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a homomorphic universal finite type invariant of w-foams is essentially the same as16

a solution of the Kashiwara and Vergne (Invent. Math. 47:249–272, 1978) conjec-17

ture and much of the Alekseev and Torossian (Ann. Math. 175:415–463, 2012) work18

on Drinfel’d associators and Kashiwara–Vergne can be re-interpreted as a study of19

w-foams.20
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1 Introduction50

This is the second in a series of papers on w-knotted objects. In the first paper [38], we51

took a classical approach to studying finite type invariants of w-braids and w-knots and52

proved that the universal finite type invariant for w-knots is essentially the Alexander53

polynomial. In this paper we will study finite type invariants of w-tangles and w-54

tangled foams from a more algebraic point of view, and prove that “homomorphic”55

universal finite type invariants of w-tangled foams are in one-to-one correspondence56

with solutions to the (Alekseev–Torossian version of) the Kashiwara–Vergne problem57

in Lie theory. Mathematically, this paper does not depend on the results of [38] in58

any significant way, and the reader familiar with the theory of finite type invariants59

will have no difficulty reading this paper without having read [38]. However, since60
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this paper starts with an abstract re-phrasing of the well-known finite type story in61

terms of general algebraic structures, readers who need an introduction to finite type62

invariants may find it more pleasant to read [38] first (especially Sects. 1, 2 and 3.1–63

3.5).64

1.1 Motivation and hopes65

This article and its siblings [38,39] are efforts towards a larger goal. Namely, we66

believe many of the difficult algebraic equations in mathematics, especially those that67

are written in graded spaces, more especially those that are related in one way or68

another to quantum groups [18], and to the work of Etingof and Kazhdan [21], can be69

understood, and indeed would appear more natural, in terms of finite type invariants70

of various topological objects.71

This work was inspired by Alekseev and Torossian’s results [2] on Drinfel’d associ-72

ators and the Kashiwara–Vergne conjecture, both of which fall into the aforementioned73

class of “difficult equations in graded spaces”. The Kashiwara–Vergne conjecture—74

proposed in 1978 [26] and proven in 2006 by Alekseev and Meinrenken [1]—has75

strong implications in Lie theory and harmonic analysis, and is a cousin of the Duflo76

isomorphism, which was shown to be knot-theoretic in [11]. We also know that77

Drinfel’d’s theory of associators [19] can be interpreted as a theory of well-behaved78

universal finite type invariants of parenthesized tangles1 [5,29], or of knotted trivalent79

graphs [17].80

In Sect. 4 we will re-interpret the Kashiwara–Vergne conjecture as the problem of81

finding a “homomorphic” universal finite type invariant of a class of w-knotted trivalent82

graphs (more accurately named w-tangled foams). This result fits into a bigger picture83

incorporating usual, virtual and w-knotted objects and their theories of finite type84

invariants, connected by the inclusion map from usual to virtual, and the projection85

from virtual to w-knotted objects. In a sense that will be made precise in Sect. 2,86

usual and w-knotted objects with this mapping form a unified algebraic structure, and87

the mysterious relationship between Drinfel’d associators and the Kashiwara–Vergne88

conjecture is explained as a theory of finite type invariants for this larger structure.89

This will be the topic of Sect. 4.6.90

We are optimistic that this paper is a step towards re-interpreting the work of91

Etingof and Kazhdan [21] on quantization of Lie bi-algebras as a construction of a92

well-behaved universal finite type invariant of virtual knots [27] or of a similar class93

of virtually knotted objects. However, w-knotted objects are quite interesting in their94

own right, both topologically and algebraically: they are related to combinatorial group95

theory, to groups of movies of flying rings in R3, and more generally, to certain classes96

of knotted surfaces in R4. The references include [13,22,23,33,36].97

In [38] we studied the universal finite type invariants of w-braids and w-knots, the98

latter of which turns out to be essentially the Alexander polynomial. A more thorough99

introduction about our “hopes and dreams” and the u-v-w big picture can also be found100

in [38].101

1 “q-tangles” in [29], “non-associative tangles” in [5].
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1.2 A brief overview and large-scale explanation102

We are going to start by developing the algebraic ingredients of the paper in Sect. 2.103

The general notion of an algebraic structure lets us treat spaces of a topological or104

diagrammatic nature in a unified algebraic manner. All of braids, w-braids, w-knots,105

w-tangles, etc., and their associated chord- or arrow-diagrammatic counterparts form106

algebraic structures, and so do any number of these spaces combined, with maps107

between them.108

We then introduce associated graded structures with respect to a specific filtration,109

the machine which in our case takes an algebraic structure of “topological nature”110

(say, braids with n strands) and produces the corresponding diagrammatic space (for111

braids, horizontal chord diagrams on n vertical strands). This is done by taking the112

associated graded space with respect to a given filtration, namely the powers of the113

augmentation ideal in the algebraic structure.114

An expansion, sometimes called a universal finite type invariant, is a map from115

an algebraic structure (in this case one of topological nature) to its associated graded116

(a structure of combinatorial/diagrammatic nature), with a certain non-degeneracy117

property. A homomorphic expansion is one that is in addition “well behaved” with118

respect to the operations of the algebraic structure (such as composition and strand119

doubling for braids, for example).120

The three main results of the paper are as follows:121

(1) As mentioned before, our goal is to provide a topological framework for the122

Kashiwara–Vergne (KV) problem. The first result in that direction is Theorem 4.9,123

in which we establish a bijection between certain homomorphic expansions of124

w-tangled foams (introduced in Sect. 4) and solutions of the Kashiwara–Vergne125

equations. More precisely, “certain” homomorphic expansions means ones that126

are group-like (a commonly used condition), and subject to another very minor127

technical condition. Section 3 leads up to this result by studying the simpler case128

of w-tangles and identifying building blocks of its associated graded structure as129

the spaces which appear in the [2] formulation of the KV equations.130

(2) In Theorem 4.11 we study an unoriented version of w-tangled foams, and prove131

that homomorphic expansions for this space (group-like and subject to the same132

minor condition) are in one-to-one correspondence with solutions to the KV prob-133

lem with even Duflo function. This sets the stage for perhaps the most interesting134

result of the paper:135

(3) Section 4.7 marries the theory above with the theory of ordinary (not w-) knotted136

trivalent graphs (KTGs). For technical reasons explained in Sect. 4, we work with137

a signed version of KTGs (sKTG). Roughly speaking, homomorphic expansions138

for sKTGs are determined by a Drinfel’d associator. Furthermore, sKTGs map139

naturally into w-tangled foams.140

In Theorem 4.15 we prove that any homomorphic expansion of sKTGs coming from141

a horizontal chord associator has a compatible homomorphic expansion of w-tangled142

foams, and furthermore, these expansions are in one-to-one correspondence with sym-143

metric solutions of the KV problem. This gives a topological explanation for the144

relationship between Drinfel’d associators and the KV conjecture.145

123

Journal: 208 Article No.: 1388 TYPESET DISK LE CP Disp.:2016/3/24 Pages: 70 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Finite type invariants of w-knotted objects

We note that in [39] we’ll further capitalize on these insights to provide a topological146

proof and interpretation for Alekseev, Enriquez and Torossian’s explicit solutions for147

the KV conjecture in terms of associators [3].148

Several of the structures of a topological nature in this paper (w-tangles and w-149

foams) are introduced as Reidemeister theories. That is, the spaces are built from150

pictorial generators (such as crossings) which can be connected arbitrarily, and the151

resulting pictures are then factored out by certain relations (“Reidemeister moves”).152

Technically speaking, this is done using the framework of circuit algebras (similar to153

planar algebras but without the planarity requirement) which are introduced in Sect. 2.154

One of the fundamental theorems of classical knot theory is Reidemeister’s theorem,155

which states that isotopy classes of knots are in bijection with knot diagrams modulo156

Reidemeister moves. In our case, w-knotted objects have a Reidemeister description157

and a topological interpretation in terms of ribbon knotted tubes in R4. However, the158

analogue of the Reidemeister theorem, i.e. the statement that these two interpretations159

coincide, is only known for w-braids [13,16,33].160

For w-tangles and w-foams (and w-knots as well) there is a map δ from the Reide-161

meister presentation to the appropriate class of ribbon 2-knotted objects in R4. In our162

case this means that all the generators have a local topological interpretation and the163

relations represent isotopies. The map δ is certainly a surjection, but it is only conjec-164

tured to be injective (in other words, it is possible that some relations are missing).165

The main difficulty in proving the injectivity of δ lies in the management of the166

ribbon structure. A ribbon 2-knot is a knotted sphere or long tube in R4 which admits a167

filling with only certain types of singularities. While there are Reidemeister theorems168

for general 2-knots in R4 [15], the techniques don’t translate well to ribbon 2-knots,169

mainly because it is not well understood how different ribbon structures (fillings) of170

the same ribbon 2-knot can be obtained from each other through Reidemeister type171

moves. The completion of such a theorem would be of great interest. We suspect that172

even if δ is not injective, the present set of generators and relations describes a set173

of ribbon-knotted tubes in R4 with possibly some extra combinatorial information,174

similarly to how, say, dropping the R1 relation in classical knot theory results in a175

Reidemeister theory for framed knots with rotation numbers.176

The paper is organized as follows: we start with a discussion of general algebraic177

structures, associated graded structures, expansions (universal finite type invariants)178

and “circuit algebras” in Sect. 2. In Sect. 3 we study w-tangles and identify some of179

the spaces [2] where the KV conjecture “lives” as the spaces of “arrow diagrams” (the180

w-analogue of chord diagrams) for certain w-tangles. In Sect. 4 we study w-tangled181

foams and we prove the main theorems discussed above. For more detailed information182

consult the “Section summary” paragraphs at the beginning of each of the sections. A183

glossary of notation is on page 56.184

2 Algebraic structures, expansions, and circuit algebras185

Section summary In this section we introduce the associated graded structure186

of an “arbitrary algebraic structure” with respect to powers of its augmentation187

ideal (Sects. 2.1, 2.2) and introduce the notions of “expansions” and “homomor-188
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Fig. 1 An algebraic structure O

with 4 kinds of objects and one
binary, 3 unary and two 0-nary
operations (the constants 1 and
σ )

objects
of kind

3

=

O =

O3 O4

O1

•1

O2

•σ
ψ1

ψ3

ψ4

ψ2

phic expansions” (2.3). Everything is so general that practically anything is an189

example, yet our main goal is to set the language for the examples of w-tangles190

and w-tangled foams, which appear later in this paper. Both of these examples191

are types of “circuit algebras”, and hence we end this section with a general192

discussion of circuit algebras (Sect. 2.4).193

2.1 Algebraic structures194

An “algebraic structure” O is some collection (Oα) of sets of objects of different195

kinds, where the subscript α denotes the “kind” of the objects in Oα , along with some196

collection of “operations” ψβ , where each ψβ is an arbitrary map with domain some197

product Oα1 ×· · ·×Oαk
of sets of objects, and range a single set Oα0 (so operations may198

be unary or binary or multinary, but they always return a value of some fixed kind). We199

also allow some named “constants” within some Oα’s (or equivalently, allow some 0-200

nary operations).2 The operations may or may not be subject to axioms—an “axiom”201

is an identity asserting that some composition of operations is equal to some other202

composition of operations.203

Figure 1 illustrates the general notion of an algebraic structure. Here are a few204

specific examples:205

• We will use 〈b〉, the free group on one generator b, as a running example throughout206

this chapter (of course 〈b〉 is isomorphic to Z). This is an algebraic structure207

with one kind of objects, a binary operation “multiplication”, a unary operation208

