctures by the tail-invariance property (Figure
fig:Invariancefig:Invariance
17), as in the last paragraph

of the proof of Lemma
lem:Compatibilitylem:Compatibility
3.3; the bottom Φ−1 in D also cancels, as in the proof of Lemma

lem:xiofstrandlem:xiofstrand
3.6.

These components are not shown in Figure
fig:Square7Bigfig:Square7Big
32.

****THE EXPOSITION NEEDS TO BE IMPROVED FROM HERE ON, BUT YOU
CAN READ & GIVE FEEDBACK IF YOU HAVE TIME***

Working downwards from the top left of the pentagon in Figure
fig:Square7Bigfig:Square7Big
32, the three edge deletions

cancel both buckle (βw) values. The arrow diagram value Sαu(b) cancels by the following
Fact – a corollary of the definition of unzips and orientations switches – which is illustrated
in Figure

fig:KillAnArrowfig:KillAnArrow
33:

fact:cSu Fact 3.12. Given an arrow ‘a’ ending on strand ‘e’, unzipping e produces a sum of two
arrows a1 + a2: one ending on each daughter strand. Reversing the orientation of the first
daughter strand gives −a1 + a2. Contracting the two daughter strands to form a U-shape
identifies a1 and a2, making a1 − a2 vanish.
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= 0+−

Figure 33. Unzip, switch orientation and connect kills arrows on the strand. fig:KillAnArrow

Φ(a12, a23) =:

321

µ

Figure 34. The Φ component of ϕ(p(βw)) after contraction. fig:mu

This is exactly what happens to the arrow diagram αu(b) (just under the tangle T in
Figure

fig:Square7Bigfig:Square7Big
32), hence it cancels it in both directions of the pentagon (7).

The second down-going arrow on the left is applying the isomorphism ϕ of Lemma
lem:CapStringlem:CapString
2.4.

On the right side of the pentagon: from Equation (
eq:wBuckleeq:wBuckle
??) and with the strand numbering of

Figure
fig:BuckleBraidfig:BuckleBraid
13, we have that

p1p3β
w = Φ−1(a2(13),−a2(13) − a4(13)) · e

a23/2 · Φ(a23, a43).

This is shown in the enlarged rectangle at the top right corner of Figure
fig:Square7Bigfig:Square7Big
32.

The first downward arrow applies the isomorphism ϕ of Lemma
lem:CapStringlem:CapString
2.4, which is followed

by the contraction. Understanding the contraction requires a similar analysis to that of
the Proof of Part 2 of the main theorem, in particular Figure

fig:ValueVfig:ValueV
35. We briefly outline the

argument:
At the bottom of the diagram, ϕ(pu(βw)) cancels altogether after contraction, in a similar

fashion to Fact
fact:cSufact:cSu
3.12, except that the orientation switch is packaged into ϕ: we need to

verify this for α(Φ−1), then ea/2 and α(Φ). For α(Φ−1) this requires a minor commutativity
argument, for the other two it is straightforward. Of the other “buckle”, ϕ(p(βw)), the Φ−1

component cancels, again by Fact
fact:cSufact:cSu
3.12; only the exponential and the Φ component remains.

The arrow in the exponent of ea/2 switches sign due to the reversed orientation, and survives
as the e−a/2 component at the bottom of the pentagon in Figure

fig:Square7Bigfig:Square7Big
32. After contraction, the

Φ component gives rise to a local arrow diagram on a single strand, shown in Figure
fig:mufig:mu
34 and

denoted µ.
In summary, we see that the pentagon (7) commutes if and only if µ = α(ν), and otherwise

commutes up to a localised error on the contracted strand, of value α(ν)−1µ.
Square (8). Finally, the square (8) commutes by basic arithmetic.
We have therefore shown that Zw commutes with contraction up to an error α(ν)−1µ on

the contracted strand. It remains to show that this error is 1. This follows from the facts
that Zw(↑) = 1, and that Zw commutes with disjoint unions:

1 = c(Zw(↓↑)) = α(ν)−1µZw(c(↓↑)) = α(ν)−1µ · 1.

This completes the proof. �

Note that as a side result we have proven the following curious fact about associators:
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Proposition 3.13. For any Φ horizontal chord associator, µ defined from Φ as in Figure
fig:mufig:mu
34,

and ν the Kontsevich integral of the unknot, µ = α(ν). �

Note, that the value V constructed in this section differs, on first glance, from the value
constructed in Section

subsec:Part1subsec:Part1
3.1 from the buckle graph. We’ll denote this value by V β. In the next

lemma we show that in fact V = V β: this serves both as a reality check, and as a technical
tool for showing – in Theorem

thm:ZwExpansionthm:ZwExpansion
3.16 – that Zw satisfies the Cap equation.

lem:TwoConstructions Lemma 3.14. The two vertex values from the buckle and the double tree constructions co-
incide: V β = V .

