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ABSTRACT. This is the second in a series of papers dedicated to studying w-knots, and
more generally, w-knotted objects (w-braids, w-tangles, etc.). These are classes of knotted
objects that are wider but weaker than their “usual” counterparts. To get (say) w-knots
from usual knots (or u-knots), one has to allow non-planar “virtual” knot diagrams, hence
enlarging the the base set of knots. But then one imposes a new relation beyond the ordinary
collection of Reidemeister moves, called the “overcrossings commute” relation, making w-
knotted objects a bit weaker once again. Satoh [Sa] studied several classes of w-knotted
objects (under the name “weakly-virtual”) and has shown them to be closely related to
certain classes of knotted surfaces in R*.

In this article we study finite type invariants of w-tangles and w-trivalent graphs (also
referred to as w-tangled foams). Much as the spaces A of chord diagrams for ordinary
knotted objects are related to metrized Lie algebras, the spaces AY of “arrow diagrams”
for w-knotted objects are related to not-necessarily-metrized Lie algebras. Many questions
concerning w-knotted objects turn out to be equivalent to questions about Lie algebras.
Most notably we find that a homomorphic universal finite type invariant of w-foams is
essentially the same as a solution of the Kashiwara-Vergne [I[{V] conjecture and much of
the Alekseev-Torossian [AT] work on Drinfel’d associators and Kashiwara-Vergne can be
re-interpreted as a study of w-foams.
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1. INTRODUCTION

This is the second in a series of papers on w-knotted objects. In the first paper [BND3],
we took a classical approach to studying finite type invariants of w-braids and w-knots
and proved that the universal finite type invariant for w-knots is essentially the Alexander
polynomial. In this paper we will study finite type invariants of w-tangles and w-tangled
foams from a more algebraic point of view, and prove that “homomorphic” universal finite
type invariants of w-tangled foams are in one-to-one correspondence with solutions to the
(Alekseev-Torossian version of) the Kashiwara-Vergne problem in Lie theory. Mathemati-
cally, this paper does not depend on the results of [BND3] in any significant way, and the
reader familiar with the theory of finite type invariants will have no difficulty reading this
paper without having read [BND3|. However, since this paper starts with an abstract re-
phrasing of the well-known finite type story in terms of general algebraic structures, readers
who need an introduction to finite type invariants may find it more pleasant to read [BND3]
first (especially Sections 1, 2 and 3.1-3.6).



1.1. Motivation and hopes. This article and its siblings [BND3] and [BND4] are efforts
towards a larger goal. Namely, we believe many of the difficult algebraic equations in math-
ematics, especially those that are written in graded spaces, more especially those that are
related in one way or another to quantum groups [Drl], and to the work of Etingof and
Kazhdan [EK], can be understood, and indeed would appear more natural, in terms of finite
type invariants of various topological objects.

This work was inspired by Alekseev and Torossian’s results [AT] on Drinfel’d associators
and the Kashiwara-Vergne conjecture, both of which fall into the aforementioned class of
“difficult algebraic equations in graded spaces”. The Kashiwara-Vergne conjecture — pro-
posed in 1978 [IXV] and proven in 2006 by Alekseev and Meinrenken [AM] — has strong
implications in Lie theory and harmonic analysis, and is a cousin of the Duflo isomorphism,
which was shown to be knot-theoretic in [BLT]. We also know that Drinfel'd’s theory of as-
sociators [Dr2] can be interpreted as a theory of well-behaved universal finite type invariants
of parenthesized tangles' [LM, BN2], or of knotted trivalent graphs [Dal.

In Section 4 we will re-interpret the Kashiwara-Vergne conjecture as the problem of finding
a “homomorphic” universal finite type invariant of a class of w-knotted trivalent graphs (more
accurately named w-tangled foams). This result fits into a bigger picture incorporating
usual, virtual and w-knotted objects and their theories of finite type invariants, connected
by the inclusion map from usual to virtual, and the projection from virtual to w-knotted
objects. In a sense that will be made precise in Section 2, usual and w-knotted objects with
this mapping form a unified algebraic structure, and the mysterious relationship between
Drinfel’d associators and the Kashiwara-Vergne conjecture is explained as a theory of finite
type invariants for this larger structure. This will be the topic of Section 4.6,

We are optimistic that this paper is a step towards re-interpreting the work of Etingof and
Kazhdan [EK] on quantization of Lie bialgebras as a construction of a well-behaved universal
finite type invariant of virtual knots [KKa| or of a similar class of virtually knotted objects.
However, w-knotted objects are quite interesting in thir own right, both topologically and
algebraically: they are related to combinatorial group theory, to groups of movies of flying
rings in R?, and more generally, to certain classes of knotted surfaces in R*. The references
include [BH, FRR, Gol, Mc, Sa].

1.2. Structure and plans. In [BND3| we studied the universal finite type invariants of w-
braids and w-knots, the latter of which turns out to be essentially the Alexander polynomial.
A more throrough introduction about our hopes and dreams and the u-v-w big picture can
also be found in [BND3]. In [BND4] we are going to provide a topological interpretation and
independent topological proof for Alekseev, Enriquez and Torossian’s explicit solutions for
the KV conjecture in terms of associators [ALT].

This paper starts with a discission on general algebraic structures, projectivizations (asso-
ciated graded structures), expansions (universal finite type invariants) and “circuit algebras”
in Section 2. In Section 3 we study w-tangles and identify some of the spaces [AT] where
the KV conjecture “lives” as the spaces of “arrow diagrams” (the w-analogue of chord dia-
grams) for certain w-tangles. In Section 4 we study w-tangled foams and we prove the main
theorems of this paper: Theorems 4.9 and 4.13. Theorem 4.9 states that there is a bijection
between solutions to the KV conjecture and “homomorphic” universal finite invariants for

Vg tangles” in [LM], “non-associative tangles” in [BN2].
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w-tangled foams. Theorem 4.13 describes the relationship with u-knotted trivalent graphs
and Drinfel’d associators. For more detailed information consult the “Section Summary”
paragraphs below and at the beginning of each of the sections. A glossary of notation is on

page 50.

Section 2, Algebraic Structures, Projec-
tivizations, Expansions, Circuit Algebras.
(page 5) In this section we define the “projec-
tivization” (Sec. 2.2) of an arbitrary algebraic
structure (2.1) and introduce the notions of “ex-
pansions” and “homomorphic expansions” (2.3)
for such projectivizations. Everything is so gen-
eral that practically anything is an example. The
baby-example of quandles is built in into the sec-
tion; the braid groups and w-braid groups ap-
peared already in [BND3], yet our main goal
is to set the language for the examples of w-
tangles and w-tangled foams, which appear later
in this paper. Both of these examples are types
of “circuit algebras”, and hence we end this sec-
tion with a general discussion of circuit algebras
(Sec. 2.4).

Section 3, w-Tangles. (page 11) In Sec. 3.1
we introduce v-tangles and w-tangles, the ob-
vious v- and w- counterparts of the standard
knot-theoretic notion of “tangles”, and briefly
discuss their finite type invariants and their as-
sociated spaces of “arrow diagrams”, A”(T,) and
A% (1,,). We then construct a homomorphic ex-
pansion Z, or a “well-behaved” universal finite
type invariant for w-tangles. The only alge-
braic tool we need to use is exp(a) := »_a"/n!

(Sec. 3.1 is in fact a routine extension of parts
of Section 3 of [BND3]). In Sec. 3.2 we show
that AY(1,) = U(a, $ ter, X t,), where a, is
an Abelian algebra of rank n and where tdet,
and tt,, two of the primary spaces used by Alek-
seev and Torossian [AT], have simple descrip-
tions in terms of cyclic words and free Lie alge-
bras. We also show that some functionals stud-
ied in [AT], div and j, have a natural interpre-
tation in our language. In 3.3 we discuss a sub-
class of w-tangles called “special” w-tangles, and
relate them by similar means to Alekseev and
Torossian’s sdetr,, and to “tree level” ordinary
Vassiliev theory. Some conventions are described
in Sec. 3.4 and the uniqueness of Z is studied in
Sec. 3.5.

Section 4, w-Tangled Foams. (page 28)
In this section we add “foam vertices” to w-
tangles (and a few lesser things as well) and ask
the same questions we asked before; primarily,
“is there a homomorphic expansion?”. As we
shall see, in the current context this question is
equivalent to the Alekseev-Torossian [AT] ver-
sion of the Kashiwara-Vergne [KX'V] problem and
explains the relationship between these topics
and Drinfel’d’s theory of associators.

1.3. Acknowledgement. We wish to thank Anton Alekseev, Jana Archibald, Scott Carter,
Karene Chu, Iva Halacheva, Joel Kamnitzer, Lou Kauffman, Peter Lee, Louis Leung, Jean-
Baptiste Meilhan, Dylan Thurston, and Lucy Zhang for comments and suggestions.



2. ALGEBRAIC STRUCTURES, PROJECTIVIZATIONS, EXPANSIONS, CIRCUIT ALGEBRAS

Section Summary. In this section we define the “projectivization” (Sec. 2.2)

of an arbitrary algebraic structure (2.1) and introduce the notions of “expansions”

and “homomorphic expansions” (2.3) for such projectivizations. Everything is so

general that practically anything is an example. The baby-example of quandles is My ea77.nel I);fr
buitin_inte-the-seetion: the braid groups and w-braid groups appeared already ans

in [BND3], yet our main goal is to set the language for the examples of w-tangles Furﬂr/‘ A
and w-tangled foams, which appear later in this paper. Both of these examples are P § :.H‘,m
types of “circuit algebras”, and hence we end this section with a general discussion

of circuit algebras (Sec. 2.4).

2.1. Algebraic Structures. An “algebraic structure” O is some collection (O,) of sets of
objects of different kinds, where the subscript « denotes the “kind” of the objects in O,, along
with some collection of “operations” g, where each 4 is an arbitrary map with domain
some product Oy, x -+ x O,, of sets of objects, and range a single set O,, (so operations
may be unary or binary or multinary, but they always return a value of some fixed kind).
We also allow some named “constants” within some O, ’s (or equivalently, allow some 0-nary
opera.tions).'3 The operations may or may not be subject to axioms — an “axiom” is an
identity asserting that some composition of operations is equal to some other composition
of operations.

F)l
Figure 1. An algebraic structure
@ with 4 kinds of objects and one \%v/

binary, 3 unary and two O-nary

operations (the constants 1 and ObJeft“
o). of klnd @

Figure | illustrates the general notion of an algebraic structure. Here are a few specific

examples:
e Groups: one kind of objects, one binary “multiplication”, one unary “inverse”, one

constant “the identity”, and some axioms.
Group homomorphisms: Two kinds of objects, one for each g
3 for each of the two groups and the homomorphism itself, going between the two
groups. Many axioms.
A group acting on a set, a group extension, a split group extension and many other
examples from group the(ny. /

A quandle is a set with an operatim@ satisfying (z T y) t 2= (z T v) T (v 1 2),
\ﬂ details inj¢ Cq CCH on (. .

Planar algebras as in [Jon] and circuit algebras as in Section 2.4,
e The algebra of knotted trivalent graphs as in [BN4, Da].

L1

2Alternatively define “algebraic structures” using the theory of “multicategories” [Lei]. Using this lan-
guage, an algebraic structure is simply a functor from some “structure” multicategory C into the multi-
category Set (or into Vect, if all O, are vector spaces and all operations are multilinear). A “morphism”
between two algebraic structures over the same multicategory C is a natural transformation between the two
functors representing those structures.
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e Let ¢: B — S be an arbitrary homomorphism of groups (though our notation suggests
what we have in mind — B may well be braids, and S may well be permutations). We
can consider an algebraic structure O whose kinds are the elements of S, for which
the objects of kind s € S are the elements of O, := ¢~ '(s), and with the product in
B defining operations O, X Oy, = Ogs,.

e Clearly, many more examples appear throughout mathematics.

2.2. Projectivization. Any algebraic structure O has a projectivization. First extend O
to allow formal linear combinations of objects of the same kind (extending the operations in
a linear or multi-linear manner), then let Z, the “augmentation ideal”, be the sub-structure
made out of all such combinations in which the sum of coeflicients is 0, then let Z™ be the
set of all outputs of algebraic expressions (that is, arbitrary compositions of the operations
in @) that have at least m inputs in Z (and possibly, further inputs in O), and finally, set

proj O = @ I fpm, (1)

m=>0

Clearly, with the operations inherited from O, the projectivization proj O is again algebraic
structure with the same multi-graph of spaces and operations, but with new objects and
with new operations that may or may not satisfy the axioms satisfied by the operations of
@. The main new feature in proj @ is that it is a “graded” structure; we denote the degree
m piece I™/Z™%! of proj O by proj,,O.

We believe that many of the most interesting graded structures that appear in mathematics
are the result of this construction, and that many of the interesting graded equations that
appear in mathematics arise when one tries to find “expansions”, or “universal finite type
invariants”, which are also morphisms® Z: @ — proj O (see Section 2.3) or when one studies

a.utomolplnsms of such expansions’. Indeed, the paper you are reading now is really
the study of the projectivizations of various algebraic structures associated with w-knotted
objects. We would like to believe that much of the theory of quantum groups (at “generic” k)
will eventually be shown to be a study of the projectivizations of various algebraic structures
associated with v-knotted objects.

Thus we believe that the operation described in Equation (1) is truly fundamental and
therefore worthy of a catchy name. So why “projectivization”? Well, it reminds us of graded
spaces, but really, that’s all. We simply found no better name. We're open to suggestions.

Let us end this section with two examples of projectivization: the proof of Proposmon 2.1

is an exercise; we include the proof of Proposition 2.2 in teon-o
e o L |
Proposition 2.1. If G is a group, proj G is a graded associative algebra with unst. O

Proposition 2.2. If () is a unital quandle, proj, &) is one-dimensional and proj. ¢ is a
graded right Leibmiz algebra’® generated by proj, Q).

3Indeed, if @ is finitely presented then finding such a morphism Z: @ — proj O amounts to finding its
values on the generators of O, subject to the relations of @. Thus it is equivalent to solving a system of
equations written in some graded spaces.
4The Drinfel’d graded Grothendieck-Teichmuller group GRT' is an example of such an automorphism
group. See [Dr3, BN
A Leibniz algebra is a Lie algebra without anticommutativity, as defined by Loday in [Lod].
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2.3. Expansions and Homomorphic Expansions. We start with the definition. Given
an algebraic structure O let filO denote the filtered structure of linear combinations of
objects in O (respecting kinds), filtered by the powers (Z™) of the augmentation ideal Z.
Recall also that any graded space G = €D, G, is automatically filtered, by (@ Gn)m

N> m=0"
Definition 2.3. An “expansion” Z for O is a map Z: O — proj O that preserves the kinds
of objects and whose linear extension (also called Z) to fil O respects the filtration of both
sides, and for which (gr Z) : (gr fil O = proj Q) — (gr proj @ = proj O) is the identity map

of proj O; we refer to this as the “universality property”.

In practical terms, this is equivalent to saying that 7 is a map @ — proj O whose re-
striction to Z™ vanishes in degrees less than m (in proj @) and whose degree m piece is the
projection Z™ — I™/Z™H,

We come now to what is perhaps the most crucial definition in this paper.

Definition 2.4. A “homomorphic expansion” is an expansion which also commutes with all
the algebraic operations defined on the algebraic structure O.

Why Bother with Homomorphic Expansions? Primarily, for two reasons:

e Often times proj @ is simpler to work with than Q; for one, it is graded and so it allows
for finite “degree by degree” computations, whereas often times, such as in many
topological examples, anything in @ is inherently infinite. Thus it can be beneficial
to translate questions about O to questions about proj@. A simplistic example
would be, “is some element a € O the square (relative to some fixed operation) of an
element b € O7”. Well, if Z is a homomorphic expansion and by a finite computation
it can be shown that Z(a) is not a square already in degree 7 in proj @, then we've
given a conclusive negative answer to the example question. Some less simplistic and
more relevant examples appear in [BNA].

e Often times proj O is “finitely presented”, meaning that it is generated by some
finitely many elements gq,..., g € O, subject to some relations R, ... R, that can
be written in terms of gi1,..., g, and the operations of @. In this case, finding a
homomorphic expansion Z is essentially equivalent to guessing the values of Z on
g1, .., 0k, in such a manner that these values Z(gy),...,Z(gx) would satisfy the
proj O versions of the relations R, ... ,. So finding Z amounts to solving equations
in graded spaces. It is often the case (as will be demonstrated in this paper; see
also [BN2, BN3]) that these equations are very interesting for their own algebraic
sake, and that viewing such equations as arising from an attempt to solve a problem
about O sheds further light on their meaning.

In practise, often times the first difficulty in searching for an expansion (or a homomorphic
expansion) Z: O — proj O is that its would-be target space proj @ is hard to identify. It
is typically easy to make a suggestion A for what proj O could be. It is typically easy to
come up with a reasonable generating set D,, for Z™ (keep some knot theoretic examples in
mind, or the case of quandles as in Proposition 2.2). It is a bit harder but not exceedingly
difficult to discover some relations R satisfied by the elements of the image of D in 7™ /71
(4T, ﬁ , and more in knot theory, the Jacobi relation in Proposition 2.2). Thus we set
A = D/R; but it is often very hard to be sure that we found everything that ought to go
in R; so perhaps our suggestion .A is still too big? Finding 47T for example was actually not

that easy. Could we have missed some further relations that are hiding in A7
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The notion of an A-expansion, defined below, solves two problems are once. Once we find
an A-expansion we know that we've identified proj @ correctly, and we automatically get
what we really wanted, a (proj O)-valued expansion.