“inverse”, one constant “the identity”, and the expected axioms.209

• Groups in general: one kind of objects, one binary “multiplication”, one unary210

“inverse”, one constant “the identity”, and some axioms.211

• Group homomorphisms: Two kinds of objects, one for each group. 7 operations—212

3 for each of the two groups and the homomorphism itself, going between the two213

groups. Many axioms.214

• A group acting on a set, a group extension, a split group extension and many other215

examples from group theory.216

2 Alternatively define “algebraic structures” using the theory of “multicategories” [30]. Using this language,
an algebraic structure is simply a functor from some “structure” multicategory C into the multicategory Set

(or into Vect, if all Oi are vector spaces and all operations are multi-linear). A “morphism” between two
algebraic structures over the same multicategory C is a natural transformation between the two functors
representing those structures.
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Finite type invariants of w-knotted objects

• A quandle is a set with an operation ↑, satisfying (x ↑ y) ↑ z = (x ↑ y) ↑ (y ↑ z)217

and some further minor axioms. This is an algebraic structure with one kind of218

objects and one operation. See [37] for an analysis of quandles from the perspective219

of this paper.220

• Planar algebras as in [24] and circuit algebras as in Sect. 2.4.221

• The algebra of knotted trivalent graphs as in [7,17].222

• Let ς : B → S be an arbitrary homomorphism of groups (though our notation223

suggests what we have in mind—B may well be braids, and S may well be permu-224

tations). We can consider an algebraic structure O whose kinds are the elements225

of S, for which the objects of kind s ∈ S are the elements of Os := ς−1(s), and226

with the product in B defining operations Os1 × Os2 → Os1s2 .227

• W-tangles and w-foams, studied in the following two sections of this paper.228

• Clearly, many more examples appear throughout mathematics.229

2.2 Associated graded structures230

Any algebraic structure O has an “especially natural” associated graded structure: that231

is, we take the associated structure with respect to a specific and natural filtration. This232

will be a repeating construction throughout the rest of this paper series.233

First extend O to allow formal linear combinations of objects of the same kind234

(extending the operations in a linear or multi-linear manner), then let I, the “augmen-235

tation ideal”, be the sub-structure made out of all such combinations in which the sum236

of coefficients is 0, then let Im be the set of all outputs of algebraic expressions (that237

is, arbitrary compositions of the operations in O) that have at least m inputs in I (and238

possibly, further inputs in O), and finally, set239

grad O :=
⊕

m≥0

Im/Im+1. (1)240

Clearly, with the operations inherited from O, the associated graded grad O is again241

algebraic structure with the same multi-graph of spaces and operations, but with new242

objects and with new operations that may or may not satisfy the axioms satisfied by243

the operations of O. The main new feature in grad O is that it is a “graded” structure;244

we denote the degree m piece Im/Im+1 of grad O by gradmO.245

We believe that many of the most interesting graded structures that appear in math-246

ematics are the result of this construction (i.e., as associated graded structures with247

respect to powers of the augmentation ideal), and that many of the interesting graded248

equations that appear in mathematics arise when one tries to find “expansions”, or249

“universal finite type invariants”, which are also morphisms3 Z : O → grad O (see250

Sect. 2.3) or when one studies “automorphisms” of such expansions.4 Indeed, the paper251

3 Indeed, if O is finitely presented then finding such a morphism Z : O → grad O amounts to finding its
values on the generators of O, subject to the relations of O. Thus it is equivalent to solving a system of
equations written in some graded spaces.
4 The Drinfel’d graded Grothendieck–Teichmuller group GRT is an example of such an automorphism
group. See [6,20].
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you are reading now is really the study of the associated graded structures of various252

algebraic structures associated with w-knotted objects. We would like to believe that253

much of the theory of quantum groups (at “generic” h̄) will eventually be shown to be254

a study of the associated graded structures of various algebraic structures associated255

with v-knotted objects.256

Example 2.1 We compute the associated graded structure of the running example 〈b〉.257

Allowing formal Q-linear combinations of elements we get Q〈b〉 = Q[b, b−1]. The258

augmentation ideal I is generated by differences (bn − 1) as a vector space (where259

1 = b0), and generated by (b − 1) as an ideal.260

We claim that grad 〈b〉 ∼= Q[[c]], the algebra of power series in one variable. To261

show this, consider the map π : Q[[c]] → grad 〈b〉 by setting π(c) = [b−1] (mod I2).262

It is easy to show explicitly that π is surjective. For example, in degree 1, we need to263

show that b−1 generates I/I2. indeed, (bn −1)−n(b−1) has a double zero at b = 1,264

and hence f = (bn−1)−n(b−1)

(b−1)2 is a polynomial, and bn − 1 = n(b − 1) + f (b − 1)2.265

So modulo (b − 1)2 ∈ I2, bn − 1 = n(b − 1). A similar argument works to show that266

(b − 1)k generates Ik/Ik+1.267

Note that 〈b〉 can also be thought of as the pure braid group on two strands: b would268

be a “full twist” and c can be represented as a single “horizontal chord”. In other knot269

theoretic settings, it is generally relatively easy to find a “candidate associated graded”270

and a map π , which can be shown to be surjective by explicit means.271

To show that π is injective we are going to use the machinery of “expansions”272

which is the tool we use to accomplish similar tasks in the later sections of this paper.273

We end this section with two more examples of computing associated graded struc-274

tures: the proof of Proposition 2.2 is an exercise; for the proof of Proposition 2.3 see275

[37].276

Proposition 2.2 If G is a group, grad G is a graded associative algebra with unit. Sim-277

ilarly, the associated graded structure of a group homomorphism is a homomorphism278

of graded associative algebras.279

Proposition 2.3 If Q is a unital quandle, grad0 Q is one-dimensional and grad>0 Q280

is a graded right Leibniz algebra5 generated by grad1 Q.281

2.3 Expansions and homomorphic expansions282

We start with the definition. Given an algebraic structure O let fil O denote the filtered283

structure of linear combinations of objects in O (respecting kinds), filtered by the284

powers (Im) of the augmentation ideal I. Recall also that any graded space G =285
⊕

m Gm is automatically filtered, by
(
⊕

n≥m Gn

)∞

m=0
.286

Definition 2.4 An “expansion” Z for O is a map Z : O → grad O that pre-287

serves the kinds of objects and whose linear extension (also called Z ) to fil O288

5 A Leibniz algebra is a Lie algebra without anti-commutativity, as defined by Loday in [32].
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Finite type invariants of w-knotted objects

respects the filtration of both sides, and for which (gr Z) : (gr fil O = grad O) →289

(gr grad O = grad O) is the identity map of grad O; we refer to this as the “universality290

property”.291

In practical terms, this is equivalent to saying that Z is a map O → grad O whose292

restriction to Im vanishes in degrees less than m (in grad O) and whose degree m piece293

is the projection Im → Im/Im+1.294

We come now to what is perhaps the most crucial definition in this paper.295

Definition 2.5 A “homomorphic expansion” is an expansion which also commutes296

with all the algebraic operations defined on the algebraic structure O.297

Why bother with homomorphic expansions? Primarily, for two reasons:298

• Often grad O is simpler to work with than O; for one, it is graded and so it allows299

for finite “degree by degree” computations, whereas often times, such as in many300

topological examples, anything in O is inherently infinite. Thus it can be beneficial301

to translate questions about O to questions about grad O. A simplistic example302

would be, “is some element a ∈ O the square (relative to some fixed operation)303

of an element b ∈ O?”. Well, if Z is a homomorphic expansion and by a finite304

computation it can be shown that Z(a) is not a square already in degree 7 in grad O,305

then we’ve given a conclusive negative answer to the example question. Some less306

simplistic and more relevant examples appear in [7].307

• Often grad O is “finitely presented”, meaning that it is generated by some finitely308

many elements g1, . . . , gk ∈ O, subject to some relations R1 . . . Rn that can be309

written in terms of g1, . . . , gk and the operations of O. In this case, finding a310

homomorphic expansion Z is essentially equivalent to guessing the values of Z311

on g1, . . . , gk , in such a manner that these values Z(g1), . . . , Z(gk) would satisfy312

the grad O versions of the relations R1 . . . Rn . So finding Z amounts to solving313

equations in graded spaces. It is often the case (as will be demonstrated in this paper;314

see also [5,6]) that these equations are very interesting for their own algebraic sake,315

and that viewing such equations as arising from an attempt to solve a problem about316

O sheds further light on their meaning.317

In practice, often the first difficulty in searching for an expansion (or a homomorphic318

expansion) Z : O → grad O is that its would-be target space grad O is hard to identify.319

It is typically easy to make a suggestion A for what grad O could be. It is typically320

easy to come up with a reasonable generating set Dm for Im (keep some knot theoretic321

examples in mind, or Z in Example 2.1). It is a bit harder but not exceedingly difficult322

to discover some relations R satisfied by the elements of the image of D in Im/Im+1
323

(4T,
−→
4T , and more in knot theory, there are no relations for Z). Thus we set A := D/R;324

but it is often very hard to be sure that we found everything that ought to go in R; so325

perhaps our suggestion A is still too big? Finding 4T for example was actually not326

that easy. Could we have missed some further relations that are hiding in A?327

The notion of an A-expansion, defined below, solves two problems at once. Once328

we find an A-expansion we know that we’ve identified grad O correctly, and we329

automatically get what we really wanted, a (grad O)-valued expansion.330
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Definition 2.6 A “candidate associated graded structure” for an algebraic structure331

O is a graded structure A with the same operations as O along with a homomorphic332

surjective graded map π : A → grad O. An “A-expansion” is a kind and filtration333

respecting map ZA : O → A for which (gr ZA) ◦ π : A → A is the identity. One334

can similarly define “homomorphic A-expansions”.335

A

π

��
O

ZA

��
�

�
�

�
�

�
�

�
�

Z
�� grad O

gr ZA

��336

Proposition 2.7 If A is a candidate associated graded of O and ZA : O → A is337

a homomorphic A-expansion, then π : A → grad O is an isomorphism and Z :=338

π ◦ ZA is a homomorphic expansion. (Often in this case, A is identified with grad O339

and ZA is identified with Z).340

Proof π is surjective by birth. Since (gr ZA) ◦ π is the identity, π it is also injective341

and hence it is an isomorphism. The rest is immediate. ⊓⊔342

Example 2.8 Back to 〈b〉, in Example 2.1 we found a candidate associated graded343

structure A = Q[[c]] and a map π : c 
→ [b − 1]. According to Proposition 2.7,344

it is enough to find a homomorphic A-expansion, that is, an algebra homomor-345

phism ZA : Q〈b〉 → Q[[c]] such that gr ZA ◦ π is the identity of Q[[c]]. It is346

a straightforward calculation to check that any algebra map defined by ZA(b) =347

1 + c +{higher order terms} satisfies this property. If one seeks a “group-like” homo-348

morphic expansion then ZA(b) = ec is the only solution. In either case, exhibiting349

ZA proves that π is injective and hence A is the associated graded structure of 〈b〉.350

