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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS II: THE

DOUBLE TREE CONSTRUCTION

DROR BAR-NATAN AND ZSUZSANNA DANCSO

Abstract. In this paper we provide a topological interpretation and independent topo-
logical proof of the formula by Alkeseev-Enriquez-Torossian

AlekseevEnriquezTorossian:ExplicitSolutions
[AET] for solutions of the

Kashiwara-Vergne problem in terms of associators.
We study a class of w-knotted objects: knottings of “2-dimensional foams” and vari-

ous associated features in four-dimensioanl space. We utilize a “double tree construction”
to show that every “expansion” (also called “universal finite type invariant” or “UFTI”)
of parenthesized braids extends uniquely first to an expansion/UFTI of knotted trivalent
graphs (a well known result), and then on to an expansion/UFTI of the w-knotted objects
mentioned above.

In algebraic language, an expansion for parenthesized braids is the same as a “Drinfel’d
associator” Φ, and an expansion for the aforementioned w-knotted objects is the same
as a solution V of the Kashiwara-Vergne problem

KashiwaraVergne:Conjecture
[KV] as reformulated by Alekseev and

Torossian
AlekseevTorossian:KashiwaraVergne
[AT]. Hence our result amounts to a topological framework for the result ofAlekseevEnriquezTorossian:ExplicitSolutions

[AET] that “there is a formula for V in terms of Φ”, along with an independent topological
proof that the said formula works — namely that the equations satisfied by V follow from
the equations satisfied by Φ.
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Figure 1. Two examples of parenthesized braids. Note that by convention the parenthetiza-

tion can be read from the distance scales between the endpoints of the braid, and so we are

going to omit the parentheses in the future. fig:PBexample

1. Introduction

1.1. Topology. We begin by describing a chain of maps from “parenthesized braids” to
“(signed) knotted trivalent graphs” to “w-tangled foams”:

K := {uPB
cl

−→ sKTG
a

−→ w̃TF}.

Let us first briefly elaborate on each of these spaces and maps.
Parenthesized braids are braids are braids whose ends are ordered along two lines, the

“bottom and the ”top“, along with parenthetizations of the endpoints on the bottom and
on the top. Two examples are shown in Figure

fig:PBexamplefig:PBexample
1. Parentehesized braids form a category

whose objects are parenthetizations, morphisms are the parenthesized braids themselves, and
composition is given by stacking. In addition to stacking, there are several operations defined
on parenthesized braids: strand addition, removal and doubling. A detailed introduction to
parenthesized braids is in

Bar-Natan:GT1
[BN1].

−

+

+
+

−

−

Trivalent graphs are oriented graphs with three edges meeting at each vertex
and whose vertices are equipped with a cyclic orientation of the edges. A
knotted trivalent graph (KTG) is a framed embedding of a trivalent graph into
R

3. KTGs are studied from a finite type invariant point of view in
Bar-NatanDancso:KTG
[BND1]. In

this paper we use a version of KTGs that was introduced and studied in Section
6.6 of

Bar-NatanDancso:WKO
[BND2], namely trivalent (1, 1)-tangles with some extra combinatorial

information: signs assigned to the trivalent vertices. We call this space sKTG,
as in

Bar-NatanDancso:WKO
[BND2]. An example is shown on the right. The space sKTG is also

equipped with several operations: tangle insertion, edge unzip, and edge orientation switch.