Definition 2.5. A “candidate projectivization” for an algebraic struc-

ture @ is a graded structure A with the same operations as O along i A
with a homomorphic surjective graded map n: A — projO. An “A- =4 ngr Za
expansion” is a kind and filtration respecting map Z4: O — A for
which (gr Z4) o m: A — A is the identity. One can similarly define
“homomorphic A-expansions”.

OTprojO

Proposition 2.6. If A is a candidate projectivization of O and Z4: O — A is a homomor-
phic A-expansion, then m : A — proj O is an isomorphism and Z 1= noZ 4 is a homomorphic
expansion. (Often in this case, A is identified with proj O and Z is identified with Z ).

Proof  w is surjective by birth. Since (gr Z4) o« is the identity, 7 it is also injective and
hence it is an isomorphism. The rest is immediate. ]

2.4. Circuit Algebras. “Circuit algebras” are so common and everyday, and they make
such a useful language (definitely for the purposes of this paper, but also elsewhere), we
find it hard to believe they haven’t made it into the standard mathematical vocabulary”.
People familiar with planar algebras [Jon| may note that circuit algebras are just the same
as planar algebras, except with the planarity requirement dropped from the “connection
diagrams” (and all colourings are dropped as well).

The everyday intuition for circuit algebras comes from electronic circuits, whose compo-
nents can be wired together in many, not necessarily planar, ways, and it is not important
to know how these wires are embedded in space. For details and more motivation ses=%\We EQ('F (N
start formalizing this image by defining “wiring diagrams”, the abstract analogs of printed {. L=
circuit boards. Let N denote the set of natural numbers including 0, and for n € N let n
denote some fixed set with n elements, say {1,2,...,n}.

Definition 2.7. Let k,n,ny,...,nt € N be natural numbers. A “wiring diagram” D) with
inputs ny, ... n, and outputs n is an unoriented compact 1-manifold whose boundary is n a

W AERRN U7 regarded up to homeomorphism. In strictly combinatorial terms, it is a pairing of
the elements of the set nIIn, IT- - -1Tny, along with a single further natural number that counts

closed circles. If Dy;...; D,, are wiring diagrams with inputs ni1, ..., Rk - -5 Pty - -+ s Poniden
and outputs ny;...;n, and D is a wiring diagram with inputs n;;...;n, and outputs n,

there is an obvious “composition” D(Dy, ..., D,,) (obtained by gluing the corresponding 1-
manifolds, and also describable in completely combinatorial terms) which is a wiring diagram
with inputs (nij)lgigk,-,lgjgm and outputs n (note that closed circles may be created in

D(Dy,...,D,,) even if none existed in D and in Ds;...; Dy,).

A circuit algebra is an algebraic structure (in the sense of Section 2.2) whose operations
are parametrized by wiring diagrams. Here’s a formal definition:

Definition 2.8. A circuit algebra consists of the following data:
e For every natural number n > 0 a set (or a Z-module) C,, “of circuits with n legs”.

60r have they, and we have been looking the wrong way?
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e For any wiring diagram D with inputs ny, . .. n; and outputs n, an operation (denoted
by the same letter) D: Cy, x -+- x Cp,, — C,, (or linear D: C,, @ -+ ® Cr, = Gy if
we work with Z-modules).

We insist that the obvious “identity” wiring diagrams with n inputs and n outputs act as
the identity of C,,, and that the actions of wiring diagrams be compatible in the obvious
sense with the composition operation on wiring diagrams.

A silly but useful example of a circuit algebra is the circuit algebra S of empty circuits,
or in our context, of “skeletons”. The circuits with n legs for S are wiring diagrams with n
outputs and no inputs; namely, they are 1-manifolds with boundary n (so n must be even).

More generally one may pick some collection of “basic components” (analogous to logic
gates and junctions for electronic circuits as in Figure 20) and speak of the “free circuit
algebra” generated by these components; even more generally we can speak of circuit algebras
given in terms of “generators and relations”. (In the case of electronics, our relations may
include the likes of De Morgan’s law —(p V ¢) = (-p) A (—¢q) and the laws governing the
placement of resistors in parallel or in series.) We feel there is no need to present the details
here, yet many examples of circuit algebras given in terms of generators and relations appear
in this paper, starting with the next section. We will use the notation C' = CA{(G | R) to
denote the circuit algebra generated by a collection of elements G subject to some collection
R of relations.

People familiar with electric circuits know that connectors sometimes come in “male” and
“female” versions, and that you can’t plug a USB cable into a headphone jack. Thus one
may define “directed circuit algebras” in which the wiring diagrams are oriented, the circuit
sets C), get replaced by Cyp, for “circuits with 7, incoming wires and ny outgoing wires”
and only orientation preserving connections are ever allowed. Likewise there is a “coloured”
version of everything, in which the wires may be coloured by the elements of some given set
X (which may include among its members the elements “USB” and “audio”) and in which
connections are allowed only if the colour coding is respected. We will leave the formal
definitions of directed and coloured circuit algebras, as well as the definitions of directed and
coloured analogues of the skeletons algebra & and generators and relations for directed and
coloured algebras, as an exercise.

Note that there is an obvious notion of “a morphism between two circuit algebras” and
that circuit algebras (directed or not, coloured or not) form a category. We fecl that a precise
definition is not needed. A lovely example is the “implementation morphism” of logic circuits
in the style of Figure 20 in Section 5 into more basic circuits made of transistors and resistors.

Perhaps the prime mathematical example of a circuit algebra is tensor algebra. If #; is
an element (a “circuit”) in some tensor product of vector spaces and their duals, and ¢, is
the same except in a possibly different tensor product of vector spaces and their duals, then
once an appropriate pairing D (a “wiring diagram”) of the relevant vector spaces is chosen,
t; and ty can be contracted (“wired together”) to make a new tensor D(#,t,). The pairing
D must pair a vector space with its own dual, and so this circuit algebra is coloured by the
set of vector spaces involved, and directed, by declaring (say) that some vector spaces are of
one gender and their duals are of the other. We have in fact encountered this circuit algebra
in Section 3.6 of [BND3].



Let G be a group. A G-graded algebra A is a collection {Ay: g € G} of vector spaces,
along with products 4, @ A, — Ay, that induce an overall structure of an algebra on
A= @, eq Ay In a similar vein, we define the notion of an S-graded circuit algebra:

Definition 2.9. An S-graded circuit algebra, or a “circuit algebra with skeletons”; is an
algebraic structure C' with spaces Cj, one for cach element 3 of the circuit algebra of skeletons
S, along with composition operations Dg, g, : Cg, x -+ x Cg — U, defined whenever D is
a wiring diagram and 8 = D{fy, ..., 8x), so that with the obvious induced structure, 11 8 Cs
is a circuit algebra. A similar definition can be made if/when the skeletons are taken to be
directed or coloured.

Loosely speaking, a circuit algebra with skeletons is a circuit algebra in which every element
T has a well-defined skeleton (7)) € &. Yet note that as an algebraic structure a circuit
algebra with skeletons has more “spaces” than an ordinary circuit algebra, for its spaces are
enumerated by skeleta and not merely by integers. The prime examples for circuit algebras
with skeletons appear in the next section.
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3. W-TANGLES

Section Summary. In Sec. 3.1 we introduce v-tangles and w-tangles, the obvious
v- and w- counterparts of the standard knot-theoretic notion of “tangles”, and
briefly discuss their finite type invariants and their associated spaces of “arrow
diagrams”, AY(1,) and AY(1,). We then construct a homomorphic expansion Z,
or a “well-behaved” universal finite type invariant for w-tangles. The only algebraic
tool we need to use is exp(a) := > a"/n! (Sec. 3.1 is in fact a routine extension of
parts of Section 3 of [BND3]). In Sec. 3.2 we show that A (1) = U(a,Stder, x tr,),
where a,, is an Abelian algebra of rank n and where tev,, and tv,,, two of the primary
spaces used by Alekseev and Torossian [AT], have simple descriptions in terms of
cyclic words and free Lie algebras. We also show that some functionals studied
in [AT], div and j, have a natural interpretation in our language. In 3.3 we discuss
a subclass of w-tangles called “special” w-tangles, and relate them by similar means
to Alekseev and Torossian’s sdet,, and to “tree level” ordinary Vassiliev theory.
Some conventions are described in Sec. 3.4 and the uniqueness of Z is studied in
Sec. 3.5.

3.1. v-Tangles and w-Tangles. With the (surprisingly pleasant) task of defining circuit
algebras completed in Section 2.4, the definition of v-tangles and w-tangles is simple.

Definition 3.1. The (S-graded) circuit algebra o' of v-tangles is the S-graded directed
circuit algebra generated by two generators in s, called the “positive crossing” and the
“negative crossing”, modulo the R1°, R2 and R3 moves as depicted in Figure 2 (these relations
clearly make sense as circuit algebra relations between our two generators), with the obvious
meaning for their skeleta. The circuit algebra wT’ of w-tangles is the same, except we also
mod out by the OC relation of Figure 2 (note that each side in that relation involves only
two generators, with the apparent third crossing being merely a projection artifact). In fewer
words, o :=CA{X R |0=0[, ¥=| | X=3%), and ol =o'/ >R=)..

Remark 3.2. Since we do not mod out by the R1 relation, only by its weak (or “spun”) version
R1°, it is more appropriate to call our class of v/w-tangles framed v/w-tangles. (Recall
that framed u-tangles are characterized as the planar algebra generated by the positive and
negative crossings modulo the R1°, R2 and R3 relations.) However, since we are for the
most part interested in studying the framed theories (c¢f. Comment 4.4), we will reserve the
unqualified name for the framed case, and will explicitly write “unframed v/w-tangles” if
we wish to mod out by R1. For a more detailed explanation of framings and R1 moves, see
Remark 3.5 of [BND3].

10#) (0-C) D RoX 107 &) KoK

2
/ \ ’ 3 ) - 8
R R orXe
M OC uc

Figure 2. The relations ( “Reidemeister moves" ) defining v and w-tangles, along with two
relations that are not imposed.
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Figure 3. Relations for v-arrow diagrams on tangle skeletons. Skeleta parts that are not
connected can lie on separate skeleton components; and the dotted arrow that reamains in
the same position means “all other arrows remain the same throughout”.

i<k

Figure 4. Relations for w-arrow diagrams on tangle skeletons.

Remark 3.3. One may also define v-tangles and w-tangles using the language of |
planar algebras, except then another generator is required (the “virtual crossing”) \4/%
and also a few further relations shown in Figure 2 (VR1I-VR3, M), and some of / P
the operations (non-planar wirings) become less elegant to define.

Our next task is to study the projectivizations proj oI" and proj v of vI' and wI'. These
are “arrow diagram spaces on tangle skeletons”: directed analogoues of the chord diagram
spaces of ordinary finite type invariant theory, and even more similar to the arrow diagram
spaces for braids and knots discussed in [BND3]. Our convention for figures will be to show
skeletons as thick lines with thin arrows (directed chords). Again, the language of circuit
algebras makes defining these spaces exceedingly simple.

Definition 3.4. The (S-graded) circuit algebra D¥ = D" of T_‘)T ; §
arrow diagrams is the graded and S-graded directed circuit o -
algebra generated by a single degree 1 generator a in Cy N

called “the arrow” as shown on the right, with the obvious

meaning for its skeleton. There are morphisms 7: D — I and m: DY — wl defined
by mapping the arrow to an overcrossing minus a no-crossing. (On the right some virtual
crossings were added to make the skeleta match). Let AY be D¥/6T, let AY := AY/TC =
v/ (ﬁ ,TC), and let A% := AY/RI and A™ := A"/RI as usual, with RI, 67, i ,and T'C
being the relations shown in Figures 3 and 4.

12



Proposition 3.5. The maps m above induce surjections w: A*® — projul’ and 7w: A% —
projwl'. Hence in the language of Definition 2.5, A% and A™ are candidate projectivizations
of uI' and uT .

Proof. Proving that 7 is well-defined amounts to checking directly that the RI and 6T
or RI, 47" and TC relations are in the kernel of 7. (Just like in the finite type theory of
virtual knots and braids.) Thanks to the circuit algebra structure, it is enough to verify the
surjectivity of 7 in degree 1. We leave this as an exercise for the reader. (]

We do not know if A*" is indeed the projectivizations of «I" (also see [BHLR]). Yet in the
w case, the picture is simple:

Theorem 3.6. The assignment 22— e* (with ¢* denoting the exponential of a single arrow
from the over strand to the under strand, interpreted via its power series) extends to a well
defined Z: wl' — A*. The resulting map Z is a homomorphic A*“-expansion, and in

—~

particular, A* = proj wl’ and Z is a homomorphic expansion.

Proof.  The proof is essentially the same as the proof of Theorem 2.15 in [BND3], and follows
[BP, AT]. One needs to check that Z satisfies the Reidemeister moves and the OC relation.
R follows easily from RI, R2 is obvious, TC implies OC. For R3, let A*“(1,) denote the
space of “arrow diagrams on n verical strands”. We need to verify that R := e® € A*(1y)
satisfies the Yang-Baxter equation
RIQRISRQS - R23R13R12, in ASTU(TS),

where R = ¢% means “place R on strands ¢ and j”. By 47 and T'C relations, both sides
of the equation can be reduced to ¢®2T®13192  proving the Reidemeister invariance of Z.

Z is by definition a circuit algebra homomorphism. Hence to show that Z is an A%Y-
expansion we only need to check the universality property in degree one, where it is very
casy. The rest follows from Proposition 2.6. O

In a similar spirit to Definition 3.13 of [BND3], one may define a “w-Jacobi diagram” on
an arbitrary skeleton:

Definition 3.7. A “w-Jacobi diagram on a tangle skeleton” " is a graph made of the following
ingredients:

e An oriented “skeleton” comnsisting of long lines and circles (i.e., an oriented one-
manifold). In figures we draw the skeleton lines thicker.

e Other directed edges, usually called “arrows”.

e Trivalent “skeleton vertices” in which an arrow starts or ends on the skeleton line.

e Trivalent “internal vertices” in which two arrows end and one arrow begins. The
internal vertices are cyclically oriented; in figures the assumed orientation is always
counterclockwise unless marked otherwise. Furthermore, all trivalent vertices must
be connected to the skeleton via arrows (but not necessarily following the direction
of the arrows).

Note that we allow multiple and loop arrow edges, as long as trivalence and the two-in-
one-out rule is respected.

Formal linear combinations of (w-Jacobi) arrow diagrams form a circuit algebra. We
denote by A" the quotient of the circuit algebra of arrow diagrams modulo the STU,,

“w-Jacobi diagram”, or sometimes “arrow diagram” or just “diagram”.

13
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Figure 5. The STﬁ relations for arrow diagrams, with their “central edges” marked e for
easier memorization.

_}
Figure 6. The AS and THX relations.

s, _/ ;%x ) /A\
ST

eg 61\ P

5 AN

Figure 7. Applying STU, and S7Us5 to the diagram on the left, we get the two sides of tﬁ

o < s . ; .
STU, relations of Figure 5, and the TC relation. We denote A** modulo the RI relation by
A%t We then have the following “bracket-rise” theorem:

Theorem 3.8. The obvious inclusion of arrow diagrams (with no internal vertices) into
w-Jacobt diagrams descendst_o;z map ©: AY — A, which is a circuit algebra isomorphism.
Furthermore, the ﬁ and THX relations of Figure 0 hold in A™. Consequently, it is also
true that A% & A58,

Proof. In the proof of Theorem 3.15 of [BND3] we showed this for long w-knots (i.e.,
tangles whose skeleton is a single long line). That proof applies here verbatim, noting that
it does not make use of the connectivity of the skeleton. s

In short, to check that ¢ is well-defined, we need to show that the STU relations imply
the éﬁ‘ relation. This is shown in Figure 7. To show that 7 is an isomorphism, we construct
an inverse A" — A" which “climinates all internal vertices” using a sequence of W
relations. Checking that this is well-defined requires some case alaysis; the fact that it is
an inverse to ¢ is obvious. Verifying that the B and 1@(} relations hold in A% is an easy
exercise. [

Given the above theorem, we no longer keep the distinction between A* and A" and
between A%Y and A%

We recall from [BND3] that a “k-wheel”, sometimes denoted wy, is a an arrow diagram
consisting of an oriented cycle of arrows with & incoming “spokes”, the tails of which rest
on the skeleton. An example is shown in Figure 8. In this language, the RI relation can be
rephrased using the STU relation to say that all one-wheels are 0, or wy = 0.

14



RI: = ()

Figure 8. A 4-wheel and the Rl relation re-phrased.

Remark 3.9. Note that if T is an arbitrary w tangle, then the equality on the left side of the
figure below always holds, while the one on the right generally doesn’t:

m L
= i et -2 y
: ®

The arrow diagram version of this statement is that if D is an arbitrary arrow diagram in A%,
then the left side equality in the figure below always holds (we will sometimes refer to this
as the “head-invariance” of arrow diagrams), while the right side equality (“tail-invariance” )
generally fails.