2.4 Circuit algebras351

“Circuit algebras” are so common and everyday, and they make such a useful language352

(definitely for the purposes of this paper, but also elsewhere), we find it hard to believe353

they haven’t made it into the standard mathematical vocabulary.6 People familiar with354

planar algebras [24] may note that circuit algebras are just the same as planar algebras,355

except with the planarity requirement dropped from the “connection diagrams” (and356

all colourings are dropped as well).357

In our context, the main utility of circuit algebras is that they allow for a much358

simpler presentation of v(irtual)- and w-tangles. There are planar algebra presentations359

of v- and w-tangles, generated by the usual crossings and the “virtual crossing”,360

modulo the usual as well as the “virtual” and “mixed” Reidemeister moves. Switching361

from planar algebras to circuit algebras however renders the extra generators and362

relations unnecessary: the “virtual crossing” becomes merely a circuit algebra artifact,363

and the new Reidemeister moves are implied by the circuit algebra structure (see364

Warning 3.3, Definition 3.4, and Remark 3.5).365

6 Or have they, and we have been looking the wrong way?
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Finite type invariants of w-knotted objects

The everyday intuition for circuit algebras comes from electronic circuits, whose366

components can be wired together in many, not necessarily planar, ways, and it is367

not important to know how these wires are embedded in space. For details and more368

motivation see Sect. 5.1. We start formalizing this image by defining “wiring dia-369

grams”, the abstract analogs of printed circuit boards. Let N denote the set of natural370

numbers including 0, and for n ∈ N let n denote some fixed set with n elements, say371

{1, 2, . . . , n}.372

Definition 2.9 Let k, n, n1, . . . , nk ∈ N be natural numbers. A “wiring diagram”373

D with inputs n1, . . . nk and outputs n is an unoriented compact 1-manifold whose374

boundary is n ∐ n1 ∐ · · · ∐ nk , regarded up to homeomorphism (on the right is an375

example with k = 3, n = 6, and n1 = n2 = n3 = 4). In strictly combinatorial376

terms, it is a pairing7 of the elements of the set n ∐ n1 ∐ · · · ∐ nk along with a377

single further natural number that counts closed circles. If D1; . . . ; Dm are wiring378

diagrams with inputs n11, . . . , n1k1; . . . ; nm1, . . . , nmkm and outputs n1; . . . ; nm and379

D is a wiring diagram with inputs n1; . . . ; nm and outputs n, there is an obvious380

“composition” D(D1, . . . , Dm) (obtained by gluing the corresponding 1-manifolds,381

and also describable in completely combinatorial terms) which is a wiring diagram382

with inputs (ni j )1≤i≤k j ,1≤ j≤m and outputs n (note that closed circles may be created383

in D(D1, . . . , Dm) even if none existed in D and in D1; . . . ; Dm).384

1

2 3 54

6

3
1

2

1

3

4 1 4

2

4

3

2

385

386

A circuit algebra is an algebraic structure (in the sense of Sect. 2.2) whose operations387

are parametrized by wiring diagrams. Here’s a formal definition:388

Definition 2.10 A circuit algebra consists of the following data:389

• For every natural number n ≥ 0 a set (or a Z-module) Cn “of circuits with n legs”.390

• For any wiring diagram D with inputs n1, . . . nk and outputs n, an operation391

(denoted by the same letter) D : Cn1 × · · · × Cnk
→ Cn (or linear D : Cn1 ⊗392

· · · ⊗ Cnk
→ Cn if we work with Z-modules).393

We insist that the obvious “identity” wiring diagrams with n inputs and n outputs act394

as the identity of Cn , and that the actions of wiring diagrams be compatible in the395

obvious sense with the composition operation on wiring diagrams.396

7 We mean “pairing” in the sense of combinatorics, not in the sense of linear algebra. That is, an involution
without fixed point.

123

Journal: 208 Article No.: 1388 TYPESET DISK LE CP Disp.:2016/3/24 Pages: 70 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

D. Bar-Natan, Z. Dancso

A silly but useful example of a circuit algebra is the circuit algebra S of empty397

circuits, or in our context, of “skeletons”. The circuits with n legs for S are wiring398

diagrams with n outputs and no inputs; namely, they are 1-manifolds with boundary399

n (so n must be even).400

More generally one may pick some collection of “basic components” (analogous401

to logic gates and junctions for electronic circuits as in Fig. 21) and speak of the “free402

circuit algebra” generated by these components; even more generally we can speak of403

circuit algebras given in terms of “generators and relations”. (In the case of electronics,404

our relations may include the likes of De Morgan’s law ¬(p ∨ q) = (¬p)∧ (¬q) and405

the laws governing the placement of resistors in parallel or in series.) We feel there406

is no need to present the details here, yet many examples of circuit algebras given in407

terms of generators and relations appear in this paper, starting with the next section.408

We will use the notation C = CA〈 G | R 〉 to denote the circuit algebra generated by409

a collection of elements G subject to some collection R of relations.410

People familiar with electric circuits know that connectors sometimes come in411

“male” and “female” versions, and that you can’t plug a USB cable into a headphone412

jack. Thus one may define “directed circuit algebras” in which the wiring diagrams413

are oriented, the circuit sets Cn get replaced by C p,q for “circuits with p incoming414

wires and q outgoing wires” and only orientation preserving connections are ever415

allowed.8 Likewise there is a “coloured” version of everything, in which the wires416

may be coloured by the elements of some given set X (which may include among its417

members the elements “USB” and “audio”) and in which connections are allowed only418

if the colour coding is respected. We will leave the formal definitions of directed and419

coloured circuit algebras, as well as the definitions of directed and coloured analogues420

of the skeletons algebra S and generators and relations for directed and coloured421

algebras, as an exercise.422

Note that there is an obvious notion of “a morphism between two circuit algebras”423

and that circuit algebras (directed or not, coloured or not) form a category. We feel that a424

precise definition is not needed. A lovely example is the “implementation morphism”425

of logic circuits in the style of Fig. 21 in Sect. 5 into more basic circuits made of426

transistors and resistors.427

Perhaps the prime mathematical example of a circuit algebra is tensor algebra. If t1428

is an element (a “circuit”) in some tensor product of vector spaces and their duals, and429

t2 is the same except in a possibly different tensor product of vector spaces and their430

duals, then once an appropriate pairing D (a “wiring diagram”) of the relevant vector431

spaces is chosen, t1 and t2 can be contracted (“wired together”) to make a new tensor432

D(t1, t2). The pairing D must pair a vector space with its own dual, and so this circuit433

algebra is coloured by the set of vector spaces involved, and directed, by declaring434

(say) that some vector spaces are of one gender and their duals are of the other. We435

have in fact encountered this circuit algebra in [38, Sect. 3.5].436

Let G be a group. A G-graded algebra A is a collection {Ag : g ∈ G} of vector437

spaces, along with products Ag ⊗ Ah → Agh that induce an overall structure of an438

8 By convention we label the boundary points of such circuits 1, . . . , p + q, with the first p labels reserved
for the incoming wires and the last q for the outgoing. The inputs of wiring diagrams must be labeled in
the opposite way for the numberings to match.
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Finite type invariants of w-knotted objects

algebra on A :=
⊕

g∈G Ag . In a similar vein, we define the notion of an S-graded439

circuit algebra:440

Definition 2.11 An S-graded circuit algebra, or a “circuit algebra with skeletons”, is441

an algebraic structure C with spaces Cβ , one for each element β of the circuit algebra442

of skeletons S, along with composition operations Dβ1,...,βk
: Cβ1 ×· · ·× Cβk

→ Cβ ,443

defined whenever D is a wiring diagram and β = D(β1, . . . , βk), so that with the444

obvious induced structure,
∐

β Cβ is a circuit algebra. A similar definition can be445

made if/when the skeletons are taken to be directed or coloured.446

Loosely speaking, a circuit algebra with skeletons is a circuit algebra in which447

every element T has a well-defined skeleton ς(T ) ∈ S. Yet note that as an algebraic448

structure a circuit algebra with skeletons has more “spaces” than an ordinary circuit449

algebra, for its spaces are enumerated by skeletan and not merely by integers. The450

prime examples for circuit algebras with skeletons appear in the next section.451

3 w-Tangles452

Section summary In Sect. 3.1 we introduce v-tangles and w-tangles, the obvious453

v- and w- counterparts of the standard knot-theoretic notion of “tangles”, and454

briefly discuss their finite type invariants and their associated spaces of “arrow455

diagrams”, Av(↑n) and Aw(↑n). We then construct a homomorphic expansion456

Z , or a “well-behaved” universal finite type invariant for w-tangles. The only457

algebraic tool we need to use is exp(a) :=
∑

an/n! (Sec. 3.1 is in fact a routine458

extension of parts of [38, Sect. 3.1]). In Sec. 3.2 we show that Aw(↑n) ∼=459

U(an ⊕ tdern ⋉ trn), where an is an Abelian algebra of rank n and where tdern460

and trn , two of the primary spaces used by Alekseev and Torossian [2], have461

simple descriptions in terms of cyclic words and free Lie algebras. We also show462

that some functionals studied in [2], div and j , have a natural interpretation in our463

language. In 3.3 we discuss a subclass of w-tangles called “special” w-tangles,464

and relate them by similar means to Alekseev and Torossian’s sdern and to “tree465

level” ordinary Vassiliev theory. Some conventions are described in Sec. 3.4 and466

the uniqueness of Z is studied in Sec. 3.5.467

3.1 v-tangles and w-tangles468

With the task of defining circuit algebras completed in Sect. 2.4, the definition of469

v-tangles and w-tangles is simple.470

Definition 3.1 The (S-graded) circuit algebra vD of v-tangle diagrams is the S-graded471

directed circuit algebra freely generated by two generators in C2,2 called the positive472

crossing, 4 3

1 2
, and the negative crossing, 4 3

1 2
. In as much as possible we suppress473

the leg-numbering below; with this in mind, vD :=vD := ,CA . The skeleton474
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1

2 3 4 5

D =V =

61

2 3 54

6 1

2 3 54

6

ς(V ) =
3
1

2

1

3

4 1 4

2

4

3

2

Fig. 2 V ∈ vD3,3 is a v-tangle diagram. V is the result of applying the circuit algebra operation
D : C2,2 × C2,2 × C2,2 → C3,3, given by the wiring diagram shown, acting on two negative cross-

ings and one positive crossing. In other words V = D( , , ) . The skeleton of V is given by

ς(V ) = D( , , ), which is equal in S to the diagram shown here. Note that we usually sup-

press the circuit algebra numbering of boundary points. Note also that the apparent “virtual crossings” of
V are not virtual crossings but merely part of the circuit algebra structure, see Warning 3.3. The same is
true for the crossings appearing in the skeleton ς(V )

of both crossings is the element 4 3

1 2
(the pairing of 1&3 and 2&4) in S2,2. That is,475

ς( ) = ς( ) = ..476

Example 3.2 An example of a v-tangle diagram V is shown the left side of Fig. 2. V477

is a circuit algebra composition of two negative crossings and one positive crossing by478

the wiring diagram D, as shown. The right side of the same figure shows the skeleton479

ς(V ) of V : to produce the skeleton, replace each crossing by the element in S480

and apply the same wiring diagram. The elements of S are oriented 1-manifolds with481

numbered boundary points, and hence the result is equal to the one shown in the figure.482