The space w̃TF is a minor extension of wTF o studied in Section 6 of
Bar-NatanDancso:WKO
[BND2], and will be

introduced in detail in Section
sec:wTFesec:wTFe
2. It can be described as a planar algebra generated by certain

features (various kinds of crossings and vertices, as well as “caps”) modulo certain relations
(“Reidemeister moves”) and equipped with a number of auxiliary operations beyond planar
algebra composition. This Reidemeister theory conjecturally represents knotted tubes in R

4

with singular “foam vertices”, caps, and attached one-dimensional strings.
The map cl : uPB → sKTG is the “closure map”. Given a parenthesized braid, close up

its top and bottom each by a tree according to the parentetization; this produces a sKTG
with the convention that all strands are oriented upwards, bottom vertices are negative, and
top vertices are positive. An example is shown below.
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cl
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−

The map a : sKTG → w̃TF arises combinatorially from the fact that all sKTG diagrams

can be interpreted as elements of w̃TF , and all sKTG Reidemeister moves remain true in

w̃TF . Topologically, it is an extended version of Satoh’s tubing map, described in Remark
3.1.1 of

Bar-NatanDancso:WKO
[BND2].

1.2. Algebra. The chain of maps K is an example of a general “algebraic structure”, as
defined in Section 4.1 of

Bar-NatanDancso:WKO
[BND2]. An algebraic structure consists of a collection of objects

belonging to a number of “spaces” or “different kinds”, and operations that may be unary,
binary, multinary or zeronary, between these spaces. In this case there are many spaces
(or kinds of objects): for example, parenthesized braids with specified bottom and top
parenthetizations form one space, so do knottings of a given trvalent graph. There is also
a large collection of operations, consisting of all the internal operations of uPB, sKTG and

w̃TF , as well as the maps a and cl.
In Section 4.2 and 4.3 of

Bar-NatanDancso:WKO
[BND2]we discuss projectivizations and expansions for general

algebraic structures. A projectivization is the associated graded space taken with respect
to the filtration by powers of the “augmentation ideal”. For the spaces uPB, sKTG and

w̃TF , the projectivizations Ahor, Au and Asw are the spaces of “horizontal chord diagrams
on parenthesized strands”, “chord diagrams on trivalent skeleta”, and “arrow diagrams”, as
described in

Bar-Natan:GT1
[BN1], Section 6.6 of

Bar-NatanDancso:WKO
[BND2], and Section

sec:wTFesec:wTFe
2 of this paper, respectively. As a

result, the projectivization of K is the structure

A := {Ahor cl
−→ Au α

−→ Asw},

where cl and α are the maps induced by cl and a, respectively. More specifically, cl is the
“closure of chord diagrams”, and α is “sending each chord to the sum of its two possible
oriantations”.

An expansion is a filtration-respecting map from an algebraic structure (where linear
combinations of objects of the same kind are allowed) to its projectivization, satisfying a
certain non-degeneracy property. Expansions are also called universal finite type invariants in
knot theory. A homomorphic extension also behaves well with respect to the operations of the
algebraic structure, that is, it intertwines each operation with its induced counterpart on the
projectivization. Hence, a homomorphic expansion Z : K → A is a triple of homomorphic

expansions Zb, Zu, and Zw for uPB, sKTG and w̃TF , respectively, so that the following
diagram commutes:

uPB
cl

//

Zb

��

sKTG
a

//

Z
u

��

w̃TF

Z
w

��

Ahor
cl

// Au
α

// Aw

(1)
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We recall (see
Bar-Natan:GT1
[BN1]) that a homomorphic expansion Zb for parenthesized braids is deter-

mined by a “horizontal chord associator” Φ = Zb( ). A homomorphic expansion Zu of sKTG
is also determined by an associator (horizontal chords or not; see Section 6.6 of

Bar-NatanDancso:WKO
[BND2]), so

the significance of left commutative square is to force Zu to come from a horizontal chord
associator. In turn, Zw (roughly speaking) is determined by a solution V = Zw( ) to the
Kashiwara-Vergne problem (see Section 6 of

Bar-NatanDancso:WKO
[BND2]), and the goal of this paper is to prove

the following theorem:

thm:main Theorem 1.1. (1) Assuming that Z : K → A exists, Z is determined by Φ. In other
words, there is a formula for V in terms of Φ, assuming that V exists.