=0, yet

We leave it to the reader to ascertain that Equation (2) implies Equation (3). There is also
a direct proof of Equation (3) which we also leave to the reader, though see an analogous
statement and proof in [BN2, Lemma 3.4]. Finally note that a restricted version of tail-
invariance does hold — see Section 3.3

3.2. A¥(1,) and the Alekseev-Torossian Spaces.

Definition 3.10. Let «T'(1,) (likewise wT'(1,)) be the set of v-tangles (w-tangles) whose

skeleton is the disjoint union of n directed lines. Likewise let A”(7,) be the part of AY
in which the skeleton is the disjoint union of n directed lines, with similar definitions for

A“(t), A (fa), and A™(1,).

Theorem 3.11. (Diagrammatic PBW Theorem.) Let BY denote the space of unitriva-
lent diagrams” with symmetrized ends coloured with colours in some n-clement set (say

{a1,.. :cn} ), modulo the A_S)' and IH X relations of Figure 6. Then there is an isomorphism

Proof sketch. Readers familiar with the diagrammatoc PBW theorem [BN1, Theorem 8|
will note that the proof carries through almost verbatim. There is a map x : BY — A“(1,),
which sends each uni-trivalent diagram to the average of all ways of attaching their univalent
ends to the skeleton of n lines, so that ends of colour x; are attached to the strand numbered
i. Le., a diagram with k; uni-valent vertices of colour z; is sent to a sum of [, &;! terms,
divided by []; &:!.

8 Oriented graphs with vertex degrees either 1 or 3, where trivalent vertices must have two edges incoming
and one edge outgoing and are cyclically oriented.

15
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Figure 9. A wheel of trees can be reduced to a combination of wheels, and a wheel of trees
with a Little Prince.

The goal is to show that y is an isomorphism by constructing an inverse for it. The image
of x are symmetric sums of diagrams, that is, sums of diagrams that are invariant under
permuting arrow endings on the same skeleton component. One can show that in fact any
arrow diagram D in A¥(*,) is equivalent via STU and T'C relations to a symmetric sum. The
obvious canditate is its “symmetrization” Sym(D): the average of all ways of permuting the
arrow endings on each skeleton component of D. It is not true that each diagram is equivalent
to its symmetrization (hence, the “simply delete the skeleton” map is not an inverse for x),
but it is true that D — Sym(D) has fewer skeleton vertices (lower degree) than D, hence we
can construct ¥ ! inductively. The fact that this inductive procedure is well-defined requires
a proof; that proof is essentially the same as the proof of the corresponding fact in [BN1,
Theorem 8§|. O

Both A%(1,) and BY have a natural bi-algebra structure. In A"(f,) multiplication is
given by stacking. For a diagram D € A¥(1,,), the co-product A(D) is given by the sum of
all ways of dividing D between a “left co-factor” and a “right cofactor” so that the connected
components of D — S are kept intact, where S is the skeleton of D. In B} multiplication is
given by disjoint union, and A is the sum of all ways of dividing the connected components
of a diagram between two co-factors (here there is no skeleton). Note that the isomorphism
x above is a co-algebra isomorphism, but not an algebra homomorphism.

The primitives P¥ of BY are the connected diagrams (and hence the primitives of A¥ (1)
are the diagrams that remain connected even when the skeleton is removed). Given the “two
in one out” rule for internal vertices, the diagrams in P¥ can only be trees (diagrams with
no cycles) or wheels (a single oriented cycle with a number of “spokes”, or leaves, attached

to it). “Wheels of trees” can be reduced to simple wheels by repeatedly using ﬁ , as in
Figure 9.

Thus as a vector space P¥ is easy to identify. It is a direct sum Py = (trees) ® (wheels).
The wheels part is simply the graded vector space generated by all cyclic words in the letters
Ty, ..., o, Alekseev and Torossian [AT] denote the space of cyclic words by tr,, and so shall

we. The trees in P} have leals coloured @1, ..., 2,. Modulo B and lﬁ) , they correspond
to elements of the free Lie algebra lie,, on the generators x1, ..., x,. But the root of each such
tree also carries a label in {x1,...,Z,}, hence there are n types of such trees as separated
by their roots, and so P is isomorphic to the direct sum tr, ® @?:1 lie,,.

Note that with B:* and P:* defined in the analogous manner (i.e., factoring out by one-

wheels, as in the RI relation), we can also conclude that P2 2 tr,, /(deg 1) ® €D lie,.
16



By the Milnor-Moore theorem [MM], A™(1,) is isomorphic to the universal enveloping
algebra U(P}), with P} identified as the subspace P“(t,,) of primitives of A¥(1,) using the
PBW symmetrization map x: By — A"(1,). Thus in order to understand A*(1,) as an
assoclative algebra, it is enough to understand the Lie algebra structure induced on P¥ via
the commutator bracket of A% (1,,).

Our goal is to identify P“(7,) as the Lie algebra tv, x(a, @ tder,), which in itself is a
combination of the Lie algebras a,, tdet, and tr, studied by Alekseev and Torossian [AT].
Here are the relevant definitions:

Definition 3.12. Let a,, denote the vector space with basis x1,...,z,, also regarded as an
Abelian Lie algebra of dimension n. As before, let lie, = lie(a,) denote the free Lie algebra
on n generators, now identified as the basis elements of a,. Let der, = der(lie,) be the
(graded) Lie algebra of derivations acting on lie,,, and let

toer, = {D € Der,,: Vi Ja; s.b. D(x;) = [34, a4)}

denote the subalgebra of “tangential derivations”. A tangential derivation D is determined
by the a;’s for which D(z;) = [z;, a;], and determines them up to the ambiguity a; — a;4+o;z;,
where the a;’s are scalars. Thus as vector spaces, a, @ tdet,, = @7 lie,,.

Definition 3.13. Let Ass,, = U(lie,) be the free associative algebra “of words”, and let Ass;
be the degree > 0 part of Ass,. As before, we let tt, = Assx [y @y, vovmy,, =%y, ¢ = v, Ty )
denote “cyclic words” or “(coloured) wheels”. Ass,, ASS:[ , and fr, are t0er,-modules and
there is an obvious equivariant “trace” tr: Ass' — tr,,.

Proposition 3.14. There is a split short exact sequence of Lie algebras

L T
00— tr, — PY(tn) — a, @ ter, — 0.

Proof.  The inclusion ¢ is defined the natural way: tv, is spanned by coloured “floating”
wheels, and such a wheel is mapped into P*(1,) by attaching its ends to their assigned
strands in arbitrary order. Note that this is well-defined: wheels have only tails, and tails
commute.

As vector spaces, the statement is already proven: P¥(1,,) is generated by trees and wheels
(with the all arrow endings fixed on n strands). When factoring out by the wheels, only trees
remain. Trees have one head and many tails. All the tails commute with each other, and
commuting a tail with a head on a strand costs a wheel (by Wf ), thus in the quotient the
head also commutes with the tails. Therefore, the quotient is the space of floating (coloured)
trees, which we have previously identified with €], lie, = a,, & tder,,.

It remains to show that the maps ¢ and 7 are Lie algebra maps as well. For ¢ this is
easy: the Lie algebra tr, is commutative, and is mapped to the commutative (due to 7'C)
subalgebra of P (1,,) generated by wheels.

To show that 7 is a map of Lie algebras we give two proofs, first a “hands-on” one, then
a “conceptual” one.

Hands-on argument. a, is the image of single arrows on one strand. These commute
with everything in P*(t,,), and so does a,, in the direct sum a,, @ tder,,.

It remains to show that the bracket of tder, works the same way as commuting trees in

P¥(1n). Let D and D' be clements of ter, represented by (ay,...,a,) and (af,...,a.),
L7



meaning that D(z;) = [z;,a;] and D'(x;) = [25,¢;] for i = 1,...,n. Let us compute the
commutator of these elements:

[D, D'|(z;) = (DD’ — D'D)(x;) = Dz, a;] — D'y, 0] =
= [[w;, ag], a}] + [x:, Dal] — [z, a}), ai] — [zi, D'ai] = |23, Day — D'a; + [as, aj]].

Now let 7" and T” be two trees in P¥(1,)/ tt,, their heads on strands ¢ and j, respec-
tively (¢ may or may not equal j). Let us denote by a; (resp. a;) the element in [ie, given
by forming the appropriate commutator of the colours of the tails of 77s (resp. 77). In
toet,, let D = 7(T) and D' = n(1"). D and D’ are determined by (0,...,a;...,0), and
0,...,a},... 0), respectively. (In each case, the i-th or the j-th is the only non-zero compo-
nent.) The commutator of these elements is given by [D, D'|(z;) = [Daj — D'a; + [a, a], @],
and [D, D'|(z;) = [Da) — D'a; + [a;, a}], x;]. Note that unless i = j, a; = a; = 0.

In PY(1,)/ t,, all tails commute, as well as a head of a tree with its own tails. Therefore,
commuting two trees only incurs a cost when commuting a head of one tree over the tails
of the other on the same strand, and the two heads over each other, if they are on the same
strand. .

If i # 4, then commuting the head of T over the tails of T by STU costs a sum of trees
given by Da};, with heads on strand j, while moving the head of T" over the tails of T' costs
exactly —D'a;, with heads on strand 7, as needed.

If i = 4, then everything happens on strand i, and the cost is (Da) — D'a; + [a;, aj]), where
the last term happens when the two heads cross each other.

Conceptual argument. There is an action of P*(1,,) on lie,, as follows: introduce and
extra strand on the right. An element L of le, corresponds to a tree with its head on
the extra strand. Its commutator with an element of P“(f,) (considered as an element of
P¥(1,,41) by the obvious inclusion) is again a tree with head on strand (n + 1), defined to
be the result of the action.

Since L has only tails on the first n strands, elements of tr,,, which also only have tails, act
trivially. So do single (local) arrows on one strand (a,,). It remains to show that trees act as
tder,,, and it is enough to check this on the generators of lie,, (as the Leibniz rule is obviously
satisfied). The generators of lie, are arrows pointing from one of the first n strands, say
strand 4, to strand (n + 1). A tree with head on strand ¢ acts on this element, according

ﬁ . by forming the commutator, which is exactly the action of tdet,.

To identity P“(1,) as the semidirect product tr, x(a, & tdet,), it remains to show that
the short exact sequence of the Proposition splits. This is indeed the case, although not
canonically. Two —of the many— splitting maps u,{: tder, $a, — P(1,) are described
as follows: toev, @a, is identified with €}, lie,, which in turn is identified with floating
(coloured) trees. A map to P*(1;,) can be given by specifying how to place the legs on their
specified strands. A tree may have many tails but has only one head, and due to T'C, only
the positioning of the head matters. Let u (for upper) be the map placing the head of each
tree above all its tails on the same strand, while [ (for lower) places the head below all the
tails. Tt is obvious that these are both Lie algebra maps and that 7 o v and m o [ are both

the identity of tder, ®a,. This makes P (1) a semidirect product. ]
18



Remark 3.15. Let tr) denote tr,, mod out by its degree one part (one-wheels). Since the RI
relation is in the kernel of 7, there is a similar split exact sequence

00—t Bopw Ty o @40 e, .

Definition 3.16. For any D) € Wet,, (I —u)D is in the kernel of 7, therefore is in the image
of ¢, so ¢l — u)D makes sense. We call this element divD.

Definition 3.17. In [AT] div is defined as follows: div(as,...,a,) = > 7_, tr((par)xs),
where J;, picks out the words of a sum which end in z; and deletes their last letter z;, and
deletes all other words (the ones which do not end in zy).

Proposition 3.18. The div of Definition 5.10 and the div of [AT] are the same.

Proof. It is enough to verify the claim for the linear genmerators of tdet,,

namely, elements of the form (0,...,a;,...,0), where a; € lie, or equivalently, -
single (floating, coloured) trees, where the colour of the head is j. By the :
Jacobi identity, each a; can be written in a form a; = [z, [z, [ .. 2] .. ] 77

Equivalently, by ﬁ , each tree has a standard “comb” form, as shown on the x&,-r—>
picture on the right.

For an associative word ¥ = y1yp...1 € Ass!, we introduce the notation
Y] == [y, [y, [ .., w]...]. The div of [AT] picks out the words that end in z;, forgets the
rest, and considers these as cyclic words. Therefore, by interpreting the Lie brackets as
commutators, one can easily check that for a; written as above,

div((0,...,a;4,...,0)) = Z =y s o B g [, e O [ (4)

@ da =,

Ly,

In Definition 3.16, div of a tree is the difference be-
tween attaching its head on the appropriate strand

(here, strand j) below all of its tails and above. As . @

shown in the figure on the right, moving the head

across each of the tails on strand j requires an STU re- -~ 7’\
2 % A 43 » ; e o f % %

lation, which “costs” a wheel (of trees, which is equiv- 2 J J

alent to a sum of honest wheels). Namely, the head gets connected to the tail in question.

So div of the tree represented by a; is given by
> a: o, —; ‘connect the head to the a leaf”.

This in turn gets mapped to the formula above via the correspondence between wheels and
cyclic words. O

Remark 3.19. There is an action of toet,
on tr, as follows. Represent a cyclic word
w € tr, as a wheel in P¥(1,) via the map
¢t. Given an element D € tder,, u(D), as =
defined above, is a tree in P™(T,) whose o
head is above all of its tails. We define D -

w =1 Hu(D)(w) — t(w)u(D)). Note that

uw(D)e(w)—(w)u(D) is in the image of ¢, i.c., a linear combination of wheels, for the following
19




reason. The wheel t(w) has only tails. As we commute the tree u(D) across the wheel, the
head of the tree is commuted across tails of the wheel on the same strand. Each time this
happens the cost, by the STU relation, is a wheel with the tree attached to it, as shown on
the right, which in turn (by 1@(}' relations, as Figure 9 shows) is a sum of wheels. Once
the head of the tree has heen moved to the top, the tails of the tree commute up for free by
TC. Note that the alternative definition, D -w = ¢~ ({(D)e(w) — t(w)l(D)) is in fact equal
to the definition above.

Definition 3.20. In [AT], the group TAut, is defined as exp(tder,). Note that tdev, is
positively graded, hence it integrates to a group. Note also that TAut, is the group of
“hasis-conjugating” automorphisms of lie,, i.e., for ¢ € TAut,, and any z;, ¢ = 1,...,n
generator of lie,, there exists an element g; € exp(lie,) such that g(z;) = g; 'zig:.

The action of tder,, on v, lifts to an action of TAut, on tv,, by interpreting exponentials
formally, in other words e” acts as > %T The lifted action is by conjugation: for w € tr,
and e? € TAut,, e’ - w = 7 {"P(w)e *P),

Recall that in Section 5.1 of [AT] Alekseev and Torossian construct a map j: TAut, — tr,
which is characterized by two properties: the cocycle property

j(gh) = j(g) +g-j(h), (5)

where in the second term multiplication by g denotes the action described above; and the
condition

d . :
E.}(GXP(SD))LS:O =i B). (6)
Now let us interpret 7 in our context.

Definition 3.21. The adjoint map *: AY(1,) = AY(T,) acts by “Hipping over diagrams
and negating arrow heads on the skeleton”. In other words, for an arrow diagram D,

P* i— (#1)#{1;21115 on skeleton}S(D)

”

where S denotes the map which switches the orientation of the skeleton strands (i.e. flips
the diagram over), and multiplies by (—1)#skeleton vertices

Proposition 3.22. For D € er,, define a map J: TAut, — exp(tv,) by J(e”) =
P (e*P)*. Then

exp(j(e”)) = J(e").

Proof. Note that (e*”)* = ¢! due to “Tails Commute” and the fact that a tree has only
one head.

Let us check that log J satisfies properties (5) and (6). Namely, with g = e”* and h = "2,
and using that tv, is commutative, we need to show that

J(ePreP?) = J(eP) (e - J(eP?)), (7)
where - denotes the action of toet, on tv,; and that
L JeP)] =g = div D (®)
—J(e*)|s=0 = div D.
ds 5=0
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Indeed, with BCH(D,, Ds) = log e el being the standard Baker—Campbell Hausdorff
formula,

BCH(uD1 uDz) ,~ BOH(ID1 1Dz)

J(eDleDz) - !](CRCH(UL,L)Q)) — e’h‘,(BCH(D],DQ)E—Z(BCH(DLDQ) — e

ulh juls (Jleg(j—H)l

— e e — euDl(euDg —ng) ~u,DlEuD1€ID1 _ (eulh . J(DQ))J(Dl),

as needed.
As for condition (6), a direct computation of the derivative yields

i
éJ(eS‘DHS:O =uD — 1D = div D,

as desired. O

3.3. The Relationship with u-Tangles. Let ' be the planar algebra of classical, or
“usual” tangles. There is a map a: «I" — wI" of u-tangles into w-tangles: algebraically, it is
defined in the obvious way on the planar algebra generators of «I'. (It can also be interpreted
topologically as Satoh’s tubing map, see Section 3.1.1 of [BND3], where a u-tangle is a tangle
drawn on a sphere. However, it is only conjectured that the circuit algebra presented here is
a Reidemeister theory for “tangled ribbon tubes in R*”.) The map a induces a corresponding
map a: A* = A", which maps an ordinary Jacobi diagram (i.e., unoriented chords with
internal trivalent vertices modulo the usual AS, THX and STU relations) to the sum of all
possible orientations of its chords (many of which are zero in A%Y due to the “two in one
out” rule).

oAl 2 A It is tempting to.ask whether the square on the le_zft commutes. Unff)r—
tunately, this question hardly makes sense, as there is no canonical choice
la l‘" for the dotted line in it. Similarly to the braid case of Section 2.5.5 of
wl =2 gsw  [BND3], the definition of the homomorphic expansion (Kontsevich integral)
for u-tangles typically depends on various choices of “parenthesizations”.
Choosing parenthesizations, this square becomes commutative up to some fixed corrections.
The details are in Proposition 4.16.
Yet already at this point we can recover something from the existence of the map a: " —
w', namely an interpretation of the Alekseev-Torossian [A'l'] space of special derivations,

s0et,, = {D € tder,,: D(Z ;) =0F.