Warning 3.3 People familiar with the planar presentation of virtual tangles may be483

accustomed to the notion of there being another type of crossing: the “virtual crossing”.484

The main point of introducing circuit algebras (as opposed to working with planar485

algebras) is to eliminate the need for virtual crossings: they become part of the CA486

structure. This greatly simplifies the presentation of both v- and w-tangles: there is487

one less generator, as seen above, and far fewer relations, as we explain in Remark 3.5.488

Definition 3.4 The (S-graded) circuit algebra vT of v-tangles is the S-graded directed489

circuit algebra of v-tangle diagrams vD, modulo the R1s , R2 and R3 moves as depicted490

in Fig. 3. These relations make sense as circuit algebra relations between the two491

generators, and preserve skeleta. To obtain the circuit algebra wT of w-tangles we492

also mod out by the OC relation of Fig. 3 (note that each side in that relation involves493

only two generators, with the apparent third “virtual” crossing being merely a circuit494

algebra artifact). In fewer words, vT := ,= =,=,CA ,495

and wT := =vT .496

Remark 3.5 One may also define v-tangles and w-tangles using the language of planar497

algebras, except then another generator is required (the “virtual crossing”) and also a498

number of further relations shown in Fig. 3 (VR1–VR3, M), and some of the operations499
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=

VR2

=

VR1

=

R3

=

R1

=

R2

=
w
= =

M OC UC

=

VR3R1s

=

Fig. 3 The relations (“Reidemeister moves”) R1s , R2 and R3 define v-tangles, adding OC to these defines
w-tangles. VR1, VR2, VR3 and M are not necessary as the circuit algebra presentation eliminates the need
for “virtual crossings” as generators. R1 is not imposed for framing reasons, and not imposing UC breaks
the symmetry between over and under crossings in wT

(non-planar wirings) become less elegant to define. In our context “virtual crossings”500

are automatically present (but unimportant) as part of the circuit algebra structure, and501

the “virtual Reidemeister moves” VR1–VR3 and M are also automatically true. In502

fact, the “rerouting move” known in the planar presentation, which says that a purely503

virtual strand of a v-tangle diagram can be re-routed in any other purely virtual way,504

is precisely the statement that virtual crossings are unimportant, and the language of505

circuit algebras makes this fact manifest.506

Remark 3.6 For S ∈ S a given skeleton, that is, an oriented 1-manifold with numbered507

ends, let us denote by vT (S) and wT (S), respectively, thev- and w-tangles with skeleton508

S. That is, vT (S) and wT (S) are the pre-images of S under the skeleton map ς . Note509

that in our case the skeleton map is “forgetting topology”, in other words, forgetting510

the under/over information of crossings, resulting in empty circuits. With this notation,511

wT (↑), the set of w-tangles whose skeleton is a single line, is exactly the set of (long)512

w-knots discussed in [38, Section 3]. Note also that wT (↑n), the set of w-tangles513

whose skeleton is n lines, includes w-braids with n strands [38, Section 2] but it is514

more general. Neither w-knots nor w-braids are circuit algebras.515

Remark 3.7 Since we do not mod out by the R1 relation, only by its weak (or “spun”)516

version R1s , it is more appropriate to call our class of v/w-tangles framed v/w-tangles.517

(Recall that framed u-tangles are characterized as the planar algebra generated by the518

positive and negative crossings modulo the R1s , R2 and R3 relations.) However, since519

we are for the most part interested in studying the framed theories (cf. Comment 4.4),520

we will reserve the unqualified name for the framed case, and will explicitly write521

“unframed v/w-tangles” if we wish to mod out by R1. For a more detailed explanation522

of framings and R1 moves, see [38, Remark 3.5].523

Our next task is to study the associated graded structures grad vT and grad wT of524

vT and wT . These are “arrow diagram spaces on tangle skeletons”: directed analogues525

of the chord diagram spaces of ordinary finite type invariant theory, and even more526

similar to the arrow diagram spaces for braids and knots discussed in [38]. Our con-527

vention for figures will be to show skeletons as thick lines with thin arrows (directed528

chords). Again, the language of circuit algebras makes defining these spaces exceed-529

ingly simple.530

Definition 3.8 The (S-graded) circuit algebra Dv = Dw of arrow diagrams is the531

graded and S-graded directed circuit algebra generated by a single degree 1 generator532
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++

++
6T
=

RI
=

Fig. 4 Relations for v-arrow diagrams on tangle skeletons. Skeleta parts that are not connected can lie
on separate skeleton components; and the dotted arrow that remains in the same position means “all other
arrows remain the same throughout”

and

+
−→
4T
=

TC
=

+

Fig. 5 Relations for w-arrow diagrams on tangle skeletons

a in C2,2 called “the arrow” as shown on the right, with the obvious meaning for533

its skeleton. There are morphisms π : Dv → vT and π : Dw → wT defined by534

mapping the arrow to an overcrossing minus a no-crossing. (On the right some virtual535

crossings were added to make the skeleta match). Let Av be Dv/6T , let Aw :=536

Av/T C = Dw/(
−→
4T , T C), and let Asv := Av/RI and Asw := Aw/RI as usual,537

with RI, 6T,
−→
4T , and T C being the relations shown in Figs. 4 and 5. Note that the pair538

of relations (
−→
4T , T C) is equivalent to the pair (6T, T C), as discussed in [38, Section539

2.3.1].540

π
−

541

542

Proposition 3.9 The maps π above induce surjections π : Asv → grad vT and543

π : Asw → grad wT . Hence in the language of Definition 2.6, Asv and Asw are544

candidate associated graded structures of vT and wT .545

Proof Proving that π is well-defined amounts to checking directly that the RI and 6T546

or RI,
−→
4T and TC relations are in the kernel of π . (Just like in the finite type theory of547
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Finite type invariants of w-knotted objects

virtual knots and braids.) Thanks to the circuit algebra structure, it is enough to verify548

the surjectivity of π in degree 1. We leave this as an exercise for the reader. ⊓⊔549

We do not know if Asv is indeed the associated graded of vT (also see [10]). Yet in550

the w case, the picture is simple:551

Theorem 3.10 The assignment ea (with ea denoting the exponential of a single552

arrow from the over strand to the under strand, interpreted via its power series) extends553

to a well defined Z : wT → Asw. The resulting map Z is a homomorphic Asw-554

expansion, and in particular, Asw ∼= grad wT and Z is a homomorphic expansion.555

Proof The proof is essentially the same as the proof of [38, Theorem 2.15], and556

follows [2,12]. One needs to check that Z satisfies the Reidemeister moves and the557

OC relation. R1s follows easily from RI , R2 is obvious, TC implies OC. For R3, let558

Asw(↑n) denote the space of “arrow diagrams on n vertical strands”. We need to verify559

that R := ea ∈ Asw(↑2) satisfies the Yang–Baxter equation560

R12 R13 R23 = R23 R13 R12, in Asw(↑3),561

where Ri j = eai j means “place R on strands i and j”. By 4T and T C relations,562

both sides of the equation can be reduced to ea12+a13+a23 , proving the Reidemeister563

invariance of Z .564

Z is by definition a circuit algebra homomorphism. Hence to show that Z is an565

Asw-expansion we only need to check the universality property in degree one, where566

it is very easy. The rest follows from Proposition 2.7. ⊓⊔567

Remark 3.11 Note that the restriction of Z to w-knots and w-braids (in the sense of568

Remark 3.6) recovers the expansions constructed in [38]. Note also that the filtration569

and associated graded structure for w-braids fits into the general algebraic framework570

of Sect. 2 by applying the machinery to the skeleton-graded group of w-braids instead571

the circuit algebra of w-tangles. (The skeleton of a w-braid is the permutation it572

represents.) However, as w-knots do not form a finitely presented algebraic structure573

in the sense of Sect. 2, the “finite type” filtration used in [38] does not arise as powers of574

any augmentation ideal. This captures the reason why w-knots are “the wrong objects575

to study”, as we have mentioned at the beginning of Section 3 of [38].576

In a similar spirit to [38, Definition 3.12], one may define a “w-Jacobi diagram” on577

an arbitrary skeleton:578

Definition 3.12 A “w-Jacobi diagram on a tangle skeleton”9 is a graph made of the579

following ingredients:580

• An oriented “skeleton” consisting of long lines and circles (i.e., an oriented one-581

manifold). In figures we draw the skeleton lines thicker.582

• Other directed edges, usually called “arrows”.583

• Trivalent “skeleton vertices” in which an arrow starts or ends on the skeleton line.584

9 We usually short this to “w-Jacobi diagram”, or sometimes “arrow diagram” or just “diagram”.
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= − = −
− →
STU1:

− →
STU2:

e
e

e

e
e

e

Fig. 6 The
−−→
ST U relations for arrow diagrams, with their “central edges” marked e for easier memorization

= −

− →

IHX: e
e

e

−→

AS: 0 = +

Fig. 7 The
−→
AS and

−−−→
I H X relations

• Trivalent “internal vertices” in which two arrows end and one arrow begins. The585

internal vertices are cyclically oriented; in figures the assumed orientation is always586

counterclockwise unless marked otherwise. Furthermore, all trivalent vertices must587

be connected to the skeleton via arrows (but not necessarily following the direction588

of the arrows).589

Note that we allow multiple and loop arrow edges, as long as trivalence and the590

two-in-one-out rule is respected.591

Formal linear combinations of (w-Jacobi) arrow diagrams form a circuit algebra.592

We denote by Awt the quotient of the circuit algebra of arrow diagrams modulo the593

−−→
ST U 1,

−−→
ST U 2 relations of Fig. 6, and the TC relation. We denote Awt modulo the RI594

relation by Aswt . We then have the following “bracket-rise” theorem:595

Theorem 3.13 The obvious inclusion of arrow diagrams (with no internal vertices)596

into w-Jacobi diagrams descends to a map ῑ : Aw → Awt , which is a circuit alge-597

bra isomorphism. Furthermore, the
−→
AS and

−−−→
I H X relations of Fig. 7 hold in Awt .598

Consequently, it is also true that Asw ∼= Aswt .599

Proof In the proof of [38, Theorem 3.13] we showed this for long w-knots (i.e., tangles600

whose skeleton is a single long line). That proof applies here verbatim, noting that it601

does not make use of the connectivity of the skeleton.602

In short, to check that ῑ is well-defined, we need to show that the
−−→
ST U relations603

imply the
−→
4T relation. This is shown in Fig. 8. To show that ῑ is an isomorphism,604

we construct an inverse Awt → Aw, which “eliminates all internal vertices” using605

a sequence of
−−→
ST U relations. Checking that this is well-defined requires some case606

analysis; the fact that it is an inverse to ῑ is obvious. Verifying that the
−→
AS and

−−−→
I H X607

relations hold in Awt is an easy exercise. ⊓⊔608

Given the above theorem, we no longer keep the distinction between Aw and Awt
609

and between Asw and Aswt .610

We recall from [38] that a “k-wheel”, sometimes denoted wk , is a an arrow diagram611

consisting of an oriented cycle of arrows with k incoming “spokes”, the tails of which612

rest on the skeleton. An example is shown in Fig. 9. In this language, the RI relation613

can be rephrased using the
−−→
ST U relation to say that all one-wheels are 0, or w1 = 0.614
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Finite type invariants of w-knotted objects