Proof. In text we denote the positive vertex by b. Notice that [(b) – as in Figure
fig:DTofVertexfig:DTofVertex
?? – is

an sKTG which can be built from simpler sKTGs by inserting the buckle Bu into[(↑) followed
by an unzip: see Figure

fig:DTofVertexfig:DTofVertex
??. We computed ξ(↑) in Lemma

lem:xiofstrandlem:xiofstrand
3.6. Since Zu is compatible with

insertions and unzips, Zu(b) can be computed by inserting the buckle value βu (computed
in Section

subsec:AETFormulasubsec:AETFormula
3.2) into Zu([(b)). This is followed by applying α and the subsequent cap, unzip

and puncture operations.
Because βw = α(βu) is local (is confined to the skeleton of the inserted Bu graph) and in

the image of α, all of the cancellations in the computation of ξ(↑) still occur. Hence, ξ(b)
is as shown in Figure

fig:xiofVertexfig:xiofVertex
??.

To obtain V = Zw(b), one must multiply at each end by C−1 or S(C−1) depending on
orientation, as shown in Figure

fig:xiofVertexfig:xiofVertex
??. Thus,

V = C−1
1 C−1

2 ϕ(p1p3β
w)u(αν1/2)u(S(C−1).

On the other hand, from Section
subsec:AETFormulasubsec:AETFormula
3.2, we have:

V β = C−1
1 C−1

2 ϕ(p1p3β
w)u(C).

Thus, we need to show that:

C−1
1 C−1

2 ϕ(p1p3β
w)u(αν1/2)u(S(C−1) = C−1

1 C−1
2 ϕ(p1p3β

w)u(C).

Multiplying with (ϕ(p1p3β
w)))−1C1C2 at the bottom and by u(S(C)) at the top, this

simplifies to:
u(αν1/2) = u(C)u(S(C)).

Since unzips commute with orientation switches, it is sufficient to prove that

CS(C) = α(ν1/2).

Recall that in CS(C) all odd wheels cancel, hence CS(C) = (C0)
2, where C0 denotes the

even part of C as in Corollary
cor:CapValuecor:CapValue
3.7, and indeed, by that Corollary, C0 = α(ν1/4), as needed.

�

Recall that strand unzips in uTT are defined for internal strands of a trivalent tangle,
which connect a positive and a negative vertex as “distinguished” edge. With this in mind:

lem:Unzip Lemma 3.15. The map Zw commutes with strand unzips in uTT .

Proof. By construction, Zw is defined as a composition of a number of maps. We show
that edge unzips commute with every one of these maps, hence with Zw:

• [ involves the tangle ends, which are untouched by internal unzips, hence they
commute;

• Zu commutes with edge unzips as in
Bar-NatanDancso:WKO2
[WKO2, Section4.6];
36



D
R
A
FT

• α commutes with edge unzips by definition;
• caps, cap unzips and the isomorphism ϕ commute with internal unzips (like [)
because they are performed at the tangle ends.

�

The following proposition completes the proof of part Part (3) of the Main Theorem
thm:mainthm:main
1.1:

thm:ZwExpansion Proposition 3.16. The map Zw : w̃TF → Aw constructed in this section is a homomorphic

expansion of w̃TF , compatible with Zu in the sense of the commutative diagram (
eq:MainDiageq:MainDiag
1).

Proof. By Proposition
lem:Compatibilitylem:Compatibility
3.3, Zw is compatible with Zu.

To show that Zw is a homomorphic expansion, by Fact
fact:EquationsForZfact:EquationsForZ
2.5 and Theorem

thm:ExtendRestrictthm:ExtendRestrict
2.6, one only

needs to verify that it satisfies the R4, Unitarity and Cap Equations of Fact
fact:EquationsForZfact:EquationsForZ
2.5. Of these,

R4 follows from the fact that Zw is a planar algebra map, Theorem
thm:PAMapthm:PAMap
3.11. The Unitarity

Equation is simply the statement that Zw commutes with strand unzips, and hence it is
satisfied by Lemma

lem:Unziplem:Unzip
3.15.

This leaves the Cap Equation, which we verify directly. By Lemma
lem:TwoConstructionslem:TwoConstructions
3.14 the buckle and

double tree constructions yield the same vertex value, therefore it is sufficient to work with
the buckle value of the vertex, which was computed in Section

subsec:Part1TreeProofsubsec:Part1TreeProof
3.1.1. The Cap Equation

based on this value, on two bottom-capped stands, reads:

u(C)(u(C))−1(ϕ(p1p3β
w))−1C1C2 = C1C2.