Recall from Remark 3.9 that in general it is not possible to slide a strand under an arbitrary
w-tangle. However, it is possible to slide strands freely under tangles in the image of a, and
thus by reasoning similar to the reasoning in Remark 3.9, diagrams D in the image of «
respect “tail-invariance”:

-

Let P*(1,) denote the primitives of A%(1,,), that is, Jacobi diagrams that remain connected

when the skeleton is removed. Remember tha.t P (T,,,) stands for the primitives of A¥(1,).
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Equation (9) readily implies that the image of the composition
P(Tn) — > P¥(tn) —— an & Wex,

is contained in a,, @ s0et,. Even better is true.

Theorem 3.23. The image of wa is precisely a, @ sOer,,.

This theorem was first proven by Drinfel’d (Lemma after Proposition 6.1 in [D13]), but
the proof we give here is due to Levine [Lev].
Proof. Let [iefb denote the degree d piece of lie,. Let V,, be the vector space with basis
1, Loy -« y By Note that

Vi, @ lied =2 @ lied = (tder, Ba,)?,
i=1

where t0er,, is graded by the number of tails of a tree, and a,, is contained in degree 1.
The bracket defines a map f: V, ® [ie‘i — [iei+]: for a; € [iei where ¢ = 1,...,n, the

“ree” D = (ay,az,...,a,) € (tdev, Ha,)? is mapped to

BLE) = Z[:l:?;,a,,;] = ) (Z ’n) ,

where the first equality is by the definition of tensor product and the bracket, and the second
is by the definition of the action of tder,, on lie,.

Since @, is contained in degree 1, by definition sdet? = (ker 8)¢ for d > 2. In degree 1, a,
is obviously in the kernel, hence (ker 3)! = a,, @ sdet,,. So overall, ker § = a,, @ s0et,.

We want to study the image of the map P*(1") %, @ toer,. Under o, all connected
Jacobi diagrams that are not trees or wheels go to zero, and under 7 so do all wheels.
Furthermore, 7 maps trees that live on n strands to “floating” trees with univalent vertices
coloured by the strand they used to end on. So for determining the image, we may replace
P4(1") by the space 7T, of connected unoriented “floating trees” (uni-trivalent graphs), the
ends (univalent vertices) of which are coloured by the {z;}i=1 .. We denote the degree d
piece of T,,, i.e., the space of trees with d+ 1 ends, by 7.4. Abusing notation, we shall denote
the map induced by 7o on T, by a: T, = a, & ter,,. Since choosing a “head” determines
the entire orientation of a tree by the two-in-one-out rule, & maps a tree in 77{1 to the sum
of d + 1 ways of choosing one of the ends to be the “head”.

We want to show that ker 8 = im a. This is equivalent to saying that J3 is injective, where
B:V, ® lie, /im o — [ie, is map induced by 3 on the quotient by im a.

The degree d piece of V,, & lie,,, in the pictorial description, is  (0,....ai,....,0) =
generated by floating trees with d tails and one head, all coloured
by #;, i =1,...,n. This is mapped to lie™" which is isomorphic
to the space of floating trees with d+ 1 tails and one head, where
only the tails are coloured by the z;. The map 3 acts as shown
on the picture on the right.

We show that /3 is injective by exhibiting a map 7: [ieffl — T

V, ® lie? /im o so that 78 = I. 7 is defined as follows: given a
tree with one head and d + 1 tails 7 acts by deleting the head "—k/\— + %L
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and the arc connecting it to the rest of the tree and summing over all ways of choosing a new
head from one of the tails on the left half of the tree relative to the original placement of
the head (see the picture on the right). As long as we show that 7 is well-defined, it follows
from the definition and the pictorial description of A that 75 = I.

For well-definedness we need to check that the images of ﬁ and THX relations under 7
are in the image of o. This we do in the picture below. In both cases it is enough to check

the case when the “head” of the relation is the head of the tree itsclf, as otherwise an AS or
I HX relation in the domain is mapped to an ﬁ or ITH i relation, thus zero, in the image.

B > B C B ) B B C B B C' B 1
m ><—><+><@> P e
A A A A A A A A
B B ¢ B 4
>'/>'/—>/Eima
A A A

In the THX picture, in higher degrees A, B and C' may denote an entire tree. In this case,
the arrow at A (for example) means the sum of all head choices from the tree A. 0

Comment 3.24. In view of the relation between the right half of Equation (9) and the special
derivations s0ev, it makes sense to call w-tangles that satisfy the condition in the left half of
Equation (9) “special”. The a images of u-tangles are thus special. We do not know if the
global version of Theorem 3.23 holds true. Namely, we do not know whether every special
w-tangle is the a-image of a u-tangle.

3.4. The local topology of w-tangles. So far throughout this section we have presented
w-tangles as a Reidemeister theory: a circuit algebra given by generators and relations.
There is a topological intuition behind this definition: we can interpret the strings of a
w-tangle diagram as oriented tubes in R* as shown in Figure 10. Each tube has a 3-
dimensional “filling”, and each crossings represents a ribbon intersection between the tubes
where the one corresponding to the under-strand intersects the filling of the over-strand.
(For an explanation of ribbon intersections see [BND3, Section 2.2.2].) In Figure 10 we use
the drawing conventions of [CS]: we draw surfaces as if projected from R* to R3, and cut
them open when they are “hidden” by something with a higher 4-th coordinate.

Note that w-braids can also be thought of in terms of flying rings, with “time” being the
fourth dimension; this is equivalent to the tube interpretation in the obvious way. In this
language a crossing represents a ring (the under strand), flying through another (the over
strand). This is described in detail in [BND3, Section 2.2.1].

The assignment of tangled ribbon tubes in R* to w-tangles is well-defined (the Reidemeis-
ter and OC relations are satisfied), and after Satoh [Sa] we call it the tubing map and denote
it by &: {v-tangles} — {Ribbon tubes in R*}. It is natural to expect that it is an isomor-
phism. However, this remains unproven even for long w-knots. Nonetheless, ribbon tubes in
R* will serve as the topological motivation and local topological interpretation behind the

circuit algebras presented in this paper. In [BND3, Section 3.1.1] we present a topological
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Figure 10. A virtual crossing corresponds to non-interacting tubes, while a crossing means
that the tube corresponding to the under strand “goes through” the tube corresponding to
the over strand.

construction for §. We will mention that construction occasionally in this paper, but only
for motivational purposes.
We observe that the ribbon tubes in the image of § are endowed with two ’

orientations, we will call these the 1- and 2-dimensional orientations. The one
dimensional orientation is the direction of the tube as a “strand” of the tangle. In ‘
]

other words, each tube has a “core””: a distinguished line along the tube, which is i
oriented as a 1-dimensional manifold. Furthermore, the tube as a 2-dimensional \ -
surface is oriented as given by d. An example is shown on the right. S

Next we wish to understand the topological meaning of crossing signs. Recall that a
tube in R* has a “filling”: a solid (3-dimensional) cylinder embedded in R?*, with boundary
the tube, and the 2D orientation of the tube induces an orientation of its filling as a 3-
dimensional manifold. At a (non-virtual) crossing the core of one tube intersects the filling
of another transversely. Due to the complementary dimensions, the intersection is a single
point, and the 1D orientation of the core along with the 3D orientation of the filling it passes
through determines an orientation of the ambient space. We say that the crossing is positive
if this agrees with the standard orientation of R*, and negative otherwise. Hence, there are
four types of crossings, given by whether the core of tube A intersects the filling of B or
vice versa, and two possible signs in each case. In the flying ring interpretation, the 1D
orientation of the tube is the direction of the flow of time. The 2D and 1D orientations of
the tube together induce an orientation of the flying ring which is a cross-section of the tube
at each moment. Hence, saying “below” and “above” the ring makes sense, and there are
four types of crossings: ring A flies through ring B from below or from above; and ring B
flies through ring A from below or from above (cf. Exercise 2.7 in [BND3]). A crossing is
positive if the inner ring comes from below, and negative otherwise.

We take the opportunity here to intro- z
duce another notation, to be called the
“band notation”, which is more sugges-
tive of the 4D topology than the strand
notation we have been using so far. We
represent a tube in R* by a picture of an
oriented band in R?. By “oriented band”
we mean that it has two orientations: a 1D direction (for example an orientation of one of
the edges), and a 2D orientation as a surface. To interpret the 3D picture of a band as an

B p=D R4

9The core of Lord Voldemort’s wand was made of a phoenix feather.
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Figure 11. Crossings and crossing signs in band notation.

tube in R*, we add an extra coordinate. Let us refer to the R® coordinates as z,y and t,
and to the extra coordinate as z. Think of R? as being embedded in R* as the hyperplane
z = 0, and think of the band as being made of a thin double membrane. Push the membrane
up and down in the z direction at each point as far as the distance of that point from the
boundary of the band, as shown on the right. Furthermore, keep the 2D orientation of the
top membrane (the one being pushed up), but reverse it on the bottom. This produces an
oriented tube embedded in R?.

In band notation, the four possible crossings appear as in Figure |1, where underneath
each crossing we indicate the corresponding strand picture. The signs for each type of
crossing are also shown. Note that the sign of a crossing depends on the 2D orientation
of the over-strand, as well as the 1D direction of the under-strand. Hence, switching only
the direction (1D orientation) of a strand changes the sign of the crossing if and only if the
strand involved is the under strand. However, fully changing the orientation (both 1D and
2D) always switches the sign of the crossing. Note that switching the strand direction in the
strand notation corresponds to the complete (both 1D and 2D) orientation switch.

3.5. Good properties and uniqueness of the homomorphic expansion. In much
the same way as in the case of braids (Section 2.5.1 of [BND3]), Z has a number of good
properties with respect to various tangle operations: it is group-like'"; it commutes with
adding an inert strand (note that this is a circuit algebra operation, hence it doesn’t add
anything beyond homomorphicity); and it commutes with deleting a strand and with strand
orientation reversals. All but the last of these were explained in the context of braids and the
explanations still hold. Orientation reversal Sy : wil' — wl is the operation which reverses
the orientation of the k-th component. Note that in the world of topology (via Satoh’s tubing
map) this means reversing both the 1D and the 2D orientations. The induced diagrammatic
operation Sy: A”(T) — A"(Sk(T')), where T' denotes the skeleton of a given w-tangle, acts
by multiplying each arrow diagram by (—1) raised to the power the number of arrow endings
(both heads and tails) on the k-th strand, as well as reversing the strand orientation. Saying
that “Z commutes with S;.” means that the appropriate square commutes.

The following theorem asserts that a well-behaved homomorphic expansion of w-tangles
s unique:
Theorem 3.25. The only homomorphic expansion satisfying the good properties described

above is the Z defined in Section 5.1.

01 practice this simply means that the value of the crossing is an exponential.
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Proof.  We first prove the following claim: Assume, by contradiction, Aol
that Z’ is a different homomorphic expansion of w-tangles with the good 77 A\J + U

properties described above. Let ' = Z'(*2) and R = Z(’4), and denote
by p the lowest degree homogencous non-vanishing term of R’ — R. (Note that R’ determines
7' s0if Z' # Z, then R' # R.) Suppose p is of degree k. Then we claim that p = ayw+opwj,
is a linear combination of w; and wj;, where wj, denotes a k-wheel living on strand i, as shown
on the right.

Before proving the claim, note that it leads to a contradiction. Let d; denote the operation
“delete strand i7. Then up to degree k, we have di(R') = asw}, and do(R') = aywi, but 2’
is compatible with strand deletions, so a1 = ay = 0. Hence Z is unique, as stated.

On to the proof of the claim, note that Z’ being an expansion determines the degree 1
term of R’ (namely, the single arrow a'? from strand 1 to strand 2, with coeflicient 1). So
we can assume that & > 2. Note also that since both R’ and R are group-like, p is primitive.
Hence p is a linear combination of connected diagrams, namely trees and wheels.

Both R and R’ satisfy the Reidemeister 3 relation:

R12R13R23 _ R2£3R13R12 RMQRHBRQB _ R!23R113R1‘12

where the superscripts denote the strands on which R is placed (compare with the proof of
Theorem 3.6). We focus our attention on the degree k + 1 part of the equation for R', and
use that up to degree k + 1. We can write R = R+ p+ p, where p denotes the degree k+1
homogeneous part of R — R. Thus, up to degree k + 1, we have

(R12+p12+’u12)(R],3+pll%+H13)(R23+p23+,u23) — (R23+p23+'w23)(R13+p13+‘ul3)(R12+p12+‘u12)'

The homogencous degree k + 1 part of this equation is a sum of some terms which contain
p and some which don’t. The diligent reader can check that those which don’t involve p
cancel on both sides, either due to the fact that R satisfies the Reidemeister 3 relation, or
by simple degree counting. Rearranging all the terms which do involve p to the left side, we
get the following equation, where a¥ denotes an arrow pointing from strand i to strand j:

[am’ ,013} .2 [plzja]‘d} 4a [QLQ:PQS] e [pliz’a%] o [(Lls,p%} = [PB; CL23} =0 (10)

The third and fifth terms sum to [a'?+a'®, p*3], which is zero due to the “head-invariance”
of diagrams, as in Remark 3.9.

We treat the tree and wheel components of p separately. Let us first assume that p is
a linear combination of trees. Recall that the space of trees on two strands is isomorphic
to lieg D liey, the first component given by trees whose head is on the first strand, and the
second component by trees with their head on the second strand. Let p = py + po, where p;
is the projection to the i-th component for ¢ = 1,2.

Note that due to TC, we have [a'?, pi®] = [p)?,a'?] = [pi*,a*}] = 0. So Equation (10)
reduces to

0, 1%+ [0, 0] + [of?, %] + [pf®, @) + [pl, 0] = 0
The left side of this equation lives in 69?:1 lieg. Notice that only the first term lies in the
second direct sum component, while the second, third and last terms live in the third one,
and the fourth term lives in the first. This in particular means that the first term is itself
zero. By STU, this implies

0= [(L'lQ,pi§3] - _[Pl ) :L'l];:i:
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where [p1, z1]3* means the tree defined by the element [p1, z,] € lies, with its tails on strands
1 and 3, and head on strand 2. Hence, [p,2;] =0, s0 p; is a multiple of ;. The tree given
by p1 = x; is a degree 1 element, a possibility we have eliminated, so p; = 0.
Equation (10) is now reduced to
[02%, a®] + [p3*, 0] = 0.
Both terms are words in lies, but notice that the first term does not involve the letter zs.
This means that if the second term involves z3 at all, i.e., if py has tails on the second
strand, then both terms have to be zero individually. Assuming this and looking at the
first term, pi? is a Lie word in x; and x5, which does involve z, by assumption. We have
[p5%, a*] = |22, p3?] = 0, which implies p3? is a multiple of x5, in other words, p is a single
arrow on the second strand. This is ruled out by the assumption that & > 2.

On the other hand if the second term does not involve x at all, then py has no tails on
the second strand, hence it is of degree 1, but again £ > 2. We have proven that the “tree
part” of p is zero.

So p is a linear combination of wheels. Wheels have only tails, so the first, second and
fourth terms of (10) are zero due to the tails commute relation. What remains is [p'%, a?*] = 0.
We assert that this is true if and only if each linear component of p has all of its tails on one
strand.

To prove this, recall each wheel of p'? represents a cyclic word in letters z; and z3. The
map 7: p'* > [p'? 6*] is a map try — trz, which sends each cyclic word in letters 2, and x4
to the sum of all ways of substituting [z, 23] for one of the z3’s in the word. Note that if
we expand the commutators, then all terms that have x, between two z3's cancel. Hence all
remaining terms will be cyclic words in x; and x3 with a single occurrence of 25 in between
an x| and an xs.

We construct an almost-inverse ' to r: for a cyclic word w in try with one occurrence of
Ty, let 7' be the map that deletes x9 from w and maps it to the resulting word in tvy if
is followed by x3 in w, and maps it to 0 otherwise. On the rest of tr3 the map ' may be
defined to be 0.

The composition r'r takes a cyclic word in z; and x3 to itself multiplied by the number
of times a letter a3 follows a letter z; in it. The kernel of this map can consist only of cyclic
words that do not contain the sub-word wsxy, namely, these are the words of the form z% or
z%. Such words are indeed in the kernel of r, so these make up exactly the kernel of r. This
is exactly what needed to be proven: all wheels in p have all their tails on one strand.

This concludes the proof of the claim, and the proof of the theorem. O
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4. Ww-TANCLED Foams

Section Summary. In this section we add “foam vertices” to w-tangles (and a
few lesser things as well) and ask the same questions we asked before; primarily,
“is there a homomorphic expansion?”. As we shall see, in the current context this
question is equivalent to the Alekseev-Torossian [AT] version of the Kashiwara-
Vergne [KV] problem and explains the relationship between these topics and Drin-
fel’d’s theory of associators.

4.1. The Circuit Algebra of w-Tangled Foams. In the same manner as we did for
tangles, we will present the circuit algebra of w-tangled foams via its Reidemeister-style
diagrammatic description (accompanied by a local topological interpretation) rather than as
an entirely topological construct.