(2) Said formula is the formula proven in
AlekseevEnriquezTorossian:ExplicitSolutions
[AET].

(3) Every Zb extends to a Z.

The key to the proof of the theorem is to show that the generator of w̃TF can be
expressed in terms of the generator of uPB and the operations of K. Assuming that Z
exists, this yields a formula for V in terms of Φ. The expression of in terms of uses a
“Double Tree Construction”, which will be discussed in Section

sec:DoubleTreesec:DoubleTree
??. For now, let us display

a picture with no explanation:

cl a number of these
and sKTG ops

in sKTG in sKTG

a, ”unzips”,
”punctures”, etc.

V in w̃TFΦ in uPB

2. The spaces w̃TF and Asw in more detail
sec:wTFe

As we mentioned in the introduction, w̃TF is a minor extension of the space wTF o studied
in Section 6 of

Bar-NatanDancso:WKO
[BND2]. It can be introduced as a planar algebra or a circuit algebra, we will

do the latter as it is simpler and more concise. Circuit algebras are defined in Section 4.4
of

Bar-NatanDancso:WKO
[BND2]; in short, they are similar to a planar algebras but the “connecting strands” are

allowed to cross. As in
Bar-NatanDancso:WKO
[BND2], each generator and relation of w̃TF has a local topological

interpretation. In
Bar-NatanDancso:WKO
[BND2], wTF o represented knotted tubes in R

4 with “foam vertices” and
“capped ends”. Two-dimensional tubes will be denoted by thick lines and one dimensional

ones by thin red lines. The space w̃TF extends wTF o by adding one-dimensional strands to
the picture. Note that one dimensional strands cannot be knotted in R

4, however, they can
be knotted with two-dimensional tubes.

w̃TF = CA
〈

, , , , , , ,,
∣∣∣ relations as in

Section
subsec:wrelssubsec:wrels
2.2

∣∣∣ operations as in
Section

subsec:wopssubsec:wops
2.3

〉
.

subsec:wgens

2.1. The generators of w̃TF . We begin by discussing the local topological meaning of each
generator shown above.
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The first five generators are as described in Section 6.1.1 of
Bar-NatanDancso:WKO
[BND2]. Recall that

knotted (more precisely, braided) tubes in R
4 can equivalently be thought of as

movies of flying rings in R
3. The two crossings stand for movies where two rings

trade places while the one corresponding to the under strand flies through the one
corresponding to the over strand. The dotted end represents a tube “capped off”
by a disk. The fourth and fifth generators stand for singular “foam vertices”, and
will be referred to as the positive and negative vertex, respectively. The positive
vertex represents the movie shown on the left: the right ring approaches the left

ring from below, flies inside it and merges with it. To be completely precise, w̃TF
as a circuit algebra has more generators than shown above: the vertices appear
with all possible orientations of the strands. However, all other versions can be

obtained from the ones shown above using “orientation switch” operations (to be discussed
in Section

subsec:wopssubsec:wops
2.3).

The red (thin) strands denote one dimensional strings in R
4, or

“flying points in R
3”. The crossings between the two types of strands

(sixth and seventh generators) denote “points flying through rings”.
They are both shown on the right in band notation (see section 5.4
of

Bar-NatanDancso:WKO
[BND2]for an explanation of band notation). For example, the

bottom left picture means “the point on the approaches the ring on the left from below, flies
through the ring and out to the left above it.” This explains why there are no generators
with a thick strand crossing under a thin red strand: a ring cannot fly through a point.