Cancel u(C)(u(C))−1 on the left and multiply at the top by C−1
1 C−1

2 , then one only needs
to show that (ϕ(p1p3β

w))−1 = 1 on capped strands. To show this, multiply on top by
ϕ(p1p3β

w), hence it’s enough to see that 1 = ϕ(p1p3β
w). This, in turn, is clear by the CP

relation since all heads are below all tails in any value of the isomorphism ϕ. �

Appendix A. The Alekseev–Enriquez–Torossian formula
app:AET

DON’T BOTHER READING THE APPENDIX. YOUHAVE GIVEN FEEDBACKWHICH
I HAVE NOT YET IMPLEMENTED.

This appendix is mainly interesting for readers familiar with the Alekseev–Enriquez–
Torossian formula for Kashiwara–Vergne solutions in terms of Drinfel’d associators

AlekseevEnriquezTorossi
[AET].

The value ϕ(Φ−1(a2(13),−a2(13)−a4(13))·e
a23/2·Φ(a23, a43)) can be computed more explicitly,

which is necessary in order to compare it with the
AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formulas. The first strand ofAsw(↑2)

joins strands 1 and 2 in a vertex, and the second strand of Aw(↑2) joins strands 3 and 4.
Strands 1 and 3 are punctured and strands 2 and 4 are capped. Let us call the two strands
of Aw(↑2) strand I and strand II to avoid confusion. Recall from the construction of ϕ that
one first slides arrow tails from the capped strands “up” through the vertices, then slides all
the heads up from the punctured strands 1 and 3. Thus one obtains an element of Aw(↑2) in
which all arrow heads are below all tails on both strands. The result is shown in Figure

fig:ValueVfig:ValueV
35,

and explained in the caption.
For a quick re-cap of

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] notions, let lie2 denote the free Lie algebra on two generators

x and y. Let tder2 denote tangential derivations of this Lie algebra, that is, derivations d
with the property that d(x) = [x, a1] and d(y) = [y, a2], where a1, a2 ∈ lie2. Let TAut2 :=
exp(tder2) denote the group of tangential automorphisms of lie2. There is a map θ : lie22 →
tder2, sending a pair (a1, a2) to the derivation d given by d(x) = [x, a1], d(y) = [y, a2]. The
kernel of this map consists only of pairs of the form (αx, βy) for α, β constants. In other
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= χ

ea/2 ea/2

I III III II

ϕ

= ψ

ea/2 TAILS

HEADS

Φ(a23, a43) χ1 χ2 χ3

ψ1 ψ2 ψ4ψ3

χ3

ψ4

ψ3

χ1

ψ2

ψ1

χ2

Φ−1(a2(13),−a2(13))− a4(13))

Figure 35. To compute ϕ(Φ−1(a2(13),−a2(13) − a4(13)) · e
a23/2 · Φ(a23, a43)) we switch to

a placement notation in which we mark on each skeleton strand the elements that have

arrows ending on it. For this purpose we denote Φ−1(a2(13),−a2(13) − a4(13)) =: ψ and

Φ(a23, a43) =: χ. fig:ValueV

words, tder2 is “almost” lie
2
2, and there is a one-sided inverse η : tder2 → lie

2
2 which sends a

tangential derivation to a pair whose first component has no x term and second component
has no y term.

A Lie word in x and y can be represented by a binary tree oriented towards a single
“head”, with leaves labeled by the letters x and y; for details see “primitive elements of B2”
as in

Bar-NatanDancso:WKO2
[WKO2, Theorem 3.16] and the discussion following it. There is a tree attaching map

l : tder2 → Psw(↑2), where Psw denotes the primitive elements of Asw, as follows. Represent
the components of η(D) by binary trees, and label the heads with x for Lie words coming
from a1, and y for a2. Then, attach all x-labeled leaves to strand 1, y-labeled leaves to strand
2, and the head below all tails. The order of tails is irrelevant (TC). Conversely, elements
of Psw(↑2) act as tangential derivations on lie2. Wheels act trivially, and thus one obtains
a homomorphism δ : P tree(↑2) → tder2, whose only kernel consists only of short arrows on
either strand. The map l is a one-sided inverse to δ, that is, δ ◦ l = Idtder2

. For more detail
see

Bar-NatanDancso:WKO2
[WKO2, Section 3.2].

Extending δ to exponentials gives a group homomorphism δ : Aw(↑2)exp → TAut2, where
Aw(↑2)exp denotes the group-like part ofA

sw. ForD ∈ Aw(↑2)exp, the map δ can be described
diagrammatically in the following way. Add an extra (third) strand, and represent a Lie word
v ∈ lie2 by a binary tree whose x-labeled tails are attached to the first strand, y-labeled tails
to the second strand, and whose head lies on the extra strand. Its conjugate D−1vD is once
again a linear combination of such trees (with heads on the third strand), this is the output
of the action. See also

Bar-NatanDancso:WKO2
[WKO2, Proposition 3.19, “Conceptual argument”].