Definition 4.1. Let wI'F° (where o stands for “orientable”, to be explained in Section 4.5)
be the algebraic structure

uTF° = CA (ST N Y

Hence wl'F° is the circuit algebra generated by the generators listed above and described
below, modulo the relations described in Section 4.1.2, and augmented with several “auxiliary
operations”, which are a part of the algebraic structure of wI'F° but are not a part of its
structure as a circuit algebra, as described in Section 4.1.3.

To be completely precise, we have to admit that «I'F° as a circuit algebra j‘ /j )
has more generators than shown above. The last two generators are “foam N ® A
vertices”, as will be explained shortly, and exist in all possible orientations of the three
strands. Some examples are shown on the right. However, in Section 4.1.3 we will describe
the operation “orientation switch” which allows switching the orientation of any given strand.
In the algebraic structure which includes this extra operation in addition to the circuit algebra
structure, the generators of the definition above are enough.

w-relations as in| w-operations as >
Section 4.1.2 | in Section 4.1.3

4.1.1. The generators of wil'F°. There is topological meaning to each of the generators of
wTF°: they each stand for a certain local feature of framed knotted ribbon tubes in R%. As
in Section 3.4, the tubes are oriented as 2-dimensional surfaces, and also have a distinguished
core with a 1-dimensional orientation (direction).

The crossings are as explained in Section 3.4: the under-strand denotes the ring flying
through, or the “thin” tube. Recall that there really are four kinds of crossings, but in
the circuit algebra the two not shown are obtained from the two that are shown by adding
virtual crossings (see Figures 10 and 11).

74 TFhe-bulleted end denotes a cap on the tube, or a flying ring that shrinks to
a point, as in the figure on the right. For further motivation, in terms of the T -
topological construction of Satoh’s tubing map [BND3, Section 3.1.1}, the cap

means that “the string is attached to the bottom of the thickened surface”, as shown in the
figure below. We Recall that the tubing map is the composition

v x St s T x [—€,¢] = R™

Here v is a trivalent tangle ﬁ?@ “drawn on the virtual surface X7, with caps ending on

5. x {—¢}. The first embedding above is the product of this “drawing” with an S, while the
28



second arises from the unit normal bundle of ¥ in R*. For each cap (¢, —¢) the tube resulting
from Satoh’s map has a boundary component 9. = (¢, —¢) x S'. Follow the tubing map by
gluing a disc to this boundary component to obtain the capped tube mentioned above.

Z X [—€, € )
e glue disc .
i e i —
= Satoh J!

|

The last two generators denote singular “foam vertices”. As the notation sug-
gests, a vertex can be thought of as “half of a crossing”. To make this precise
using the flying rings interpretation, the first singular vertex represents the movie
shown on the left: the ring corresponding to the right strand approaches the ring
represented by the left strand from below, flies inside it, and then the two rings
fuse (as opposed to a crossing where the ring coming from the right would continue
to fly out to above and to the left of the other one). The second vertex is the
movie where a ring splits radially into a smaller and a larger ring, and the small
one flies out to the right and below the big one.

0006000

The vertices can also be interpreted topologically via a natu- <
ral extension of Satoh’s tubing map. For the first vertex, imag-
ine the broken right strand approaching the continuous left
strand directly from below in a thickened surface, as shown.

The reader might object that there really are four types of vertices (as there are four
types of crossings), and each of these can be viewed as a “fuse” or a “split” depending on the
strand directions, as shown in Figure 12. However, looking at the fuse vertices for example,
observe that the last two of these can be obtained from the first two by composing with
virtual crossings, which always exist in a circuit algebra.

The sign of a vertex can be defined the same way as the sign of a crossing (see Section 3.1).
We will sometimes refer to the first generator vertex as “the positive vertex” and to the second
one as “the negative vertex”. We use the band notation for V(‘I‘fi( es the same way we do for
crossings: the fully coloured band stands for the thin (inner) ring.

ALAAN TYY S
N

Figure 12. Vertex types in £,

Yox [—e €

-

4.1.2. The relations of wil'F°. In addition to the usual R1°, R2, R3, and OC moves of Figure 2,
we need more relations to describe the behaviour of the additional features.

Comment 4.2. As before, the relations have local topological explanations, and we conjecture
that together they provide a Reidemeister theory for “w-tangled foams”, that is, knotted

ribbon tubes with foam vertices in R% In this section we list the relations along with
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the topological reasoning behind them. However, for any rigorous purposes below, ufl'F*° is
studied as a circuit algebra given by the declared generators and relations, regardless of their
topological meaning.

Recall that topologically, a cap represents a capped tube or equivalently, flying ring shrink-
ing to a point. Hence, a cap on the thin (or under) strand can be “pulled out” from a crossing,
but the same is not true for a cap on the thick (or over) strand, as shown below. This is the
case for any orientation of the strands. We denote this relation by CP, for Cap Pull-out.

®
CP: ‘ ?

?
T ™ AE*s

The Reidemeister 4 relations assert that a strand can be moved under or over a crossing, as
shown in the picture below. The ambiguously drawn vertices in the picture denote a vertex
of any kind (as described in Section 4.1.1), and the strands can be oriented arbitrarily. The
local topological (tube or flying ring) interpretations can be read from the pictures below.
These relations will be denoted R4.

A AT A
W e

4.1.3. The auziliary operations of wTF°. The circuit algebra «ITF* is equipped with several
extra operations.

The first of these is the familiar orientation switch. We will, as mentioned in Section 3.4,
distinguish between switching both the 2D and 1D orientations, or just the strand (1D)
direction.

Topologically orientation switch, denoted Se, is the switch of both orientations of the
strand e. Diagrammatically (and this is the definition) S, is the operation which reverses
the orientation of a strand in a wl’F° diagram. The reader can check that when applying
Satoh’s tubing map, this amounts to reversing both the direction and the 2D orientation of
the tube arising from the strand.

; yet [ s o

The operation which, in topology world, reverses a tube’s direction but
not its 2D orientation is called “adjoint”, and denoted by A.. This is
slightly more intricate to define rigorously in terms of diagrams. In ad-
dition to reversing the direction of the strand e of the wi[F° diagram, A,
also locally changes each crossing of e over another strand by adding two

virtual crossings, as shown on the right. We recommend for the reader to
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Figure 13. Switching strand orientations at a vertex. The adjoint operation only switches
the tube direction, hence in the band picture only the arrows change. To express this vertex

in terms of the negative generating vertex in strand notation, we use a virtual crossing (see
Figure 12).

convince themselves that this indeed represents a direction switch in topology after reading
Section 4.5.

Remark 4.3. As an example, let us observe how the negative generator vertex can be ob-
tained from the positive generator vertex by adjoint operations and composition with virtual
crossings, as shown in Figure 13. Note that also all other vertices can be obtained from the
positive vertex via orientation switch and adjoint operations and composition by virtual
crossings.

As a small exercise, it is worthwhile to convince ourselves of the effect of orientation switch
operations on the band picture. For example, replace Ay Ay Az by 515,55 in figure 13. In
the strand diagram, this will only reverse the direction of the strands. The reader can check
that in the band picture not only the arrows will reverse but also the blue band will switch
to be on top of the red band.

Comment 4.4. Framings were discussed in Section 3.4, but have not played a significant
role so far, except to explain the lack of a Reidemeister 1 relation. We now need to dis-
cuss framings in order to provide a topological explanation for the unzip (tube doubling)
operation.

In the local topological interpretation of wiIF°, strands represent ribbon-knotted tubes
with foam vertices, which are also equipped with a framing, arising from the blackboard
framing of the strand diagrams via Satoh’s tubing map. Strand doubling is the operation
of doubling a tube by “pushing it off itself slightly” in the framing direction, as shown in
Figure 14.

Recall that ribbon knotted tubes have a “filling”, with only “ribbon” self-intersections
[BND3, Section 2.2.2]. When we double a tube, we want this ribbon property to be preserved.
This is equivalent to saying that the ring obtained by pushing off any given girth of the tube
in the framing direction is not linked with the original tube, which is indeed the case.

Satoh’s tubing map always match at the vertices, with the normal vectors
pointing either directly towards or away from the centre of the singular
ring. Note that the orientations of the three tubes may or may not match.
An example of a vertex with the orientations and framings shown is on the
right. Note that the framings on the two sides of each hand are mirror
images of each other, as they should be.

Framings arising from the blackboard framing of strand diagrams via g %
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Figure 14. Unzipping a tube, in band notation with orientations and framing marked.

Unzip, or tube doubling is perhaps the most interesting of the auxiliary «IF” operations.
As mentioned above, topologically this means pushing the tube off itself slightly in the
framing direction. At each of the vertices at the two ends of the doubled tube there are two
tubes to be attached to the doubled tube. At each end, the normal vectors pointed either
directly towards or away from the centre, so there is an “inside” and an “outside” ending
ring. The two tubes to be attached also come as an “inside” and an “outside” one, which
defines which one to attach to which. An example is shown in Figure 14. Unzip can only be
done if the 1D and 2D orientations match at both ends.

Ue 5
to strands whose two ending vertices are of different signs. This is
a somewhat artificial condition which we impose to get equations
equivalent to the [AT] equations.

Finally, we allow the deletion of “long linear” strands, meaning strands that do not end
in a vertex on either side.

The goal, as before, is to construct a homomorphic expansion for «IF°. However, first we

To define unzip rigorously, we must talk only of strand diagrams. 5 i
A related operation, disk unzip, is unzip done on a capped strand, pushing the tube off
need to understand its target space, the projectivization proj wil'F*.

The natural definition is to let w. double the strand e using the
blackboard framing, and then attach the ends of the doubled strand
to the connecting ones, as shown on the right. We restrict unzip

in the direction of the framing (in diagrammatic world, in the direction of the blackboard
framing), as before. An example in the line and band notations (with the framing suppressed)
is shown below.
.u H\ U/J}
W

4.2. The projectivization. Mirroring the previous section, we describe the projectivization
A% of oTF? and its “full version” A™ as circuit algebras on certain generators modulo a
g g
number of relations. From now on we will write A" to mean “A%* and/or A**”.
; ~ relations as in | operations as in
A = CA (10, M| eltionsasin | operations s )
» 1y ) Section 4.2.1 Section 4.2.2

In other words, A®M™ are the circuit algebras of arrow diagrams on trivalent (or foam)

skeletons with caps. Note that all but the first of the generators are skeleton features (of
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degree 0), and that the single arrow is the only generator of degree 1. As for the generating
vertices, the same remark applies as in Definition 4.1, that is, there are more vertices with
all possible strand orientations needed to generate A®Y as circuit algebras.

4.2.1. The relations of A®% . In addition to the usual ﬁ and TC relations (see Figure 1),
as well as RI in the case of A*Y = A¥/RI, diagrams in A®* satisfy the following additional
relations:

Vertex invariance, denoted by VI, are relations arising the same way as ﬁ does, but with
the participation of a vertex as opposed to a crossing:

—_

+ + =% =0, and + ot & =

The other end of the arrow is in the same place throughout the relation, somewhere outside
the picture shown. The signs are positive whenever the strand on which the arrow ends
is directed towards the vertex, and negative when directed away. The ambiguously drawn
vertex means any kind of vertex, but the same one throughout.

The CP relation (a cap can be pulled out from under a strand but not from
over, Section 4.1.2) implies that arrow heads near a cap are zero, as shown on the T& =0
right. Denote this relation also by CP. (Also note that a tail near a cap is not

set to zero.)

As in the previous sections, and in particular in Definition 3.7, we define a “w-Jacobi
diagram” (or just “arrow diagram”) on a foam skeleton by allowing trivalent chord vertices.
Denote the circuit algebra of formal linear combinations of arrow diagrams by A4®%! We
have the following bracket-rise theorem:

Theorem 4.5. The obvious inclusion of diagrams induces a circuit algebra isomorphism
g g D
Al =2 ASwt - pyrthermore, the AS and THX relutions of Figure ¢ hold in A®,

Proof.  Same as the proof of Theorem 3.8. ' O

As in Section 3.1, the primitive elements of A" are connected diagrams (that is, con-
nected even with the skeleton removed), namely trees and wheels. Before moving on to the
auxiliary operations of A®™  let us make two useful observations:

Lemma 4.6. AY(1), the part of AY with skeleton 1, is isomorphic as a vector space to the
completed polynomial algebra freely generated by wheels wy, with k > 1. Likewise A%(?)
except here k > 2.

X

Proof.  Any arrow diagram with an arrow head at its top is zero by the Cap Pull-out (CP)
relation. If D is an arrow diagram that has a head somewhere on the skeleton but not at
the top, then one can use repeated STU relations to commute the head to the top at the
cost of diagrams with one fewer skeleton head.

Iterating this procedure, we can get rid of all arrow heads, and hence write D as a linear
combination of diagrams having no heads on the skeleton. All connected components of such
diagrams are wheels.

To prove that there are no relations between wheels in A®Y(T), let Sp: ADY(1) —
A1) (resp. Sp) be the map that sends an arrow diagram to the sum of all ways of
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dropping one left (resp. right) arrow (on a vertical strand, left means down and right means
up). Define

Z k‘ (St + Sgp)*,
i

where Dp is a short right arrow. We leave it as an exercise for the reader to check that F'is
a bi-algebra homomorphism that kills diagrams with an arrow head at the top (i.e., CP is
in the kernel of F), and F is injective on wheels. This concludes the proof. L

Lemma 4.7. A®%(Y) = A®%(1y), where A®%(Y) stands for the space of arrow diagrams
whose skeleton is a Y -graph with any orientation of the strands, and as before ALU(1,) is
the space of arrow diagrams on lwo strands.

Proof. We can use the vertex invariance (VI) relation to push all arrow heads and tails
from the “trunk” of the vertex to the other two strands. O

4.2.2. The auziliary operations of AE¥  Recall from Section 3.4 that the orientation switch
S, (i.e. changing both the 1D and 2D orientations of a strand) always changes the sign of
a crossing involving the strand e. Hence, letting S denote any foam (tnvalent) skeleton, the
induced arrow diagrammatic operation is a map Se: A®*(8) — A¥(S.(S)) which acts
by multiplying each arrow diagram by (—1) raised to the number of arrow endings on e
(counting both heads and tails).

The adjoint operation A, (i.e. switching only the strand direction), on the other hand,
only changes the sign of a crossing when the strand being switched is the under- (or through)
strand. (See section 3.4 for pictures and explanation.) Therefore, the arrow diagrammatic
A, acts by switching the direction of e and multiplying each arrow diagram by (—1) raised
to the number of arrow heads on e. Note that in A% (71,) taking the adjoint on every strand
gives the adjoint map of Definition 3.21.

The arrow diagram operations induced by unzip and disc un-
zip (both to be denoted u,, and interpreted dpproprlately ac Cord~ }7 Moo Hi
ing to whether the strand e is capped) are maps u,.: A (erg)
A (y,(8)), where each arrow ending (head or tail) on e is mappod to a sum of two arrows,
one ending on each of the new strands, as shown on the right. In other words, if in an arrow
diagram D there are k arrow ends on e, then u.(D) is a sum of 2% arrow diagrams.

The operation induced by deleting the long linear strand e is the map d.: A8y —
A (d.(8)) which kills arrow diagrams with any arrow ending (head or taﬂ) on e, and
leaves all else unchanged, except with e removed.

o N\ @Q

31 5 ﬁhe hOﬁOIHOI' hic W Tle mesh Theorerg oF y /2 P

/ Theorem 4.8.,There e:.rzsts a group-like’" homomorphic expansion for wiI[F°, i.e. a group-
cuTF® — ASY which is a map of circuit algebras and also intertwines the

auxiliary oppmtzo s of ullF° with their arrow diagrammatic counterparts.
9

11 1.2 of [BND3]. In

fe fobm: tioh of the group-like property is along the lines of Section 2
1 & b
. R and C below) are [ A1/R

practise, it means that {ﬂe -values of the vertices, crossings, and cap (denoted
exponentials of linear combinations of connected diagrams.
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and 7=
SLe

Since both wI'F® and A*" are circuit algebras defined by generators and
looking for a suitable Z all we have to do is to find values for each of thp ge
ull'F° so that these satisfy (in 4%") the equations which arise from the rel i in 0
and the homomorphicity requirement. In this section we Willderive these e

quations s
show that they are equivalent to the Alekseev-Torossian version of the Kashiwara-Vergne
equations [AT]. In [AET] Alekseev Enriquez and Torossian construct explicit solutions to

these equations using associators. In a~taterpaper we will interpret these results in our
context of homomorphic expansions for w-tangled foarh ZWKO 2

Let R := Z(7) € A*(T2). It follows from the Reidemeister 2 relation that Z(N) =
(R71)?. As discussed in Sections 3.1 and 3.5, Reidemeister 3 with group-likeness and homo-
morphicity implies that @ = e*, where a is a single arrow pointing from the over to the under
strand. Let C' := Z(1) € A**(1). By Lemma 4.6, we know that C' is made up of wheels only.
Finally, let V = V' := Z(J),) € A*(/].) = A (1), and V™ := Z(V) € A¥(Y) = A% (1,).

Before we translate cach of the relations of Section 4.1.2 to equations let us slightly extend
the notation used in Section 3.5. Recall that 223, for instance, meant “R placed on strands
2 and 3”. In this section we also need notation such as R which means “R with its first
strand doubled, placed on strands 2, 3 and 17.