Next is a trivalent vertex of 1-dimensional strings in R
4. Once again, this generator

should be shown in all possible strand orientation combinations. Finally, tha last generator
is a “mixed vertex”, in other words a one-dimesional string attached to the wall of a 2-
dimensional tube.

subsec:wrels

2.2. The relations. As a list, the relations for w̃TF look the same as the relations for wTF o:
{R1s, R2, R3, R4, OC, CP}. Recall that R1sis the weak (framed) version of the Reidemeister
1 move; R2 and R3 are the usual Reidemeister moves; R4 allowes moving a strand over or
under a vertex. OC is the “Overcrossings Commute” relation, and CP (Cap Pullout) allows
for pulling a capped strand out from under a crossing, as shown below:

OC: CP:

However, all relations should be interpreted in all possible combinations of strand types,
for example the lower strand of the Reidemeister two relation can either be thick black or
thin red:

R2:

5
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Similarly, any of the bottom strands of the R3, R4, or OC relations may be thin red.

As in wTF o, the relations all have local topological meaning and conjecturally w̃TF is a
Reidemeister theory for ribbon knotted tubes in R

4 with caps, singular foam vertices and
attached strings. For example, Reidemeister 2 with a thin red bottom strand is imposed
because a point flying in through a ring and then immediately flying back out is isotopic to
not having any interaction between the point and ring at all.

subsec:wops
2.3. The operations. Like wTFo, wTFe is equipped with a set of auxiliary operations in
addition to the circuit algebra structure.

The first of these is orientation reversal. For the thin (red) strands, this simply means
reversing the direction of the strand. For the thick (tube) strands, orientation switch comes
in two flavours. Recall from

Bar-NatanDancso:WKO
[BND2]that in the topological interpretation of wTF o, each

tube is oriented as a 2-dimensional surface, and also has a distinguished “core”: a line along
the tube which is oriented as a 1-dimensional manifold and determines the “direction” or
“1-dimensional orientation” of the tube. Both of these are determined by the direction of
the strand in the circuit algebra, via Satoh’s tubing map.

Topologically, the operation “orientation switch”, denoted Se for a given strand e, acts by
reversing both the (1-dimensional) direction and the (2-dimensional) orientation of the tube
e. Diagrammatically, this corresponds to simply reversing the direction of the corresponding
strand e.

e e e e

Ae Ae

The “adjoint” operation, denoted Ae, on the other hand
only reverses the (1-dimensional) direction of the tube e, not
the orientation as a surface. Diagrammatically, this mani-
fests as reversing the strand direction and adding two virtual
crossings on either side of each crossing where e crosses over
another strand, as shown on the right (note that the strand below e may be thick or thin).
For more details on orientations and orientation switches, see

Bar-NatanDancso:WKO
[BND2].

e
ue

The unzip operation ue doubles the strand e using the blackboard
framing, and then attaches the ends of the doubled strand to the
connecting ones, as shown on the right. We restrict unzip to strands
whose two ending vertices are of different signs. (For the definition
of crossing and vertex signs, see Sections 5.4 and 6.1 of

Bar-NatanDancso:WKO
[BND2].)

Topologically, the blackboard framing of the diagram induces a
framing of the corresponding tube in R

4 via Satoh’s tubing map, and unzip is the act of
“pushing the tube off of itself slightly in the framing direction”. Note that unzips preserve
the ribbon property.

A related operation, disk unzip, is unzip done on a capped strand, pushing the tube off in
the direction of the framing (in diagram world, in the direction of the blackboard framing),
as before. An example in the line and band notations is shown below.

uu =

We also allow the deletion of “long linear” strands, meaning strands that do not end in a
vertex on either side.

6
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TC
+=+

−→

4T
=

Figure 2. The TC and
−→
4T relations fig:TCand4T

So far all the operations we have introduced had already existed in wTF o. The first new
operation is called “puncture”, denoted pe, which diagrammatically simply turns the thick
black strand e into a thin red one. The corresponding topological picture is “puncturing a
tube”, i.e., removing a small disk from it and retracting the rest to its core. Any crossings
where e passes under another strand are not affected, while crossings in which e is the over
strand turn into virtual crossings.

e pe

pp

p

p

p pFor simplicity, we place a restriction on which strands can be punc-
tured, namely at each (fully thick black) vertex puctures are only al-
lowed for one of the three meeting strands, as shown in the top row of
the figure on the right. More general puctures could be allowed in a
theory complete with “wens”, as in Section 6.5 of

Bar-NatanDancso:WKO
[BND2]. The bottom

row of the same figure shows what happens when puncturing one of the
thick strands of a mixed vertex. Topologically, this is because the mixed vertex represents
a string attached to the ouside of a tube, so when puncturing e, the entire tube retracts to
its core. Finally, puncturing a capped tube makes it disappear.