Let V be the Zw-value of the vertex for a homomorphic expansion Zw, then F = δ(πV ) is
a solution to the Kashiwara-Vergne problem in the sense of

AlekseevEnriquezTorossian:ExplicitSolutions
[AET]. For details see Section 4

of
Bar-NatanDancso:WKO2
[WKO2]. In particular the

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] formulas only concern the tree-level part π(V ).

The formula for F presented in
AlekseevEnriquezTorossian:ExplicitSolutions
[AET, Theorem 4] is16,

F = (Φ−1(x,−x− y), e−(x+y)/2Φ(−x− y, y)ey/2), (6) eq:AET

16There are some notational differences between
AlekseevTorossian:KashiwaraVergne
[AT] and

AlekseevEnriquezTorossian:ExplicitSolutions
[AET], hence we don’t switch strands here

as we did in
Bar-NatanDancso:WKO2
[WKO2]. There are sign differences between the formula (

eq:AETeq:AET
6) and

AlekseevEnriquezTorossian:ExplicitSo
[AET] due to notational

misalignment, for example our Φ is
AlekseevEnriquezTorossian:ExplicitSolutions
[AET]’s Φ−1. Our notation is consistent with all other papers in this

series and the formulas are computationally verified in
Bar-Natan:WKO4
[WKO4].
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Figure 36. The connection between Asw(↑2) and TAut2. fig:ATInterpretation

π(V )−1

π(V )
x

Figure 37. The action of π(V ) on the generator x of lie2. fig:ActOnx

meaning that the automorphism F conjugates x by Φ−1(x,−x − y), and conjugates y by
e−(x+y)/2Φ(−x− y, y)ey/2. This implicitly assumes an “interpretation map” Θ : U(lie22)exp →
TAut2. That is, an element (eλ1 , eλ2) ∈ U(lie22)exp is mapped to the automorphism of lie2
which sends the generator x of lie2 to e−λ1xeλ1 , and the generator y to e−λ2yeλ2 . Note
that this is not a group homomorphism: composition in TAut2 is not given by piecewise
multiplication of the conjugators.

We relate Θ(Φ−1(x,−x−y), e−(x+y)/2Φ(−x−y, y)ey/2) to δ(πV ), by constructing a map L
which completes a commutative triangle as in Figure

fig:ATInterpretationfig:ATInterpretation
36. At the level of primitives, the map

l ◦ θ has the property that δ ◦ (l ◦ θ) = θ. Extend this to the (completed) enveloping algebra

Û(lie22) as follows. An element of Û(lie22) is an (infinite) linear combination of products of Lie
words. As with l, represent each Lie word as a labeled tree, but then attach the products
of these labeled trees to the two strands by attaching all heads below all tails. The order of
tails doesn’t matter, the order of heads is in the order in which the words were multiplied.
Call this map L, and note that L is not an algebra homomorphism: it does not respect
multiplication in Û(lie22). However, the restriction of L to the group-like part Û(lie22)exp, also
denoted L (and which does not equal el) fits into a commutative triangle Θ = ∆ ◦ L.

Now we are ready to compute how π(V ) ∈ Aw(↑2) acts on the generator x of lie2 and
match this to the formula

eq:AETeq:AET
6. Recall the value of π(V ) shown in Figure

fig:ValueVfig:ValueV
35. The generator x

is represented by an arrow from the first strand to the added third strand, and the result of
the action is π(V )−1xπ(V ), as shown in Figure

fig:ActOnxfig:ActOnx
37. To compute this, one commutes the tail

of x to the top of the strand across π(V ) using
−−−→
STU relations, thereby π(V ) and π(V )−1

cancel, and the result of the action remains. Observe that due to the TC relation, only
arrows with heads on strand I act nontrivially on x, in other words only ψ1 matters, which
came from Φ−1(a2(13),−a2(13)−a4(13)). The arrows a23 and a43 act trivially on x, so, more simply

stated, the action on x is by ϕ(Φ−1(a21,−a21 − a41)). Note that L(Φ−1(x,−x − y), 0) =
ϕ(Φ−1(a21,−a21 − a41)), so Theorem

thm:mainthm:main
1.1 agrees with Formula (

eq:AETeq:AET
6) in the first component.
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Figure 38. A different expression of βb. fig:BuckleBraid2

One can proceed similarly for the second component: the action on y is by

ϕ(Φ−1(a23,−a23 − a43)e
a23Φ(a23, a43)) = L(0,Φ−1(x,−x− y)ex/2Φ(x, y)).

While this does not match the second component of Formula (
eq:AETeq:AET
6), it only differs from it by

a hexagon relation. Alternatively, note that one can obtain the second component of the
Formula (

eq:AETeq:AET
6) “on the nose” by starting from an equivalent (isotopic) expression17 of βb, as

shown in Figure
fig:BuckleBraid2fig:BuckleBraid2
38.
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