Now on to the relations, note that Reidemeister 2 and 3 and Overcrossings Commute
have already been dealt with. Of the two Reidemeister 4 relations, the first one induces an
equation that is automatically satisfied. Pictorially, the equation looks as follows:

R A

In other words, we obtained the equation
V12R312) _ p32psiyi2

However, observe that by the “head-invariance” property of arrow diagrams (Remark 3.9)
V12 and R*™) commute on the left hand side. Hence the left hand side equals R3 12112 =
RERMVIZ Also, R32) — o™ +a™ — ga¥ea™ — B3 E3L where the second step is due to the
fact that ¢*' and a?* commute. Therefore, the equation is true independently of the choice
of V.

We have no such luck with the second Reidemeister 4 relation, which, in the same manner
as in the paragraph above, translates to the equation

VI[ZR(]_Q)S — R23R13V12. (11)

There is no “tail invariance” of arrow diagrams, so V and R do not commute on the left
hand side; also, RU23 &£ RPR'3 Ag a result, this equation puts a genuine restriction on the
choice of V.

The Cap Pull-out (CP) relation translates to the equation R™2C? = (2. This is true
independently of the choice of C: by head-invariance, R'2C? = C%?R'. Now R!? is just
below the cap on strand 2, and the cap “kills heads”, in other words, every term of R with
an arrow head at the top of strand 2 is zero. Hence, the only surviving term of R'? is 1 (the
empty diagram), which makes the equation true.

The homomorphicity of the orientation switch operation was used to prove the uniqueness

of R in Theorem 3.25. The homomorphicity of the adjoint leads to the equation V_ =
35
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Ay Ay(V) (see Figure 13), eliminating V_ as an unknown. Note that we also silently assumed
these homomorphicity properties when we did not introduce 32 different values of the vertex
depending on the strand orientations.

Homomorphicity of the (annular) unzip operation leads to an equation for V', which we
are going to refer to as “unitarity”. This is illustrated in the figure below. Recall that A;
and Ay denote the adjoint (direction switch) operation on strand 1 and 2, respectively.

—_— =
I,u o Z’HJ Z’UJ

VA As(V) 1

Reading off the equation, we have
Homomorphicity of the disk unzip leads to an equation for €' which
we will refer to as the “cap equation”. The translation from homo- S
morphicity to equation is shown in the figure on the right. C, as we
introduced before, denotes the Z-value of the cap. Hence, the cap luo Zw lzw
equation reads
Vo(l‘zj CIO‘).
viEca) = ct¢?  in A™(1,) (13)

The homomorphicity of deleting long strands does not lead to an equation on its own,
however it was used to prove the uniqueness of R (Theorem 3.25).

To summarize, we have reduced the problem of finding a homomorphic expansion Z to
finding the Z-values of the (positive) vertex and the cap, denoted V' and C, subject to three
equations: the “hard Reidemeister 4" equation (11); “unitarity of V" equation (12); and the
“cap equation” (13).

4.4. The equivalence with the Alekseev-Torossian equations. First let us recall Alek-
seev and Torossian’s formulation of the generalized Kashiwara-Vergne problem (see [AT,
Section 5.3]):

Generalized KV problem: Find an element F' € TAut, with the properties

F(z +y) = log(e®e¥), and j(F') € im(4). (14)
Here 8: tr; — try is defined by (da)(z,y) = a(z) + aly) — a(log(e®e¥)), where elements of tr
are cyclic words in the letters z and y. (See [AT], Equation (8)). Note that an element of tr,

is a polynomial with no constant term in one variable. In other words, the second condition
says that there exists a € tr; such that jF = a(z) + a(y) — a(log(e®e?)).

Theorem 4.9. T heM.b’, namely the existence of a group-like homomorphic expansion
for uTF®, is equivalent to the-generalized Kashiwara-Vergne problem. More precisely, there

is a 1-to-1 correspoWen‘T?lféﬂi:e#-gf_ﬁg_lutions (F,a) of the generalized KV problem
96
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and the\set 6f homomorphic expansions for wWiI'F° which do not contain local arrows™ in the
value V' of the verter. I’

Proof. / We have reduced the problem of finding a homomorphic expansion to finding group-
like solutions V' and C' to the hard Reidemeister 4 equation (11), the unitarity equation (12),
and the cap equation (13).

Suppose we have found such solutions and write V = e’e*?, where b € trs, D € toery Day,
and where u is the map u: ters — A* (1) which plants the head of a tree above all of its
tails, as introduced in Section 3.2. V' can be written in this form without loss of generality
because wheels can always be commuted to the bottom of a diagram (at the possible cost
of more wheels). Furthermore, V' is group-like and hence it can be written in exponential
form. Similarly, write C' = e® with ¢ € trf.

Note that u(ag) is central in A*“(73) and that replacing a solution (V,C) by (e“®V,C)
for any a € ay does not interfere with any of the equations (11), (12) or (13). Hence we may
assume that D does not contain any single arrows, that is, D € tdevy. Also, a solution (V, C')
in A*" can be lifted to a solution in A" by simply setting the degree one terms of b and ¢
to be zero. It is easy to check that this b € try and ¢ € tr; along with D still satisfy the
equations. (In fact, in A" (12) and (13) respectively imply that b is zero in degree 1, and
that the degree 1 term of ¢ is arbitrary, so we may as well assume it to be zero.) In light of
this we declare that b € tty and ¢ € tr.

The hard Reidemeister 4 equation (11) reads V'2RU23 = RBRBV12 Denote the arrow
from strand 1 to strand 3 by =z, and the arrow from strand 2 to strand 3 by y. Substituting
the known value for R and rearranging, we get

ebeuﬂem+y€—u}3 E_b — ¥t
Equivalently, e*Pe®te P = ¢ Pe¥e?c®, Now on the right side there are only tails on the first
two strands, hence €’ commutes with e¥e®, so ePe’ cancels. Taking logarithm of both sides
we obtain €*P(x + y)e %’ = logeve®. Now for notational alignment with [AT] we switch
strands 1 and 2, which exchanges x and ¥ so we obtain:

=z 21 3
(z 4 y)e “P" = loge“ev. (15)

D21
GTL

The unitarity of V' (Equation (12)) translates to 1 = e’e*P(e’e"”)*, where * denotes the

adjoint map (Definition 3.21). Note that the adjoint switches the order of a product and
acts trivially on wheels. Also, e*P(¢*P)* = J(eP) = /"), by Proposition 3.22. So we have
1 = ebedle®)el, Multiplying by e~® on the right and by e’ on the left, we get 1 = e2ei(e”),
and again by switching strand 1 and 2 we arrive at

B2l eDE‘)

1=e? ¢l (16)
As for the cap equation, if C!' = e¢@) and C? = e*W) | then C'? = (=¥ Note that wheels
I ;

on different strands commute, hence e®® e = c®)+eW) 50 the cap equation reads

b uDec(m—Q—y)

obe e(@)+ely)

=€

As this equation lives in the space of arrow diagrams on two capped strands, we can multiply
the left side on the right by e=™?: wD has its head at the top, so it is 0 by the Cap relation,

2For a detailed explanation of this minor point sce the third paragraph of the proof.
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hence e* = 1 near the cap. Hence
3

b

¢ uDec(w-l"y)

—uD Ec(:.'z')-l-c(g,') )

€ €

On the right side of the equation above
etPeclrty) el reminds us of Equation (15), however
we cannot use (15) directly as we are working in a T
different space now. In particular, x there meant an %
arrow from strand 1 to strand 3, while here it means
a one-wheel on (capped) strand 1, and similarly for
y. Fortunately, there is a map o: A%(13) — A™(1,), where o “closes the third strand and
turns it into a chord (or internal) strand, and caps the first two strands”, as shown on the

right. This map is well defined (in fact, it kills almost all relations, and turns one Wf into
an IHX). Under this map, using our abusive notation, o(z) = = and o(y) = y.

Now we can apply Equation (15) to get e“Pecl@t¥enl = celloge’e®) Qubstituting this into
the cap equation we obtain e’e®{l°8 eve®) — ecl@)+ely) which, using that tails commute, implies
b=c(x) + c(y) — c(loge¥e®). Switching strands 1 and 2, we obtain

v = ¢(z) + c(y) — c(logee?) (17)
D21
DEI

In summary, we can use (V,C) to produce F = eP” (sorry") and a := —2¢ which satisfie
the Alekseev-Torossian equations (14), as follows: e¢” acts on lie; by conjugation by en D™
so the first part of (14) is implied by (15). The second half of (14) is true due to (16) and
(171,

On the other hand, suppose that we have found F € TAuty, and a € tr; satisfying (14).

. 21 2

Then set D?! :==log F', *! = 1(?;—) and ¢ € 6~'(b*!), in particular ¢ = —% works. Then
V = ebe*? and C = e° satisfy the equations for homomorphic expansions (11), (12) and
(13).

Furthermore, the two maps between solutions of the KV problem and homomorphic ex-
pansions for «F° defined in the last two paragraphs are obviously inverses of each other,
and hence they provide a bijection between these sets as stated. O

4.5. The wen. A topological feature of w-tangled foams which we excluded from the theory
so far is the wen w. The wen is a Klein bottle cut apart (as mentioned in Section 2.5.4 of
[BND3]); in other words it amounts to changing the 2D orientation of a tube, as shown in
the picture below:

iy == . =

|

13We apologize for the annoying 2 <+ 1 transposition in this equation, which makes some later equations,
especially (22), uglier than they could have been. There is no depth here, just mis-matching conventions
between us and Alekseev-Torossian.
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In this section we study the circuit algebra of w-Tangled Foams with the wen included as
a generator, and denote this space by «TF. We will find that homomorphic expansions
for wI'F' are in bijection with solutions to the KV problem with “even Duflo function”, as
explained below.

4.5.1. The relations and auziliary operations of wI'F'. Adding the wen as a generator means
we have to impose additional relations involving the wen to keep our topological heuristics
intact, as follows:

The interaction of a wen and a crossing is described by the following relation (cf. Section

2.5.4 of [BN[)?»]):
A I w
T
b ww
A B A B 1B i)

To explain this relation note that in flying ring language, a wen is a ring that flips over.
It does not matter whether ring B flips first and then flies through ring A or vice versa.
However, the movies in which ring A first flips and then ring B flies through it, or B flies
through A first and then A flips differ in the fly-through direction of B through A, which is
cancelled by virtual crossings, as in the figure above. We will refer to these relations as the
Flip Relations, and abbreviate them by FR.

A double flip is homotopic to no flip, in other words two consecutive wens equal no wen.
Let us denote this relation by W?, for Wen squared. Note that this relation explains why
there are no “left and right wens”.

A cap can slide through a wen, hence a capped wen disappears, % T P H
W - _—

as shown on the right, to be denoted CW.

The last wen relation describes the interaction of wens and ver-
tices. Recall that there are four types of vertices with the same
strand orientation: among the bottom two bands (in the pictures
on the left) there is a non-filled and a filled band (corresponding to
over/under in the strand diagrams), meaning the “large” ring and
the “small” one which flies into it before they merge. Furthermore,
there is a top and a bottom band (among these bottom two, with
apologies for the ambiguity in overusing the word bottom): this
denotes the fly-in direction (flying in from below or from above).
Conjugating a vertex by three wens switches the top and bottom
bands, as shown in the figure on the left: if both rings flip, then
merge, and then the merged ring flips again, this is homotopic to
no flips, except the fly-in direction (from below or from above) has
changed. We are going to denote this relation by TV, for “twisted
vertex”.

T

7800000

T

71320002 N0

39



The auxiliary operations are the same as for «TF?: orientation switches, adjoints, dele-
¥ )
tion of long linear strands, cap unzips and unzips'®. Thus, informally we can say that

Wl'F = (WlF° + wens)/FR, W2, CW, TV.

4.5.2. The projectivization. The projectivization of wIF (still denoted .A®") is the same as
the projectivization for w'F° but with the wen added as a generator (a degree 0 skeleton
feature), and with extra relations describing the behaviour of the wen. Of course, the
relations describing the interaction of wens with the other skeleton features (W?, TV, and
CW) still apply, as well as the old RI, ﬁ , and TC relations.

In addition, the Flip Relations FR imply that wens “commute” with arrow heads, but
“anti-commute” with tails. We also call these FR relations:

FR: ‘):’w = *.:w , but %w = — *‘:w ;

4.5.3. The homomorphic expansion. The goal of this section is to prove that there exists a
homomorphic expansion Z for w'F. This involves solving a similar system of equations to
Section 4.3, but with an added unknown for the value of the wen, as well as added equations
arising from the wen relations. Let W € A**(1;) denote the Z-value of the wen, and let us
agree that the arrow diagram W always appears just above the wen on the skeleton. In fact,
we are going to show that W = 1 for any homomorphic expansion.

As two consecutive wens on the skeleton cancel, we obtain the equation shown in the

picture and explained below:
W

)

W
w

W

w

The Z-value of two consecutive wens on a strand is a skeleton wen followed by W followed by
a skeleton wen and another W. Sliding the bottom W through the skeleton wen “multiplies
each tail by (—1)”. Let us denote this operation by “bar”, i.e. for an arrow diagram D,
D =D . (=1)#oftaikin D Cancelling the two skeleton wens, we obtain WW = 1. Recall
that A*“(1,) consists only of wheels and single arrows. Since we are looking for a group-like
Z, we can assume that W = e* and WW = 1 means that w is a linear combination of odd
wheels and possibly single arrows.

Now recall the Twisted Vertex relation of Section 4.5.1. Note that the Z-value of the
negative vertex on the right hand side of the relation can be written as S;15:4; A5(V) = v
(cf Remark 4.3). On the other hand, applying Z to the left hand side of the relation we
obtain:

LW need not specify how to unzip an edge e that carries a wen. To unzip such e, first use the TV
relation to slide the wen off e,
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Hence, using that W = W ™!, the twisted vertex relation induces the equation W'W?2 = W2
in A*™(1,). One can verify degree by degree, using that W can be written as an exponential,
that the only solution to this equation is W = 1.

We have yet to verify that the CW relation (i.e., a cap can slide through a wen) can be
satisfied with W = 1. Keep in mind that the wen as a skeleton feature anti-commutes with
tails (this is the Flip Relation of Section 4.2.1). The value of the cap C is a combination of
only wheels (Lemma 4.6), hence the CW relation translates to the equation C = C, which
is equivalent to saying that C' consists only of even wheels.

The fact that Z can be chosen to have this property follows from Proposition 6.2 of [AT]:
the value of the cap is €' = ¢ where ¢ can be sef to ¢ = —§, as explained in the proof
of Theorem 4.9. Here a is such that & (a) = jF as in Equation (14). A power series f so
that @ = tr f (where tr is the trace which turns words into cyclic words) is called the Duflo
function of F. In Proposition 6.2 Alekseev and Torossian show that the even part of f is
1 M and that for any f with this even part there is a corresponding solution F' of
the g,enerahzed KV problem. In particular, f can be assumed to be even, namely the power
series above, and hence it can be guaranteed that C' consists of even wheels only. Thus we
have proven the following:

Theorem 4.10. Group-like homomorphic expansions Z : wTF — A% (with no local arrows
in the value of V') are in one-to one correspondence with solutions to the KV problem with

O

even Duflo function.
4.6, Interlude: u-Knotted Trivalent Graphs. The “usual”, or d-afﬁi'mlegmrrrﬂmob—

jects corresponding to wl'F are loosely speaking Knotted Trivalent Graphs, or KTGs. We
give a brief introduction/review of this space before studying the relationship between their
homomorphic expansions and homomorphic expansions for w/['F'. The last goal of this paper
is to show that the topological relationship between the two spaces explains the relationship
between the KV problem and Drinfel’d associators.

A trivalent graph is a graph with three edges meeting at each vertex, equipped with a
cyclic orientation of the three half-edges at each vertex. KTGs are framed embeddings of
trivalent graphs into R?, regarded up to isotopies. The skeleton of a KTG is the trivalent
graph (as a combinatorial object) behind it. For a detailed introduction to KTGs see for
example [BND1]. Here we only recall the most important facts. The reader might recall that
in Section 3, the w-knot section, of [BND3] we only dealt with long w-knots, as the w-theory
of round knots is essentially trivial (see Theorem 3.18 of [BND3]). A similar issue arises with
“w knotted trivalent graphs”. Hence, the space we are really interested in is “long KTGs”,

trivalent tangles with 1 or 2 ends.
mwﬂ \j
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Long KTGs form an algebraic struc- g

ture with operations as follows. Orien- 7 >
tation switch reverses the orientation

of a specified edge. Edge unzip doubles |

a specified edge as shown on the right. / F s
Tangle insertion is inserting a small | = p ¢ :
copy of a (1, 1)-tangle S into the mid- \\ By, ey O |' ' /’ ]
dle of some specified strand of a tangle 1T / N

T, as shown in the second row on the |

right (tangle composition is a special | .- (- \. Lo
case of this). The stick-on operation “ " |‘ stk 1 F'j/‘
“sticks a 1-tangle S onto a specified H b, | voon
edge of another tangle 77, as shown. | e’ s /
(In the figurdT is a 2-tangle, but this "
is irrelevant.) Disjoint union of two 1-tangles produces a 2-tangle. Insertion, and stick-on
are a slightly weaker set of operations than the connected sum of [BND1].

The projectivization of the space of long KTGs is the space A" of chord diagrams on
trivalent graph skeleta, modulo the 4T and vertex invariance (VI) relations. The induced
operations on A" are as expected: orientation switch multiplies a chord diagram by (—1)
to the number of chord endings on the edge. The edge unzip u, maps a chord diagram
with & chord endings on the edge e to a sum of 2% diagrams where each chord ending has a
choice between the two daughter edges. Finally, tangle insertion, stick-on and disjoint union
induces the insertion, sticking on and disjoint union of chord diagrams, respectively.