=

=

−

−

− →
STU1

− →
STU2

e2 e1

Fig. 8 Applying
−−→
ST U1 and

−−→
ST U2 to the diagram on the left, we get the two sides of

−→
4T

Fig. 9 A 4-wheel and the RI
relation re-phrased

RI: = 0

Remark 3.14 Note that if T is an arbitrary w tangle, then the equality on the left side615

of the figure below always holds, while the one on the right generally doesn’t:616

,
T T

=
T T

=yet

(2)617

The arrow diagram version of this statement is that if D is an arbitrary arrow diagram618

in Aw, then the left side equality in the figure below always holds (we will sometimes619

refer to this as the “head-invariance” of arrow diagrams), while the right side equality620

(“tail-invariance”) generally fails.621

yet= 0,
D

+
= 0

D

+
(3)622

We leave it to the reader to ascertain that Eq. (2) implies Eq. (3). There is also a direct623

proof of Eq. (3) which we also leave to the reader, though see an analogous statement624

and proof in [5, Lemma 3.4]. Finally note that a restricted version of tail-invariance625

does hold—see Sect. 3.3.626

3.2 Aw(↑n) and the Alekseev–Torossian spaces627

Definition 3.15 Let Av(↑n) be the part of Av in which the skeleton is the disjoint628

union of n directed lines, with similar definitions for Aw(↑n),A
sv(↑n), and Asw(↑n).629
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D. Bar-Natan, Z. Dancso

Theorem 3.16 (Diagrammatic PBW Theorem) Let Bw
n denote the space of uni-630

trivalent diagrams10 with symmetrized ends coloured with colours in some n-element631

set (say {x1, . . . , xn}), modulo the
−→
AS and

−−−→
I H X relations of Fig. 7. Then there is an632

isomorphism Aw(↑n) ∼= Bw
n .633

Proof sketch Readers familiar with the diagrammatic PBW theorem [4, Theorem8] will634

note that the proof carries through almost verbatim. There is a map χ : Bw
n → Aw(↑n),635

which sends each uni-trivalent diagram to the average of all ways of attaching their636

univalent ends to the skeleton of n lines, so that ends of colour xi are attached to the637

strand numbered i . I.e., a diagram with ki uni-valent vertices of colour xi is sent to a638

sum of
∏

i ki ! terms, divided by
∏

i ki !.639

The goal is to show that χ is an isomorphism by constructing an inverse for it. The640

image of χ are symmetric sums of diagrams, that is, sums of diagrams that are invariant641

under permuting arrow endings on the same skeleton component. One can show that642

in fact any arrow diagram D in Aw(↑n) is equivalent via
−−→
ST U and T C relations to a643

symmetric sum. The obvious candidate is its “symmetrization” Sym(D): the average644

of all ways of permuting the arrow endings on each skeleton component of D. It is not645

true that each diagram is equivalent to its symmetrization (hence, the “simply delete646

the skeleton” map is not an inverse for χ ), but it is true that D − Sym(D) has fewer647

skeleton vertices (lower degree) than D, hence we can construct χ−1 inductively.648

The fact that this inductive procedure is well-defined requires a proof; that proof is649

essentially the same as the proof of the corresponding fact in [4, Theorem 8].650

Both Aw(↑n) and Bw
n have a natural bi-algebra structure. In Aw(↑n) multiplication651

is given by stacking. For a diagram D ∈ Aw(↑n), the co-product �(D) is given by652

the sum of all ways of dividing D between a “left co-factor” and a “right cofactor”653

so that the connected components of D − S are kept intact, where S is the skeleton654

of D. In Bw
n multiplication is given by disjoint union, and � is the sum of all ways of655

dividing the connected components of a diagram between two co-factors (here there656

is no skeleton). Note that the isomorphism χ above is a co-algebra isomorphism, but657

not an algebra homomorphism.658

The primitives Pw
n of Bw

n are the connected diagrams (and hence the primitives of659

Aw(↑n) are the diagrams that remain connected even when the skeleton is removed).660

Given the “two in one out” rule for internal vertices, the diagrams in Pw
n can only be661

trees (diagrams with no cycles) or wheels (a single oriented cycle with a number of662

“spokes”, or leaves, attached to it). “Wheels of trees” can be reduced to simple wheels663

by repeatedly using
−−−→
I H X , as in Fig. 10.664

Thus as a vector space Pw
n is easy to identify. It is a direct sum Pw

n = 〈trees〉 ⊕665

〈wheels〉. The wheels part is simply the graded vector space generated by all cyclic666

words in the letters x1, . . . , xn . Alekseev and Torossian [2] denote the space of cyclic667

words by trn , and so shall we. The trees in Pw
n have leafs coloured x1, . . . , xn . Modulo668

−→
AS and

−−−→
I H X , they correspond to elements of the free Lie algebra lien on the generators669

x1, . . . , xn . But the root of each such tree also carries a label in {x1, . . . , xn}, hence670

10 Oriented graphs with vertex degrees either 1 or 3, where trivalent vertices must have two edges incoming
and one edge outgoing and are cyclically oriented.
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Finite type invariants of w-knotted objects

x1

x1

x2

x1

x1

x3

apply
− →
IHX here first

Fig. 10 A wheel of trees can be reduced to a combination of wheels, and a wheel of trees with a Little
Prince

there are n types of such trees as separated by their roots, and so Pw
n is isomorphic to671

the direct sum trn ⊕
⊕n

i=1 lien .672

Note that with Bsw
n and Psw

n defined in the analogous manner (i.e., factoring out673

by one-wheels, as in the RI relation), we can also conclude that Psw
n

∼= trn/(deg 1) ⊕674
⊕n

i=1 lien .675

By the Milnor–Moore theorem [34], Aw(↑n) is isomorphic to the universal envelop-676

ing algebra U(Pw
n ), with Pw

n identified as the subspace Pw(↑n) of primitives of677

Aw(↑n) using the PBW symmetrization map χ : Bw
n → Aw(↑n). Thus in order to678

understand Aw(↑n) as an associative algebra, it is enough to understand the Lie algebra679

structure induced on Pw
n via the commutator bracket of Aw(↑n).680

Our goal is to identify Pw(↑n) as the Lie algebra trn ⋊ (an ⊕ tdern), which in681

itself is a combination of the Lie algebras an, tdern and trn studied by Alekseev and682

Torossian [2]. Here are the relevant definitions:683

Definition 3.17 Let an denote the vector space with basis x1, . . . , xn , also regarded684

as an Abelian Lie algebra of dimension n. As before, let lien = lie(an) denote the685

free Lie algebra on n generators, now identified as the basis elements of an . Let686

dern = der(lien) be the (graded) Lie algebra of derivations acting on lien , and let687

tdern = {D ∈ dern : ∀i ∃ai s.t. D(xi ) = [xi , ai ]}688

denote the subalgebra of “tangential derivations”. A tangential derivation D is deter-689

mined by the ai ’s for which D(xi ) = [xi , ai ], and determines them up to the690

ambiguity ai 
→ ai + αi xi , where the αi ’s are scalars. Thus as vector spaces,691

an ⊕ tdern
∼=

⊕n
i=1 lien .692

Definition 3.18 Let Assn = U(lien) be the free associative algebra “of words”, and let693

Ass+
n be the degree > 0 part of Assn . As before, we let trn = Ass+

n /(xi1 xi2 · · · xim =694

xi2 · · · xim xi1) denote “cyclic words” or “(coloured) wheels”. Assn, Ass+
n , and trn are695

tdern-modules and there is an obvious equivariant “trace” tr : Ass+
n → trn .696

Proposition 3.19 There is a split short exact sequence of Lie algebras697

0 −→ trn
ι

−→ Pw(↑n)
π

−→ an ⊕ tdern −→ 0.698
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Proof The inclusion ι is defined the natural way: trn is spanned by coloured “floating”699

wheels, and such a wheel is mapped into Pw(↑n) by attaching its ends to their assigned700

strands in arbitrary order. Note that this is well-defined: wheels have only tails, and701

tails commute.702

As vector spaces, the statement is already proven: Pw(↑n) is generated by trees703

and wheels (with the all arrow endings fixed on n strands). When factoring out by the704

wheels, only trees remain. Trees have one head and many tails. All the tails commute705

with each other, and commuting a tail with a head on a strand costs a wheel (by
−−→
ST U ),706

thus in the quotient the head also commutes with the tails. Therefore, the quotient707

is the space of floating (coloured) trees, which we have previously identified with708
⊕n

i=1 lien
∼= an ⊕ tdern .709

It remains to show that the maps ι and π are Lie algebra maps as well. For ι this is710

easy: the Lie algebra trn is commutative, and is mapped to the commutative (due to711

T C) subalgebra of Pw(↑n) generated by wheels.712

To show that π is a map of Lie algebras we give two proofs, first a “hands-on” one,713

then a “conceptual” one.714

Hands-on argument an is the image of single arrows on one strand. These commute715

with everything in Pw(↑n), and so does an in the direct sum an ⊕ tdern .716

It remains to show that the bracket of tdern works the same way as commuting717

trees in Pw(↑n). Let D and D′ be elements of tdern represented by (a1, . . . , an) and718

(a′
1, . . . , a′

n), meaning that D(xi ) = [xi , ai ] and D′(xi ) = [xi , a′
i ] for i = 1, . . . , n.719

Let us compute the commutator of these elements:720

[D, D′](xi ) = (DD′ − D′D)(xi ) = D[xi , a′
i ] − D′[xi , ai ]721

= [[xi , ai ], a′
i ] + [xi , Da′

i ] − [[xi , a′
i ], ai ] − [xi , D′ai ]722

= [xi , Da′
i − D′ai + [ai , a′

i ]].723

Now let T and T ′ be two trees in Pw(↑n)/trn , their heads on strands i and j ,724

respectively (i may or may not equal j). Let us denote by ai (resp. a′
j ) the element725

in lien given by forming the appropriate commutator of the colours of the tails of T ’s726

(resp. T ′). In tdern , let D = π(T ) and D′ = π(T ′). D and D′ are determined by727

(0, . . . , ai , . . . , 0), and (0, . . . , a′
j , . . . 0), respectively. (In each case, the i-th or the728

j-th is the only non-zero component.) The commutator of these elements is given729

by [D, D′](xi ) = [Da′
i − D′ai + [ai , a′

i ], xi ], and [D, D′](x j ) = [Da′
j − D′a j +730

[a j , a′
j ], x j ]. Note that unless i = j, a j = a′

i = 0.731

In Pw(↑n)/trn , all tails commute, as well as a head of a tree with its own tails.732

Therefore, commuting two trees only incurs a cost when commuting a head of one733

tree over the tails of the other on the same strand, and the two heads over each other,734

if they are on the same strand.735

If i �= j , then commuting the head of T over the tails of T ′ by
−−→
ST U costs a sum736

of trees given by Da′
j , with heads on strand j , while moving the head of T ′ over the737

tails of T costs exactly −D′ai , with heads on strand i , as needed.738
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Finite type invariants of w-knotted objects