2.4. The projectivization Asw. As in
Bar-NatanDancso:WKO
[BND2], the space w̃TF is filtered by powers of the

augmentation ideal and its associated graded space or projectivization, denoted Asw, is a
“space of arrow diagrams on foam skeletons with strings”. As a circuit algebra, Asw is
presented as follows:

w̃TF = CA

〈
, , ,, ,,

∣∣∣∣
relations
as below

∣∣∣∣
operations
as below

〉
.

The first and fifth generators are called single arrows and they are of degree one, while all
others are “skeleton features” of degree zero. The relations are almost the same as those for

the projectivization of wTF o:
−→
4T (the 4-Term relation), TC (Tails Commute), RI (Rotation

Invariance), CP (Cap Pullout), VI (Vertex Invariance), with the additional new relation TF

(Tails Forbidden on strings). The TC and
−→
4T relations are shown in Figure

fig:TCand4Tfig:TCand4T
2, note that the

3rd strand in each term of the
−→
4T relation is ambiguous: it can be either thick black or thin

red, the relation applies in either case. VI is picturd in Figure
fig:VIfig:VI
3: here the ± signs depend

on the strand orientations and the type of the vertex and the types of each strand (thick
black or thin red) is left ambiguous: the VI relation applies in all cases. Figure

fig:RICPTFfig:RICPTF
4 shows the

other three relations: RI, CP and TF. Note that technically TF is not even a relation: there
were no generators with an arrow tail on a thin red strand, so saying that such an element
vanishes is superfluous. However, without TF the VI relation would have to be stated for
all the sub-cases of 0, 1 or 3 thin red strands meeting at the vertex, instead of simply saying
that arrow tails on these strands vanish. We prefer stating them this way as it is cleaner,
even if it is a slight abuse of notation.

As in
Bar-NatanDancso:WKO
[BND2](see Definition 3.13), we define a “w-Jacobi diagram” (or just “arrow dia-

gram”) to be similar to by also allowing tricalent chord vertices, each of which is equipped
7
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± ± ± ±± ± = 0, and = 0.

Figure 3. The VI relation: the vertices and strands could be of any type, but the same

throughout the relation. fig:VI

=
RI CP TF

= 0 = 0

Figure 4. The RI relation, CP relation and the TF relation (which is not really a relation). fig:RICPTF

= −

−−−→
IHX

= −

−−−→
STU2

+

= −

−−−→

STU1

= 0

−→

AS

Figure 5. The
−→
AS,

−−−→
IHX and the two

−−−→
STU rerations. fig:ASIHXSTU

with a cyclic orientation. Denote the circuit algebra of formal linear combinations of these
w-Jacobi diagrams by, Aswt. Then, as in Theorem 6.5 in

Bar-NatanDancso:WKO
[BND2], we have the following

bracket-rise theorem:

Theorem 2.1. The obvious inclusion of diagrams induces a circuit algebra isomorphism

Asw ∼= Aswt. Furthermore, the
−→
AS ,

−−−→
IHX and

−−−→
STU relations (see Figure

fig:ASIHXSTUfig:ASIHXSTU
5) hold in Aswt.

The proof is identical to the proof of Theorem 3.15 in
Bar-NatanDancso:WKO
[BND2]. In light of this isomorphism,

we will drop the extra “t” from the notation and use Asw to denote either of these spaces.
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