In [BNDI1] the authors prove that there is no homomorphic yd
expansion for KT'Gs. This theorem, as well as the proof, applies
to long KTGs with slight modifications. However there is a well-
known — and nearly homomorphic — expansion constructed by
extending the Kontsevich integral to KTGs and renormalizing at
the vertices. There are several constructions that do this ([MO],
[CL], [Da]). For now, let us denote any one of these expansions by
Zed  All the Z°? are almost homomorphic: they intertwine every
operation except for edge unzip with their chord-diagrammatic Zold( )
counterparts; but commutativity with unzip fails by a controlled ()
amount, as shown on the right. Here v denotes the “invariant of the unknot”, the value of
which was conjectured in [BGRT] and proven in [BLT].

In [BND1] the authors fix this anomaly by slightly changing the space of KTGs and adding
some extra combinatorics (“dots” on the edges), and construct a homomorphic expansion for
this new space by a slight adjustment of Z°¢. Here we are going to use a similar but different
adjustment of the, spage of trivalent 1- and 2-tangles, fy{n ely breaking the symmetry of the
vertices and edstelcting the demaimof-unztp. {c‘/"o;_ o, GLWQ Ar“/(

L U

In this model, denoted by sKTG for “signed KTGs”, each vertex ﬁe@a distinguished edge
coming out of it (sometimes denoted by a ghicker line), as well as a sign. Our pictorial
convention will be that a vertex drawn in £ “A” shape with all strands oriented up and the
top strand distinguished is always positive and-a vertex drawn in a “Y” shape with strands
oriented up and the bottom strand distinguished is always negative (see Figure 17).
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Orientation switch of either of the non- /[ | \ B

distinguished strands changes the sign of the I‘{ g o ' sl |
. . . . ) . ! e __stick-o11 -~ SN -
vertex, switching the orientation of the dis- | LT ‘ LS8 = L Tl ,L

tinguished strand does not. Unzip of an \ e T
edge is only allowed if the edge is distin-
guished at both of its ends and the vertices - \

/ I \ |
at either end are of opposite signs. The [ -~ ] \
stick-on operation can be done in either one f U i stick-on +¥\
of the two ways shown on the right (i.e., the | " " | )

stuck-on edge can be attached at a vertex of T /

either sign, but it can not become the distinguished edge of ﬂmt vertex).
To consider expansions of sKTG, and ultimately the compatibility of these with Z%, we

first note that sKTG is finitely generated (and therefore any expansion Z* is determined by

its values on finitely many generators). The proof of this is not hard but somewhat lengthy,

s0 we postpone it to H’rﬁ@df}é_ﬂndrEﬂd’s—('SE‘Cmﬁ}
c(Tisr) S‘ 5

PropOSItlon 4.11. The algebraie structure sKTG is finitely generated by the following list

Ry

strand  bubble ight left right left

balloon noose
fuwist twist associator  associator

Note that we ignore strand orientations for simplicity in the statement of this proposition;
this is not a problem as orientation switches are allowed in sKTG without restriction.

4.6.1. Homomorphic expansions for sKIG. Suppose that 2% : sKTG — A" is a homomorphic
expansion. We hope to determine the value of Z% on each of the generators.

The value of Z* on the single srand is an element of 4%(1) whose square
is itself, hence it is 1. The value of the bubble is an element © € A%(15), as u
all chords can be pushed to the “bubble” part using the VI relation. Two T
bubbles can be composed and unzipped to produce a single bubble (see on

the right), hence we have #? = 2, which implies x = 1 in A“(73).

Recall that a Drinfel'd associator is a group-like element ® € A“(13) along with a group-
like element R* € A“(1,) satisfying the so-called pentagon and positive and negative hexagon
equations, as well as a non-degeneracy and mirror skew-symmetry property. For a detailed
explanation see Section 4 of [BND1]; associators were first defined in [Dr2]. We claim that
the Z"-value @ of the right associator, along with the value R" of the right twist forms a
Drinfel’d associator pair. The proof of this statement is the same as the proof of Theorem
4.2 of [BND1], with minor modifications (making heavy use of the assumption that Z* is
homomorphic). It is easy to check by composition and unzips that the value of the left
associator and the left twist are @' and (R¥)™', respectively. Note that if ® is required to
be a horizontal chord associator (i.e., all the chords of ® are horizontal on three strands)

then R* is forced to be e“? where ¢ denotes a single chord. Note that the reverse is not
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true: there exist non-horizontal chord associators @ that satisfy the hexagon equations with
R® = 9%,

Let b and n denote the Z“values of the balloon and the noose, -1
respectively. Note that using the VI relation all chord endings can .
be pushed to the “looped” strands, so b and n live in A*(T), as seenin n-b=
Figure 15. The argument in that figure shows that n - b is the inverse '
in A%(1) of “an associator on a squiggly strand”, as shown on the
right. In Figure 15 we start with the sKTG on the top left and either apply Z* followed by
unzipping the edges marked by stars, or first unzip the same edges and then apply Z*. Since
Z% is homomorphic, the two results in the bottom right corner must agree. (Note that two
of the four unzips we perform are “illegal”, as the strand directions can’t match. However,
it is easy to get around this issue by inserting small bubbles at the top of the balloon and
the bottom of the noose, and switching the appropriate edge orientations before and after
the unzips. The Z“-value of a bubble is 1, hence this will not effect the computation and so
we ignore the issue for simplicity.)

Z'Uﬂ

unzip *
—

unzip * \ ‘

Zu

Figure 15. Unzipping a noose and a balloon to a squiggle.

In addition, it follows from Theorem 4.2 of [BND1] via deleting two edges that the inverse
of an “associator on a squiggly strand” is v, the invariant of the unknot. To summarize, we
have proven the fllowing:

Lemma 4.12. If Z% is a homomorphic expansion then the Z* wvalues of the strand and
the bubble are 1, the values of the right associator and right twist form an associator pair
(@, RY%), and the values of the left twist and left associator are inverses of these. With n and
b denoting the value of the noose and the balloon, respectively, and v being the invariant of

the unknot, we have n-b = v in A*(1).
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Figure 16. Computing the Z°¢ value of the noose. The third step uses that the Kontsevich
integral of KTGs is homomorphic with respect to the “connected sum" operation and that
the value of the unknot is v (see [BND1] for an explanation of both of these facts).

The natural question to ask is whether any triple (®, R*, n) gives rise to a homomorphic
expansion. We don’t know whether this is true, but we do know that any pair (®, R*) gives
rise to a “nearly homomorphic” expansion of KTG% [MO, CL, Da], and we can construct a
homomorphic expansion for sKTG from any of these (as bhOWII below). However, all of these
expansions take the same specific value on the noose and the balloon (also see below), We
don’t know whether there really is a one parameter family of homomorphic expansions Z*
for each choice of (@, R*) or if we are simply missing a relation.

We now construct explicit homomorphic ex-
Iggéblons ZT‘: sKIG — A" .fr(?m any Z°¢ (Where old -1 ol
stands for an extension to KTGs of the
Kontsevich integral) as follows. First of all we
need to interpret Z°¢ as an invariant of 2-tangles. This can be done by connecting the top
and bottom ends by a non-interacting long strand followed by a normalization, as shown
on the right. By “multiplying by v~!” we mean that after computing Z° we insert v~
on the long strand (recall that v is the “invariant of the unknot”). We interpret Z9¢ of a
1-tangle as follows: stick the 1-tangle onto a single strand to obtain a 2-tangle, then proceed
as above. The result will only have chords on the 1-tangle (using that the extensions of the
Kontsevich Integral are homomorphic with respect to “connected sums”), so we define the
result to be the value of Z% on the 1-tangle. As an example, we compute the value of Z9d
for the noose in Figure 16 (note that the computation for the balloon is the same).

\L o Tf
+ P ~ 2 . ” U
rd

Figure 17. Normalizations for Z% at the vertices.
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Now to construct a homomorphic Z% from Z°¢ we add normalizations near
the vertices, as in Figure 17, where ¢ denotes a single chord. Checking that n =
Z* is a homomorphic expansion is a simple calculation using the almost ho-
momorphicity of 24, which we leave to the reader. The reader can also verify
that Z% of the strand and the bubble is 1 as it should be. Z* of the right twist j —
is €2 and Z* of the right associator is a Drinfel’d associator ® (note that ®
depends on which Z°“ was used). From the calculation of Figure 16 it follows
that the Z* value of the balloon and the noose (for any Z°?) are as shown on the right, and
indeed n - b = v.

4.7. The relationship between sKIG and «IF. We move on to the question of compat-
ibility between the homomorphic expansions Z* and Z* (from now on we are going to refer
to the homomorphic expansion of uT'F — called Z in the previous section — as Z¥ to avoid
confusion).

There is a map a: sKTG — wIF, given by interpreting sKTG diagrams as wIF' diagrams.
In particular, positive vertices (of edge orientations as shown in Figure 17) are interpreted as
the positive wilF vertex 7+ and negative vertices as the negative vertex 7. (The map a can
also be interpreted topologically as Satoh’s tubing map.) The induced map a: A" — A™
is as defined in Section 3.3, that is, o maps each chord to the sum of its two possible
orientations. Hence we can ask whether the two expansions are compatible (or can be
chosen to be compatible), which takes us to the main result of this section:

Theorem 4.13. Let Z* be a homomorphic expansion for sKIG

@
with the properties that © is a horizontal chord associator and sKTG ul'F
n = e~ *u12 in the sense of Section /.0.1."> Then there ex- izu lzw (18)
ists a homomorphic expansion Z% for wI'F compatible with Au—% o gsw

Z% in the sense that the square on the right commutes.

Furthermore, such Z* are in one to one correspondence™ with “symmetric solutions of the
KV problem” satisfying the KV equations (14), the “twist equation” (20) and the associator
equation (22).

Before moving on to the proof let us state and prove the following Lemma, to be used
repeatedly in the proof of the theorem.

Lemma 4.14. If a and b are group-like elements in A™(1,), then a = b if and only if
m(a) = w(b) and aa* = bb*. Here m is the projection induced by m: PY(Tn) — Wer, Ba,
(see Section 5.2), and * refers to the adjoint map of Definition 3.21. In the notation of this
section * is applying the adjoint A on all strands.

Proof. Write @ = e¥e®® and b = Ve where w € tr,, D € ftdev, Ba, and
w: toer, da, —» P, is the “upper” map of Section 3.2, Assume that w(a) = 7(b) and
aa* = bb*. Since w(a) = eP and w(b) = e, we conclude that D = D'. Now we compute

157t will become apparent that in the proof we only use slightly weaker but less aesthetic conditions on
A
16 A1) even nicer theorem would be a classification of homomeorphic expansions for the combined algebraic
structure | sKIG -2 wTF) in terms of solutions of the KV problem. The two obstacles to this are clarifying
whether there is a free choice of n for Z*, and — probably much harder — how much of the horizontal chord
condition is necessary for a compatible Z* to exist.
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aa* = e¥e'PetPe¥ = ¢wellDe® where j: tdet, — tv, is the map defined in Section 5.1 of
[AT] and discussed in 3.22 of this paper. Now note that both w and j(D) are elements of tt,,,
hence they commute, so aa* = e®*+(P), Thus, aa* = bb* means that ¢2¢Hi(P) = (2u'+i(D)
which implies that w = w' and a = b. O
Proof of Theorem 4.15. In addition to being a homomorphic expansion for wI'F, Z¥ has
to satisfy an the added condition of being compatible with Z*. Since sKTG is finitely
generated, this translates to one additional equation for each generator of sKT{F, some of
which are automatically satisfied. To deal with the others, we use the machinery established
in the previous sections to translate these equations to conditions on F', and they turn out
to be the properties studied in [AT] which link solutions of the KV problem with Drinfel’d
associators.

To start, note that for the single strand and the bubble the commutativity of the square
(18) is satisfied with any Z*: both the Z* and Z* values are 1 (note that the Z* value of
the bubble is 1 due to the unitarity (12) of Z*). Each of the other generators will require
more study.

Commutativity of (18) for the twists. Recall that the Z"value of the right twist (for a
Z* with horizontal chord ®) is R* = e%?; and note that its Z*-value is V'RV?!, where
R = e"? is the Z"¥-value of the crossing (and a,, is a single arrow pointing from strand 1 to
strand 2). Hence the commutativity of (18) for the right twist is equivalent to the “Twist
Equation” a(R*) = V*RV?'. By definition of o, a( R") = e2(®12t921) where ajy and ag; are
single arrows pointing from strand 1 to 2 and 2 to 1, respectively. Hence we have

e%(a12+ﬂ-21) =V IR (19)

To translate this to the language of [AT], we use Lemma 4.14, which implies that it is enough
for V' to satisfy the Twist Equation “on tree level” (i.e., after applying ), and for which the
adjoint condition of the Lemma holds.

We first prove that the adjoint condition holds for any homomorphic expansion of wlF.
Multiplying the left hand side of the Twist Equation hy its adjoint, we get

eé(alﬁam ) (6%(&12+a21 ))* %(ﬂ12+a21)€—%(a12+0421) = 1.

=€

As for the right hand side, we have to compute V'RV (V#)*R*(V~1)*. Since V is unitary
(Equation (12)), VV* =V . A;Ay(V) = 1. Now R = e*2, so R* = ¢ %2 = R~!, hence the
expression on the right hand side also simplifies to 1, as needed.

As for the “tree level” of the Twist Equation, recall that in Section 4.3 we used Alekseev
and Torossian’s solution F' € TAut, to the Kashiwara Vergne equations [A'l'] to find solutions
V to equations (11),(12) and (13). We produced V from F by setting F = e* with
D € toex, b = %U) € tty and V = %’ so F is “the tree part” of V, up to re-
numbering strands. Hence, the tree level Twist Equation translates to a new equation for F.
Substituting V' = e’¢*” into the Twist Equation we obtain e3lmz+az) = g-ubg—boaz gb?! guD? ;
and applying 7, we get

eé(a12+a21) s (}«“21)_16f“12F. (20)

In [A'T] the solutions F' of the KV equations which also satisfy this equation are called
“symmetric solutions of the Kashiwara-Vergne problem” discussed in Sections 8.2 and &8.3.
(Note that in [AT] R denotes e®!).
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Using VI to push to
the middle three strands.

Figure 18. The Z“-value of the right associator.

Commutativity of (18) for the associators. Recall that the Z* value of the right associator
is a Drinfel’d associator ® € A%(13); for the Z¥ value see Figure 18. Hence the new consition
on V is the following;:

a(@) = VIPYRYBYIEN gy A% (1y) (21)
Again we treat the “tree and wheel parts” separately using Lemma 4.14. As & is by

definition group-like, let us denote ® =: ¢?. We first verify that the “wheel part” or adjoint
condition of the Lemma holds. Starting with the right hand side of Equation (21), the
unitarity VV* =1 of V implies that

V112)15Vi2v23vl(23) (VI(QS))*(VQB)*(VEZ)* (V_U‘Z)d)x - 1.

For the left hand side of (21) we need to show that e®®(e®®)* = 1 as well, and this is
true for any horizontal chord associator. Indeed, restricted to the a-images of horizontal
chords = is multiplication by —1, and as it is an anti-Lie morphism, this fact extends to the
Lie algebra generated by a-images of horizontal chords. Hence ¢2(¢)(e®@))* — go@ead)” —
ert(d) p—ald) — 1

On to the tree part, applying 7 to Equation (21) and keeping in mind that V_ = V=L by
the unitarity of V', we obtain

emed) — (F:%(12))—1(F21)71F32F(23)1 _ E—D(12)36~D128D236D1(23)
in SAuts := exp(sders) C TAuts. (22)

This is Equation (26) of [AT], up to re-numbering strands 1 and 2 as 2 and 1'7. The following
fact from [AT] (their Theorem 7.5, Propositions 9.2 and 9.3 combined) implies that there is
a solution I to the KV equations (14) which also satisfies (20) and (22).

Fact 4.15. If & = ¥ is an associator in SAutz so that j(®') = 0'" then Equation (22) has
a solution F — eP™ which is also o solution to the KV equations, and all such solutions are
symmetric (i.e. verify the Twist Equation (20)). ]

UNote that in [AT] “@® is an associator” means that @' satisfies the pentagon equation, mirror skew-
symmetry, and positive and negative hexagon equations in the space SAuts. These equations are stated in
[AT] as equations (25), (29), (30), and (31), and the hexagon equations are stated with strands 1 and 2
re-named to 2 and 1 as compared to [Dr2] and [BND1]. This is consistent with F = e” s

18The condition j(¢') = 0 is equivalent to the condition @ € KRVZ in [AT]. The relevant definitions in
[AT] can be found in Remark 4.2 and at the bottom of page 434 (before Section 5.2).
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To use this Fact, we need to show that @' := 7ma(®) is an associator in SAutz and that
J(®) = j(ra(®)) = 0. The latter is the unitarity of ® which is already proven. The former
follows from the fact that © is an associator and the fact (Theorem 3.23) that the image
of ma is contained in sder (ignoring degree 1 terms, which are not present in an associator
anyway ).