If i = j , then everything happens on strand i , and the cost is (Da′
i −D′ai +[ai , a′

i ]),739

where the last term happens when the two heads cross each other.740

Conceptual argument There is an action of Pw(↑n) on lien , as follows: introduce and741

extra strand on the right. An element L of lien corresponds to a tree with its head on742

the extra strand. Its commutator with an element of Pw(↑n) (considered as an element743

of Pw(↑n+1) by the obvious inclusion) is again a tree with head on strand (n + 1),744

defined to be the result of the action.745

Since L has only tails on the first n strands, elements of trn , which also only have746

tails, act trivially. So do single (local) arrows on one strand (an). It remains to show747

that trees act as tdern , and it is enough to check this on the generators of lien (as the748

Leibniz rule is obviously satisfied). The generators of lien are arrows pointing from749

one of the first n strands, say strand i , to strand (n + 1). A tree with head on strand750

i acts on this element, according
−−→
ST U , by forming the commutator, which is exactly751

the action of tdern . ⊓⊔752

To identify Pw(↑n) as the semidirect product trn ⋊ (an ⊕ tdern), it remains to show753

that the short exact sequence of the Proposition splits. This is indeed the case, although754

not canonically. Two —of the many— splitting maps u, l : tdern ⊕ an → Pw(↑n) are755

described as follows: tdern ⊕an is identified with
⊕n

i=1 lien , which in turn is identified756

with floating (coloured) trees. A map to Pw(↑n) can be given by specifying how to757

place the legs on their specified strands. A tree may have many tails but has only one758

head, and due to T C , only the positioning of the head matters. Let u (for upper) be759

the map placing the head of each tree above all its tails on the same strand, while l (for760

lower) places the head below all the tails. It is obvious that these are both Lie algebra761

maps and that π ◦ u and π ◦ l are both the identity of tdern ⊕ an . This makes Pw(↑n)762

a semidirect product.763

Remark 3.20 Let tr
s
n denote trn mod out by its degree one part (one-wheels). Since764

the RI relation is in the kernel of π , there is a similar split exact sequence765

0 → tr
s
n

ι
→ Psw π

→ an ⊕ tdern .766

Definition 3.21 For any D ∈ tdern, (l − u)D is in the kernel of π , therefore is in the767

image of ι, so ι−1(l − u)D makes sense. We call this element divD.768

Definition 3.22 In [2] div is defined as follows: div(a1, . . . , an) :=
∑n

k=1 tr((∂kak)xk),769

where ∂k picks out the words of a sum which end in xk and deletes their last letter xk ,770

and deletes all other words (the ones which do not end in xk).771

Proposition 3.23 The div of Definition 3.21 and the div of [2] are the same.772

Proof It is enough to verify the claim for the linear generators of tdern , namely, ele-773

ments of the form (0, . . . , a j , . . . , 0), where a j ∈ lien or equivalently, single (floating,774

coloured) trees, where the colour of the head is j . By the Jacobi identity, each a j can775

be written in a form a j = [xi1 , [xi2 , [. . . , xik
] . . .]. Equivalently, by

−−−→
I H X , each tree776

has a standard “comb” form, as shown on the picture on the right.777
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...

xi2

xi1

xik

xik−1

778

779

For an associative word Y = y1 y2 . . . yl ∈ Ass+
n , we introduce the notation [Y ] :=780

[y1, [y2, [. . . , yl ] . . .]. The div of [2] picks out the words that end in x j , forgets the781

rest, and considers these as cyclic words. Therefore, by interpreting the Lie brackets782

as commutators, one can easily check that for a j written as above,783

div((0, . . . , a j , . . . , 0)) =
∑

α : iα=x j

−xi1 . . . xiα−1 [xiα+1 . . . xik
]x j . (4)784

⊓⊔785

In Definition 3.21, div of a tree is the difference between attaching its head on the786

appropriate strand (here, strand j) below all of its tails and above. As shown in the787

figure on the right, moving the head across each of the tails on strand j requires an788

−−→
ST U relation, which “costs” a wheel (of trees, which is equivalent to a sum of honest789

wheels). Namely, the head gets connected to the tail in question. So div of the tree790

represented by a j is given by791

j

− =

jj
792

∑

α : xiα = j

“connect the head to the α leaf”.793

This in turn gets mapped to the formula above via the correspondence between794

wheels and cyclic words. ⊓⊔795

Remark 3.24 There is an action of tdern on trn as follows. Represent a cyclic word796

w ∈ trn as a wheel in Pw(↑n) via the map ι. Given an element D ∈ tdern, u(D),797

as defined above, is a tree in Pw(↑n) whose head is above all of its tails. We define798

D ·w := ι−1(u(D)ι(w)− ι(w)u(D)). Note that u(D)ι(w)− ι(w)u(D) is in the image799

of ι, i.e., a linear combination of wheels, for the following reason. The wheel ι(w)800
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Finite type invariants of w-knotted objects

has only tails. As we commute the tree u(D) across the wheel, the head of the tree is801

commuted across tails of the wheel on the same strand. Each time this happens the802

cost, by the
−−→
ST U relation, is a wheel with the tree attached to it, as shown on the803

right, which in turn (by
−−−→
I H X relations, as Fig. 10 shows) is a sum of wheels. Once804

the head of the tree has been moved to the top, the tails of the tree commute up for805

free by T C . Note that the alternative definition, D · w := ι−1(l(D)ι(w) − ι(w)l(D))806

is in fact equal to the definition above.807

− =

808

Definition 3.25 In [2], the group T Autn is defined as exp(tdern). Note that tdern is809

positively graded, hence it integrates to a group. Note also that T Autn is the group810

of “basis-conjugating” automorphisms of lien , i.e., for g ∈ T Autn , and any xi , i =811

1, . . . , n generator of lien , there exists an element gi ∈ exp(lien) such that g(xi ) =812

g−1
i xi gi .813

The action of tdern on trn lifts to an action of T Autn on trn , by interpreting814

exponentials formally, in other words eD acts as
∑∞

n=0
Dn

n!
. The lifted action is by815

conjugation: for w ∈ trn and eD ∈ T Autn, eD · w = ι−1(eu Dι(w)e−u D).816

Recall that in Section 5.1 of [2] Alekseev and Torossian construct a map817

j : T Autn → trn which is characterized by two properties: the cocycle property818

j (gh) = j (g) + g · j (h), (5)819

where in the second term multiplication by g denotes the action described above; and820

the condition821

d

ds
j (exp(s D))|s=0 = div(D). (6)822

Now let us interpret j in our context.823

Definition 3.26 The adjoint map ∗: Aw(↑n) → Aw(↑n) acts by “flipping over824

diagrams and negating arrow heads on the skeleton”. In other words, for an arrow825

diagram D,826

D∗ := (−1)#{tails on skeleton}S(D),827

where S denotes the map which switches the orientation of the skeleton strands (i.e.828

flips the diagram over), and multiplies by (−1)#skeleton vertices.829
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D. Bar-Natan, Z. Dancso

Proposition 3.27 For D ∈ tdern , define a map J : T Autn → exp(trn) by J (eD) :=830

eu D(eu D)∗. Then831

exp( j (eD)) = J (eD).832

Proof Note that (eu D)∗ = e−l D , due to “Tails Commute” and the fact that a tree has833

only one head.834

Let us check that log J satisfies properties (5) and (6). Namely, with g = eD1 and835

h = eD2 , and using that trn is commutative, we need to show that836

J (eD1 eD2) = J (eD1)
(

eu D1 · J (eD2)
)

, (7)837

where · denotes the action of tdern on trn ; and that838

d

ds
J (es D)|s=0 = div D. (8)839

Indeed, with BCH(D1, D2) = log eD1 eD2 being the standard Baker–Campbell–840

Hausdorff formula,841

J (eD1 eD2) = J (eBCH(D1,D2)) = eu(BCH(D1,D2)e−l(BCH(D1,D2)
842

= eBCH(u D1,u D2)e− BCH(l D1,l D2)
843

= eu D1 eu D2 e−l D2 e−l D1 = eu D1(eu D2 e−l D2)e−u D1 eu D1 el D1
844

= (eu D1 · J (D2))J (D1),845

as needed.846

As for condition (6), a direct computation of the derivative yields847

d

ds
J (es D)|s=0 = u D − l D = div D,848

as desired. ⊓⊔849

3.3 The relationship with u-tangles850

Let uT be the planar algebra of classical, or “usual” tangles. There is a map a : uT →851

wT of u-tangles into w-tangles: algebraically, it is defined in the obvious way on the852

planar algebra generators of uT . (It can also be interpreted topologically as Satoh’s853

tubing map, see [38, Section 3.1.1], where a u-tangle is a tangle drawn on a sphere.854

However, it is only conjectured that the circuit algebra presented here is a Reidemeister855

theory for “tangled ribbon tubes in R4”.) The map a induces a corresponding map856

α : Au → Asw, which maps an ordinary Jacobi diagram (i.e., unoriented chords with857

internal trivalent vertices modulo the usual AS, I H X and ST U relations) to the sum858

of all possible orientations of its chords (many of which are zero in Asw due to the859

“two in one out” rule).860
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Finite type invariants of w-knotted objects

It is tempting to ask whether the square on the left commutes. Unfortunately, this861

question hardly makes sense, as there is no canonical choice for the dotted line in it.862

Similarly to the braid case of [38, Section 2.5.5], the definition of the homomorphic863

expansion (Kontsevich integral) for u-tangles typically depends on various choices of864

“parenthesizations”. Choosing parenthesizations, this square becomes commutative865

up to some fixed corrections. The details are in Proposition 4.18.866

uT
Zu

��

a

��

Au

α

��
wT

Zw
�� Asw

867

Yet already at this point we can recover something from the existence of the map868

a : uT → wT , namely an interpretation of the Alekseev and Torossian [2] space of869

special derivations,870

sdern :=

{

D ∈ tdern : D

(

n
∑

i=1

xi

)

= 0

}

.871

Recall from Remark 3.14 that in general it is not possible to slide a strand under an872

arbitrary w-tangle. However, it is possible to slide strands freely under tangles in the873

image of a, and thus by reasoning similar to the reasoning in Remark 3.14, diagrams874

D in the image of α respect “tail-invariance”:875

T D

+

+

D
= ⇒T = (9)876

Let Pu(↑n) denote the primitives of Au(↑n), that is, Jacobi diagrams that remain877

connected when the skeleton is removed. Remember that Pw(↑n) stands for the prim-878

itives of Aw(↑n). Equation (9) readily implies that the image of the composition879

Pu(↑n)
α �� Pw(↑n)

π �� an ⊕ tdern880

is contained in an ⊕ sdern . Even better is true.881

Theorem 3.28 The image of πα is precisely an ⊕ sdern .882

This theorem was first proven by Drinfel’d (Lemma after Proposition 6.1 in [20]),883

but the proof we give here is due to Levine [31].884
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Proof Let lie
d
n denote the degree d piece of lien . Let Vn be the vector space with basis885

x1, x2, . . . , xn . Note that886

Vn ⊗ lie
d
n

∼=

n
⊕

i=1

lie
d
n

∼= (tdern ⊕ an)d ,887

where tdern is graded by the number of tails of a tree, and an is contained in degree 1.888

The bracket defines a map β : Vn ⊗ lie
d
n → lie

d+1
n : for ai ∈ lie

d
n where i = 1, . . . , n,889

the “tree” D = (a1, a2, . . . , an) ∈ (tdern ⊕ an)d is mapped to890

β(D) =

n
∑

i=1

[xi , ai ] = D

(

n
∑

i=1

xi

)

,891

where the first equality is by the definition of tensor product and the bracket, and the892

second is by the definition of the action of tdern on lien .893

Since an is contained in degree 1, by definition sder
d
n = (ker β)d for d ≥ 2. In894

degree 1, an is obviously in the kernel, hence (ker β)1 = an ⊕ sder
1
n . So overall,895

ker β = an ⊕ sdern .896

We want to study the image of the map Pu(↑n)
πα

−→ an ⊕ tdern . Under α, all897

connected Jacobi diagrams that are not trees or wheels go to zero, and under π so do898

all wheels. Furthermore, π maps trees that live on n strands to “floating” trees with899

univalent vertices coloured by the strand they used to end on. So for determining the900

image, we may replace Pu(↑n) by the space Tn of connected unoriented “floating901

trees” (uni-trivalent graphs), the ends (univalent vertices) of which are coloured by902

the {xi }i=1,..,n . We denote the degree d piece of Tn , i.e., the space of trees with d + 1903

ends, by T d
n . Abusing notation, we shall denote the map induced by πα on Tn by904

α : Tn → an ⊕ tdern . Since choosing a “head” determines the entire orientation of905

a tree by the two-in-one-out rule, α maps a tree in T d
n to the sum of d + 1 ways of906

choosing one of the ends to be the “head”.907

We want to show that ker β = im α. This is equivalent to saying that β̄ is injective,908

where β̄ : Vn ⊗ lien/ im α → lien is map induced by β on the quotient by im α. ⊓⊔909

The degree d piece of Vn ⊗ lien , in the pictorial description, is generated by floating910

trees with d tails and one head, all coloured by xi , i = 1, . . . , n. This is mapped to911

lie
d+1
n , which is isomorphic to the space of floating trees with d +1 tails and one head,912

where only the tails are coloured by the xi . The map β acts as shown on the picture913

on the right.914

915

We show that β̄ is injective by exhibiting a map τ : lie
d+1
n → Vn ⊗ lie

d
n/ im α so916

that τ β̄ = I . τ is defined as follows: given a tree with one head and d + 1 tails τ acts917
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Finite type invariants of w-knotted objects

by deleting the head and the arc connecting it to the rest of the tree and summing over918

all ways of choosing a new head from one of the tails on the left half of the tree relative919

to the original placement of the head (see the picture on the right). As long as we show920

that τ is well-defined, it follows from the definition and the pictorial description of β921

that τ β̄ = I .922

+

τ

923

For well-definedness we need to check that the images of
−→
AS and

−−−→
I H X relations924

under τ are in the image of α. This we do in the picture below. In both cases it is925

enough to check the case when the “head” of the relation is the head of the tree itself,926

as otherwise an
−→
AS or

−−−→
I H X relation in the domain is mapped to an

−→
AS or

−−−→
I H X927

relation, thus zero, in the image.928

+
τ

+ + ++ ∈ im α
−→
AS :

929

930

CB CB CB

A A A

CB

A

CB CB

A A

− + +− +

CB CB

A A

− =
τ
→

= −

CB

A

CB CB

A A

− − ∈ im α

−−−→
IHX :

931

In the
−−−→
I H X picture, in higher degrees A, B and C may denote an entire tree. In this932

case, the arrow at A (for example) means the sum of all head choices from the tree A.933

Comment 3.29 In view of the relation between the right half of Eq. (9) and the special934

derivations sder, it makes sense to call w-tangles that satisfy the condition in the left935

half of Eq. (9) “special”. The a images of u-tangles are thus special. We do not know936

if the global version of Theorem 3.28 holds true. Namely, we do not know whether937

every special w-tangle is the a-image of a u-tangle.938

3.4 The local topology of w-tangles939

So far throughout this section we have presented w-tangles as a Reidemeister theory: a940

circuit algebra given by generators and relations. There is a topological intuition behind941

this definition: we can interpret the strings of a w-tangle diagram as oriented tubes in942

R4, as shown in Fig. 11. Each tube has a 3-dimensional “filling”, and each crossings943

represents a ribbon intersection between the tubes where the one corresponding to944

the under-strand intersects the filling of the over-strand. (For an explanation of ribbon945
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D. Bar-Natan, Z. Dancso

Fig. 11 A virtual crossing corresponds to non-interacting tubes, while a crossing means that the tube
corresponding to the under strand “goes through” the tube corresponding to the over strand

intersections see [38, Section 2.2.2].) In Fig. 11 we use the drawing conventions of946

[15]: we draw surfaces as if projected from R4 to R3, and cut them open when they947

are “hidden” by something with a higher 4-th coordinate.948

Note that w-braids can also be thought of in terms of flying rings, with “time” being949

the fourth dimension; this is equivalent to the tube interpretation in the obvious way.950

In this language a crossing represents a ring (the under strand), flying through another951

(the over strand). This is described in detail in [38, Section 2.2.1].952

The assignment of tangled ribbon tubes in R4 to w-tangles is well-defined (the953

Reidemeister and OC relations are satisfied), and after Satoh [36] we call it the tubing954

map and denote it by δ : {w-tangles} → {Ribbon tubes in R4}. It is natural to expect955

that δ is an isomorphism, and indeed it is a surjection. However, the injectivity of956

δ remains unproven even for long w-knots. Nonetheless, ribbon tubes in R4 will957

serve as the topological motivation and local topological interpretation behind the958

circuit algebras presented in this paper. In [38, Section 3.1.1] we present a topological959

construction for δ. We will mention that construction occasionally in this paper, but960

only for motivational purposes.961

We observe that the ribbon tubes in the image of δ are endowed with two orienta-962

tions, we will call these the 1- and 2-dimensional orientations. The one dimensional963

orientation is the direction of the tube as a “strand” of the tangle. In other words,964

each tube has a “core”11: a distinguished line along the tube, which is oriented as a965

1-dimensional manifold. Furthermore, the tube as a 2-dimensional surface is oriented966

as given by δ. An example is shown on the right.967

1D

2D

968

Next we wish to understand the topological meaning of crossing signs. Recall that969

a tube in R4 has a “filling”: a solid (3-dimensional) cylinder embedded in R4, with970

boundary the tube, and the 2D orientation of the tube induces an orientation of its971

filling as a 3-dimensional manifold. At a (non-virtual) crossing the core of one tube972

11 The core of Lord Voldemort’s wand was made of a phoenix feather.
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Finite type invariants of w-knotted objects

intersects the filling of another transversely. Due to the complementary dimensions,973

the intersection is a single point, and the 1D orientation of the core along with the 3D974

orientation of the filling it passes through determines an orientation of the ambient975

space. We say that the crossing is positive if this agrees with the standard orientation of976

R4, and negative otherwise. Hence, there are four types of crossings, given by whether977

the core of tube A intersects the filling of B or vice versa, and two possible signs in each978

case. In the flying ring interpretation, the 1D orientation of the tube is the direction of979

the flow of time. The 2D and 1D orientations of the tube together induce an orientation980

of the flying ring which is a cross-section of the tube at each moment. Hence, saying981

“below” and “above” the ring makes sense, and there are four types of crossings: ring982

A flies through ring B from below or from above; and ring B flies through ring A from983

below or from above (cf. [38, Exercise 2.7]). A crossing is positive if the inner ring984

comes from below, and negative otherwise.985

We take the opportunity here to introduce another notation, to be called the “band986

notation”, which is more suggestive of the 4D topology than the strand notation we987

have been using so far. We represent a tube in R4 by a picture of an oriented band988

in R3. By “oriented band” we mean that it has two orientations: a 1D direction (for989

example an orientation of one of the edges), and a 2D orientation as a surface. To990

interpret the 3D picture of a band as an tube in R4, we add an extra coordinate. Let991

us refer to the R3 coordinates as x, y and t , and to the extra coordinate as z. Think of992

R3 as being embedded in R4 as the hyperplane z = 0, and think of the band as being993

made of a thin double membrane. Push the membrane up and down in the z direction994

at each point as far as the distance of that point from the boundary of the band, as995

shown on the right. Furthermore, keep the 2D orientation of the top membrane (the996

one being pushed up), but reverse it on the bottom. This produces an oriented tube997

embedded in R4.998

z

R
4

R
3 : z = 0

999

In band notation, the four possible crossings appear as in Fig. 12, where underneath1000

each crossing we indicate the corresponding strand picture. The signs for each type of1001

crossing are also shown. Note that the sign of a crossing depends on the 2D orientation1002

of the over-strand, as well as the 1D direction of the under-strand. Hence, switching1003

only the direction (1D orientation) of a strand changes the sign of the crossing if and1004

only if the strand involved is the under strand. However, fully changing the orientation1005

(both 1D and 2D) always switches the sign of the crossing. Note that switching the1006

strand direction in the strand notation corresponds to the complete (both 1D and 2D)1007

orientation switch.1008
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Fig. 12 Crossings and crossing
signs in band notation

+ − − +

3.5 Good properties and uniqueness of the homomorphic expansion1009

In much the same way as in the case of braids [38, Section 2.5.1], Z has a number1010

of good properties with respect to various tangle operations: it is group-like12; it1011

commutes with adding an inert strand (note that this is a circuit algebra operation,1012

hence it doesn’t add anything beyond homomorphicity); and it commutes with deleting1013

a strand and with strand orientation reversals. All but the last of these were explained in1014

the context of braids and the explanations still hold. Orientation reversal Sk : wT → wT1015

is the operation which reverses the orientation of the k-th component. Note that in the1016

world of topology (via Satoh’s tubing map) this means reversing both the 1D and the1017

2D orientations. The induced diagrammatic operation Sk : Aw(T ) → Aw(Sk(T )),1018

where T denotes the skeleton of a given w-tangle, acts by multiplying each arrow1019

diagram by (−1) raised to the power the number of arrow endings (both heads and1020

tails) on the k-th strand, as well as reversing the strand orientation. Saying that “Z1021

commutes with Sk” means that the appropriate square commutes.1022

The following theorem asserts that a well-behaved homomorphic expansion of w-1023

tangles is unique:1024

Theorem 3.30 The only homomorphic expansion satisfying the good properties1025

described above is the Z defined in Sect. 3.1.1026

Proof We first prove the following claim: Assume, by contradiction, that Z ′ is a1027

different homomorphic expansion of w-tangles with the good properties described1028

above. Let R = Z ( ) and R = Z ( ), and denote by ρ the lowest degree1029

homogeneous non-vanishing term of R′−R. (Note that R′ determines Z ′, so if Z ′ �= Z ,1030

then R′ �= R.) Suppose ρ is of degree k. Then we claim that ρ = α1w
1
k + α2w

2
k is a1031

linear combination of w1
k and w2

k , where wi
k denotes a k-wheel living on strand i , as1032

shown on the right.1033

ρ = +

1034

1035

Before proving the claim, note that it leads to a contradiction. Let di denote the1036

operation “delete strand i”. Then up to degree k, we have d1(R′) = α2w
1
k and d2(R′) =1037

α1w
2
k , but Z ′ is compatible with strand deletions, so α1 = α2 = 0. Hence Z is unique,1038

as stated.1039

12 In practice this simply means that the value of the crossing is an exponential.
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On to the proof of the claim, note that Z ′ being an expansion determines the degree1040

1 term of R′ (namely, the single arrow a12 from strand 1 to strand 2, with coefficient1041