In summary, the condition of the Fact are satisfied and so there exists a solution F which
in turn induces a Z"* which is compatible with Z" for the strand, the bubble, the twists and
the associators. That is, all generators of sKT(G except possibly the balloon and the noose.
As the last step of the proof of Theorem 4.13 we show that any such Z* also automatically
make (18) commutative for the balloon and the noose.

Commutativity of (18) for the balloon and the noose. Since we
know the Z"-values B and n of the balloon and the noose, we start .,
by computing Z% of the noose. Z* assigns a V' value to the vertex Z - SV
with the first strand orientation switched as shown in the figure on S
the right. The balloon is the same, except with a negative vertex and the second strand
reversed. Hence what we need to show is that the two equations below hold:

S(v) | -

Let us denote the left hand side of the first equation above by n* and 6* (the Z* value
of the noose and the balloon, respectively). We will start by proving that the product of
these two equations holds, namely that nb"* = a(v). (We used that any local (small) arrow
diagram on a single strand is central in A®*“(1,), hence the cancellations.) This product
equation is satisfied due to an argument identical to that of Figure 15, but carried out in
ul'F', and using that by the compatibility with associators, Z* of an associator is a(®).

What remains is to show that the noose and balloon equations hold individually. In light
of the results so far, it is sufficient to show that

¥ =pv . e P4, (23)

where D, stands for a single arrow on one strand (whose direction doesn’t matter due to
the RI relation. As stated in Theorem 3.16 of [BND3|, A*“(1,) is the polynomial algebra
freely generated by the arrow D4 and wheels of degrees 2 and higher. Since V' is group-like,
n® (resp. b*) is an exponential e (resp. e??) with A;, Ay € A**(1)). We want to show
that e = /2. e7P4_ equivalently that A, = Ay — D,

In degree 1, this can be done by explicit verification. Let A22 and A22 denote the degree
2 and higher parts of A, and A,, 1(‘%1)0( tively. We claim that cappmg the strand at both its

top and its bottom takes e to e 2, and similarly e to e 437, (In other words, capping
kills arrows but leaves wheels un-changed.) This can be proven similarly to the proof of
Lemma 1.6, but using

oo (_1)k1+ (2

T g E k1+k23k1 Skz
Ky B0 nli','J ]kgl
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Figure 19. The proof of Equation (24). Note that the unzips are “illegal’, as the strand
directions don't match. This can be fixed by inserting a small bubble at the bottom of the
noose and doing a number of orientation switches. As this doesn't change the result or the
main argument, we suppress the issue for simplicity. Equation (24) is obtained from this
result by multiplying by S(C)~! on the bottom and by C~1 on the top.

in place of F' in the proof. What we need to prove, then, is the following equality, and the
proof is shown in Figure 19.

Si(V) = | Sa(V) | . (24)
./
This concludes the proof of Theorem 4.13. ]

Recall from Section 3.3 that there is no commutative square linking Z*: «I' — A" and
Z%: ul" — A", for the simple reason that the Kontsevich integral for tangles Z* is not
canonical, but depends on a choice of parenthetizations for the “bottom” and the “top”
strands of a tangle T. Yet given such choices, a tangle T can be “closed up with trees”
as within the proof of Proposition 4.11 (see Section 5) into an sKTG which we will denote
G. For G a commutativity statement does hold as we have just proven. The Z* and Z%
invariants of 7' and of G differ only by a number of vertex-normalizations and vertex-values
on skeleton-trees at the bottom or at the top of G, and using VI, these values can slide so they
are placed on the original skeleton of T'. This is summarized as the following proposition:

Proposition 4.16. Let n and n' be natural numbers. Given choices ¢ and and ¢’ of par-
enthetizations of n and n' strands respectively, there exists invertible elements C € A*"(1,)
and C' € A*“(1,0) so that for any u-tangle T with n “bottom” ends and n' “top” ends we
have

aZi (T)=C™'Z2"(aT)C,
where Z ., denotes the usual Kontsevich integral of T with botlom and top parenthesizations
¢ and .

For u-braids the above proposition may be stated with ¢ = ¢ and then C' and C” are the
saime.



5. OpDs AND ENDS

This section contains some additional examples and motivation for Section 2 as well as
the proof of Proposition 4.11.

5.1. An example of projectivization: Quandles. Let us first quote the abstract of the
paper that introduced the definition (Joyce, [Jov]):

The two operations of conjugation in a group, x> 1y = y oy and z >!
y = yxy ' satisfy certain identities. A set with two operations satisfying
these identities is called a quandle. The Wirtinger presentation of the knot
group involves only relations of the form y~lzy = z and so may be construed
as presenting a quandle rather than a group. This quandle, called the knot
quandle, is not only an mvariant of the knot, but in fact a classifying invariant
of the knot.

Definition 5.1. A quandle is a set () with a binary operation 1: @ x @ — @ satisfying the
following axioms:

(1) Vz € Q, Tz = z.

(2) For any fixed y € @, the map x — zty is invertible™ .

(3) Self-distributivity: Vz,y,z € @, (zty)tz = (a12)T(yT2).

We say that a quandle ¢ has a unit, or is unital, if there is a distinguished element 1 € )
satisfying the further axiom:

(4) V€ @, 211 =z and 11z = 1.

If G is a group, it is also a (unital) quandle by setting 1y := vy~ 'ay, yet there are many
quandles that do not arise from groups in this way.

Now we provide the promised proof that the projectivization of a unital quandle is a
Leibnitz algebra generated in degree 1, which is one dimensional.

Proof of Proposition 2.2. For any algebraic structure A with just one kind of objects,
projyA is one-dimensional, generated by the equivalence class [z] of any single object . In
particular, proj, is one-dimensional and generated by [1]. Let Z C Q@ be the augmentation
ideal of (). For any x € Q) set T := x — 1 € Z. Then T is generated by the Z's, and therefore
I™ is generated by expressions involving the operation 1T applied to some m elements of
Q = {z: x € Q} and possibly some further elements y; € Q. When regarded in Z™ /™,
any 1; in such a generating expression can be replaced by 1, for the difference would be the
same expression with y; replaced by #;, and this is now a member of Z™!. But for any
element z € Z we have 211 = z and 117z = 0, so all the 1’s can be eliminated from the
expressions generating Z™. Thus proj.,@ is generated by () and hence by proj,Q.

Let A: QQ — QQ ® QQ be the linear extension of the operation = — 2 & = defined on
z € @, and extend T to a binary operator T,: (QQ ® QQ) ® (QQ ® QQ) — QQ ® QQ by
using T twice, to pair the first and third tensor factors and then to pair the second and the
fourth tensor factors. With this language in place, the self-distributivity axiom becomes the

9This can alternatively be stated as “there exists a second binary operation 171 so that Vo, =
(zty)tty = (21 'y) Ty, so this axiom can still be phrased within the language of “algebraic structures”.
Yet note that below we do not use this axiom at all.
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following linear statement, which holds for every z,y, 2 € QQ:
(zty)tz =To Tz @y ® Az). (25)

Clearly, we need to understand A better. By direct computation, if x € ¢ then Az =
T®1+1®%+7®T. We claim that in general, if z is a generating expression of Z™ (that
is, a formula made of m elements of () and m — 1 applications of 1), then

Az=201+1®2+Y #4®2, with > dede Y I"eI™. (26

m! +mff=m+1,
m! ! >0

Indeed, for the generators of Z' this had just been shown, and if 2 = 2729 is a generator
of Z™, with z; and z» generators of Z™ and 7™ with 1 < my, ms < m and m; + mg = m,
then (using w1l = w and 1tw = 0 for w € T),

Az = Alzitz) = (Az)Ty(Az)
= (n1@l+1@2 +Zzij ® 2122 ®1+1Q 2 + Zzék ® 2,
= (AT2)R1+1& (nt2)

+Z ( Z|3T22 ~1; +41J ~1;T32 + Z 4]3T72L (zuTZ )) ,

and it is easy to see that the last line agrees with (20).
We can now combine Equations (25) and (26) to get that for any z,y, 2 € QQ,

(wty)tz = (@t2)ty + 31 (t2) + Y (=) (yta).

IfzeIm, yeI™ and z € T™, then by (26) the last term above is in Z™tmatmatl
and so fhe' abeve identity becomes the Jacobi identity (zty)tz = (212)ty + 2t (yTz) in

projm1+m2+m3 Q D
Note that in the above proof neither axiom (1) nor axiom (2) of Definition 5.1 was used.

Ezercise 5.2. Show that axiom (1) implies the antisymmetry of 1 on Z%.

5.2. Motivation for circuit algebras: electronic circuits. Electronic circuits are made
of “components” that can be wired together in many ways. On a logical level, we only care to
know which pin of which component is connected with which other pin of the same or other
component. On a logical level, we don’t really need to know how the wires between those
pins are embedded in space (see Figures 20 and 21). “Printed Circuit Boards” (PCBs) are
operators that make smaller components (“chips”) into bigger ones (“circuits”) — logically
speaking, a PCB is simply a set of “wiring instructions”, telling us which pins on which
components are made to connect (and again, we never care precisely how the wires are routed
provided they reach their intended destinations, and ever since the invention of multi-layered
PCBs, all conceivable topologies for wiring are actually realizable). PCBs can be composed
(think “plugging a graphics card onto a motherboard”); the result of a composition of PCBs,
logically speaking, is simply a larger PCB which takes a larger number of components as
inputs and outputs a larger circuit. Finally, it doesn’t matter if several PCB are connected
together and then the chips are placed on them, or if the chips are placed first and the PCDBs

are connected later; the resulting overall circuit remains the same.
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Figure 20. The J-K flip flop, a very basic memory cell, is an electronic

circuit that can be realized using 9 components — two triple-input “and” ! Q
gates, two standard "nor" gates, and 5 “junctions” in which 3 wires CP
connect (many engineers would not consider the junctions to be real K &

components, but we do). Note that the "crossing” in the middle of the
figure is merely a projection artifact and does not indicate an electrical

connection, and that electronically speaking, we need not specify how this crossing may be
implemented in R3. The J-K flip flop has 5 external connections (labelled J, K, CP, Q, and
Q') and hence in the circuit algebra of computer parts, it lives in Cs. In the directed circuit
algebra of computer parts it would be in C3 5 as it has 3 incoming wires (J, CP, and K) and
two outgoing wires (Q and Q').

Figure 21. The circuit algebra product of 4 big black
components and 1 small black component carried out using
a green wiring diagram, is an even bigger component that
has many golden connections (at bottom). When plugged
into a yet bigger circuit, the CPU board of a laptop, our
circuit functions as 4,294,967,296 binary memory cells.

5.3. The proof of Proposition 4.11. Fi 3 ; f this Proposition,

hich—stated—that sKTG 15 finitely gemerated—by—the—stramd; wists, associ

noese-and balleen.
Proof. We are going to ignore strand orientations throughout this proof for simplicity. This
is not an issue as orientation switches are allowed in sK1G without restriction. We are also
going to omit vertex signs from the pictures given the pictorial convention stated in Section
4.0.

We need to prove that any sK71G (call it G) can be built from the generators above using
sKTG operations. To show this, consider a Morse drawing of G, that is, a planar projection
of G with a height function so that all singularities along the strands are Morse and so that
every “feature” of the projection (local minima and maxima, crossings and vertices) occurs
at a different height.

The idea in short is to decompose G into levels of this Morse drawing where at each level
only one “feature” occurs. The levels themselves are not sKTG’s, but we show that the
composition of the levels can be achieved by composing their “closed-up” sKIG versions
followed by some unzips. Each feature gives rise to a generator by “closing up” extra ends
at its top and bottom. We then show that we can construct each level using the generators
and the tangle insert operation.

So let us decompose G into a composition of trivalent tangles (“levels”), each of which
has one “feature” and (possibly) some straight vertical strands. Note that by isotopy we can
make sure that every level has strands ending at both its bottom and top, except for the
first or the last level in the case of 1-tangles. An example of level decomposition is shown in
the figure below. Note that the levels are generally not elements of sKI1G (have too many
ends). However, we can turn each of them into a (1, 1)-tangle (or a 1-tangle in case of the

aforementioned top first or last levels) by “closing up” their tops and bottoms by arbitrary
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trees. In the example below we show this for one level of the Morse-drawn sK1G containing
a crossing and two vertical strands.

Now we can compose the sKTG’s obtained from closing up each level. Each tree that we
used to close up the tops and bottoms of levels determines a “parenthesization” of the strand
endings. If these parenthesizations match on the top of each level with the bottom of the
next, then we can recreate tangle composition of the levels by composing their closed versions
followed by a number of unzips performed on the connecting trees. This is illustrated in the
example below, for two consecutive levels of the sKIG of the previous example.

AL —

Unzips

| e

[ [ X~

If the trees used to close up consecutive levels correspond to different parenthesizations,
then we can use insertion of the left and right associators (the 5th and 6th pictures of the
list of generators in the statement of the theorem) to change one parenthesization to match
the other. This is illustrated in the figure below.

unzip Unzips
_t = — = s e P
. -~ - these edges
- _ o

So far we have shown that G can be assembled from closed versions of the levels in its
Morse drawing. The closed versions of the levels of G are simpler sKTG’s, and it remains to
show that these can be obtained from the generators using sKTG operations.

insert
associator
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in which case it is the first generator itself. Two parallel strands up
when closed up become the “bubble”, as shown on the right.

Now suppose that a level consists of n parallel strands, and that the trees used to close
it up on the top and bottom are horizontal mirror images of each other, as shown below (if
not, then this can be achieved by associator insertions and unzips). We want to show that
this sKTG can be obtained from the generators using sKTG operations. Indeed, this can be
achieved by repeatedly inserting bubbles into a bubble, as shown:

TITT s @ - @

A level consisting of a single crossing becomes a left or right twist when closed up (de-
pending on the sign of the crossing). Similarly, a single vertex becomes a bubble. A single
minimum or maximum becomes a noose or a balloon, respectively.

It remains to see that the sK7G’s obtained when closing up simple features accompanied
by more through strands can be built from the generators. A minimum accompanied by
an extra strand gives rise to the sK7TG obtained by sticking a noose onto a vertical strand
(similarly, a balloon for a maximum). In the case of all the other simple features and
for minima and maxima accompanied by more strands, we inserting the already generated
clements into nested bubbles (bubbles inserted into bubbles), as in the example shown below.
This completes the proof.

T @ @

Let us examine what each level might look like. First of all,
in the absence of any “features” a level might be a single strand, [ R l " close =

o
an



6. GLOSSARY OF NOTATION

Greck letters, then Latin, then symbols:

i} Satoh’s tube map

A cloning, co-product

L inclusion tt, — P¥(1h)

v the invariant of the unknot 4
vis the projection PY(1Ty) — a, @ Wer, 3.
¢ log of an associator

d an associator

Va “operations”

a, n-dimensional Abelian Lie algebra

A a candidate projectivization

A DY mod 6T, RI

A5 DY mod fﬁ, TC, RI

As?Y proj wlF°

A5 proj uIF

Al)w AW and /or A

At chord diagrams mod rels for KTGs
A D" mod 6T

A DY mod H , TC

AY proj wl'F° without RI

A~ (1n) A~ for pure n-tangles

A, 1D orientation reversal de
Ass associative words 3
AssT  non-empty associative words g
B n-coloured unitrivalent arrow
diagrams 3
C the invariant of a cap 4,
cpP the Cap-Pull relation 4.1.2, 4.
CW Cap-Wen relations 4.5.
¢ a chord in A" 4.
et Lie-algebra derivations 3
DV, DY arrow diagrams for v/w-tangles 3
div the “divergence” 3.
F a map AY — AY 4,
F the main [A'T] unknown 4,
FR Flip Relations 4.5:1, 4.5
fil a filtered structure 2.
Z augmentation ideal 2.
J a map TAut, — exp(tr,) 3.
g a map TAut, — fr, 3.
KTG Knotted Trivalent Graphs 4.
lie,, free Lie algebra 3

o b b =

b ¢

(=2 SO T NI (%]

b2

Y B W N | o8]

|5 Wl

= b B =

[ ST R ]

S b
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l a map tet, — PY(Th) 3.2
@) an “algebraic structure” 2.1
54 primitives of By 3.2
P~ (Ty) primitives of A~ (Ty) 3.2
proj  projectivization 2.2
R the invariant of a crossing 4.3
R4 a Reidemeister move for

foams/graphs 4.1.2
s0et  special derivations 33
8 the circuit algebra of skeletons 24
SAut, the group exp(sdety) 4.6
Sy complete orientation reversal 3.5
Se complete orientation reversal 213
sKIG  signed long KTGs 4.6
v Twisted Vertex relations 4.5.1
toer  tangential derivations 3.2
tr, cyclic words 3.2
te, cyclic words mod degree 1 3.2
TAut, the group exp(tder,) 3.2
u a map toet, — PY(1y,) 3.2
Up strand unzips 4.1.3
ul’ u-tangles 3.3
V, VT the invariant of a (positive) vertex 4.3
V- the invariant of a negative vertex L.
IT Vertex Invariance 4.2
ol v-tangles 3.1
T'(Tn) pure n-component v-tangles 3.2
W Z(w) 4.5.3
w2 Wen squared 4.5.1
w the wen 4.5
Wl w-tangles . il
wT'(y,) pure n-component w-tangles 3.2
wf ' w-tangled foams with wens 4.5
uF°  orientable w-tangled foams 4.1
Z expansions throughout
ZA an A-expansion 2.3
4T 47" relations 1.6
1 a “long” strand throughout
T the quandle operation 22
Ty doubled 7 2.2
* the adjoint on A" (1) 3.2
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