1). So we can assume that k ≥ 2. Note also that since both R′ and R are group-like,1042

ρ is primitive. Hence ρ is a linear combination of connected diagrams, namely trees1043

and wheels.1044

Both R and R′ satisfy the Reidemeister 3 relation:1045

R12 R13 R23 = R23 R13 R12, R′12 R′13 R′23 = R′23 R′13 R′12
1046

where the superscripts denote the strands on which R is placed (compare with the proof1047

of Theorem 3.10). We focus our attention on the degree k + 1 part of the equation for1048

R′, and use that up to degree k + 1. We can write R′ = R + ρ + µ, where µ denotes1049

the degree k + 1 homogeneous part of R′ − R. Thus, up to degree k + 1, we have1050

(R12+ρ12+µ12)(R13+ρ13+µ13)(R23+ρ23+µ23)1051

= (R23+ρ23+µ23)(R13+ρ13+µ13)(R12+ρ12+µ12).1052

The homogeneous degree k + 1 part of this equation is a sum of some terms which1053

contain ρ and some which don’t. The diligent reader can check that those which don’t1054

involve ρ cancel on both sides, either due to the fact that R satisfies the Reidemeister1055

3 relation, or by simple degree counting. Rearranging all the terms which do involve1056

ρ to the left side, we get the following equation, where ai j denotes an arrow pointing1057

from strand i to strand j :1058

[a12, ρ13]+ [ρ12, a13]+ [a12, ρ23]+ [ρ12, a23]+ [a13, ρ23]+ [ρ13, a23] = 0. (10)1059

The third and fifth terms sum to [a12 + a13, ρ23], which is zero due to the “head-1060

invariance” of diagrams, as in Remark 3.14.1061

We treat the tree and wheel components of ρ separately. Let us first assume that1062

ρ is a linear combination of trees. Recall that the space of trees on two strands is1063

isomorphic to lie2 ⊕ lie2, the first component given by trees whose head is on the first1064

strand, and the second component by trees with their head on the second strand. Let1065

ρ = ρ1 + ρ2, where ρi is the projection to the i-th component for i = 1, 2.1066

Note that due to T C , we have [a12, ρ13
2 ] = [ρ12

2 , a13] = [ρ12
1 , a23] = 0. So Eq.1067

(10) reduces to1068

[a12, ρ13
1 ] + [ρ12

1 , a13] + [ρ12
2 , a23] + [ρ13

1 , a23] + [ρ13
2 , a23] = 01069

The left side of this equation lives in
⊕3

i=1 lie3. Notice that only the first term lies in1070

the second direct sum component, while the second, third and last terms live in the1071

third one, and the fourth term lives in the first. This in particular means that the first1072

term is itself zero. By
−−→
ST U , this implies1073

0 = [a12, ρ13
1 ] = −[ρ1, x1]

13
2 ,1074
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where [ρ1, x1]
13
2 means the tree defined by the element [ρ1, x1] ∈ lie2, with its tails1075

on strands 1 and 3, and head on strand 2. Hence, [ρ1, x1] = 0, so ρ1 is a multiple of1076

x1. The tree given by ρ1 = x1 is a degree 1 element, a possibility we have eliminated,1077

so ρ1 = 0.1078

Equation (10) is now reduced to1079

[ρ12
2 , a23] + [ρ13

2 , a23] = 0.1080

Both terms are words in lie3, but notice that the first term does not involve the letter x3.1081

This means that if the second term involves x3 at all, i.e., if ρ2 has tails on the second1082

strand, then both terms have to be zero individually. Assuming this and looking at1083

the first term, ρ12
2 is a Lie word in x1 and x2, which does involve x2 by assumption.1084

We have [ρ12
2 , a23] = [x2, ρ

12
2 ] = 0, which implies ρ12

2 is a multiple of x2, in other1085

words, ρ is a single arrow on the second strand. This is ruled out by the assumption1086

that k ≥ 2.1087

On the other hand if the second term does not involve x3 at all, then ρ2 has no tails1088

on the second strand, hence it is of degree 1, but again k ≥ 2. We have proven that the1089

“tree part” of ρ is zero.1090

So ρ is a linear combination of wheels. Wheels have only tails, so the first, second1091

and fourth terms of (10) are zero due to the tails commute relation. What remains is1092

[ρ13, a23] = 0. We assert that this is true if and only if each linear component of ρ1093

has all of its tails on one strand.1094

To prove this, recall each wheel of ρ13 represents a cyclic word in letters x1 and1095

x3. The map r : ρ13 
→ [ρ13, a23] is a map tr2 → tr3, which sends each cyclic word1096

in letters x1 and x3 to the sum of all ways of substituting [x2, x3] for one of the x3’s in1097

the word. Note that if we expand the commutators, then all terms that have x2 between1098

two x3’s cancel. Hence all remaining terms will be cyclic words in x1 and x3 with a1099

single occurrence of x2 in between an x1 and an x3.1100

We construct an almost-inverse r ′ to r : for a cyclic word w in tr3 with one occurrence1101

of x2, let r ′ be the map that deletes x2 from w and maps it to the resulting word in tr21102

if x2 is followed by x3 in w, and maps it to 0 otherwise. On the rest of tr3 the map r ′
1103

may be defined to be 0.1104

The composition r ′r takes a cyclic word in x1 and x3 to itself multiplied by the1105

number of times a letter x3 follows a letter x1 in it. The kernel of this map can consist1106

only of cyclic words that do not contain the sub-word x3x1, namely, these are the1107

words of the form xk
3 or xk

1 . Such words are indeed in the kernel of r , so these make1108

up exactly the kernel of r . This is exactly what needed to be proven: all wheels in ρ1109

have all their tails on one strand.1110

This concludes the proof of the claim, and the proof of the theorem. ⊓⊔1111

4 w-Tangled foams1112

Section summary In this section we add “foam vertices” to w-tangles (and a few1113

lesser things as well) and ask the same questions we asked before; primarily, “is1114

there a homomorphic expansion?”. As we shall see, in the current context this1115
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Finite type invariants of w-knotted objects

question is equivalent to the Alekseev–Torossian [2] version of the Kashiwara1116

and Vergne [26] problem and explains the relationship between these topics and1117

Drinfel’d’s theory of associators.1118

4.1 The circuit algebra of w-tangled foams1119

In the same manner as we did for tangles, we will present the circuit algebra of w-1120

tangled foams via its Reidemeister-style diagrammatic description accompanied by a1121

local topological interpretation.1122

Definition 4.1 Let wTFo (where o stands for “orientable”, to be explained in Sect. 4.5)1123

be the algebraic structure1124

wTF o = CA ,, , ,
w-relations as in

Section 4.1.2
w-operations as
in Section 4.1.3

1125

Hence wTFo is the circuit algebra generated by the generators listed above and1126

described below, modulo the relations described in Sect. 4.1.2, and augmented with1127

several “auxiliary operations”, which are a part of the algebraic structure of wTFo but1128

are not a part of its structure as a circuit algebra, as described in Sect. 4.1.3. To be more1129

precise, wTFo is skeleton-graded where the circuit algebra of skeleta So is a version1130

of the S introduced in Sect. 2.4, but with vertices and caps included (as opposed to1131

only empty circuits).1132

1133

To be completely precise, we have to admit that wTFo as a circuit algebra has1134

more generators than shown above. The last two generators are “foam vertices”, as1135

will be explained shortly, and exist in all possible orientations of the three strands.1136

Some examples are shown on the right. However, in Sect. 4.1.3 we will describe the1137

operation “orientation switch” which allows switching the orientation of any given1138

strand. In the algebraic structure which includes this extra operation in addition to the1139

circuit algebra structure, the generators of the definition above are enough.1140

1141

4.1.1 The generators of wTFo
1142

There is topological meaning to each of the generators of wTFo: they each stand1143

for a certain local feature of framed knotted ribbon tubes in R4. As in Sect. 3.4, the1144

tubes are oriented as 2-dimensional surfaces, and also have a distinguished core with1145

a 1-dimensional orientation (direction).1146

The crossings are as explained in Sect. 3.4: the under-strand denotes the ring flying1147

through, or the “thin” tube. Recall that there really are four kinds of crossings, but1148

in the circuit algebra the two not shown are obtained from the two that are shown by1149

adding virtual crossings (see Figs. 11, 12).1150
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D. Bar-Natan, Z. Dancso

A bulleted end denotes a cap on the tube, or a flying ring that shrinks to a point, as in1151

the figure on the right. For further motivation, in terms of the topological construction1152

of Satoh’s tubing map [38, Section 3.1.1], the cap means that “the string is attached1153

to the bottom of the thickened surface”, as shown in the figure below. We Recall that1154

the tubing map is the composition1155

γ × S1 →֒ � × [−ǫ, ǫ] →֒ R4.1156

1157

1158

Here γ is a trivalent tangle “drawn on the virtual surface �”, with caps ending on1159

� × {−ǫ}. The first embedding above is the product of this “drawing” with an S1,1160

while the second arises from the unit normal bundle of � in R4. For each cap (c,−ǫ)1161

the tube resulting from Satoh’s map has a boundary component ∂c = (c,−ǫ) × S1.1162

Follow the tubing map by gluing a disc to this boundary component to obtain the1163

capped tube mentioned above.1164

Satoh(c,− )

Σ × [− ]

(c,− ) × S1

glue disc

1165

1166

The last two generators denote singular “foam vertices”. As the notation suggests,1167

a vertex can be thought of as “half of a crossing”. To make this precise using the flying1168

rings interpretation, the first singular vertex represents the movie shown on the left:1169

the ring corresponding to the right strand approaches the ring represented by the left1170

strand from below, flies inside it, and then the two rings fuse (as opposed to a crossing1171

where the ring coming from the right would continue to fly out to above and to the1172

left of the other one). The second vertex is the movie where a ring splits radially into1173

a smaller and a larger ring, and the small one flies out to the right and below the big1174

one.1175

1176
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Finite type invariants of w-knotted objects

+ − + −

+− + −

Fig. 13 Vertex types in wTFo

1177

The vertices can also be interpreted topologically via a natural extension of Satoh’s1178

tubing map. For the first vertex, imagine the broken right strand approaching the1179

continuous left strand directly from below in a thickened surface, as shown.1180

Σ × [− ]

1181

The reader might object that there really are four types of vertices (as there are four1182

types of crossings), and each of these can be viewed as a “fuse” or a “split” depending1183

on the strand directions, as shown in Fig. 13. However, looking at the fuse vertices1184

for example, observe that the last two of these can be obtained from the first two by1185

composing with virtual crossings, which always exist in a circuit algebra.1186

The sign of a vertex can be defined the same way as the sign of a crossing (see1187

Sect. 3.4). We will sometimes refer to the first generator vertex as “the positive vertex”1188

and to the second one as “the negative vertex”. We use the band notation for vertices1189

the same way we do for crossings: the fully coloured band stands for the thin (inner)1190

ring.1191

4.1.2 The relations of wTFo
1192

In addition to the usual R1s , R2, R3, and OC moves of Fig. 3, we more relations are1193

added to describe the behaviour of the additional features.1194

Comment 4.2 As before, the relations have local topological explanations, and we1195

conjecture that they provide a Reidemeister theory for “w-tangled foams”, that is,1196

knotted ribbon tubes with foam vertices in R4. In this section we list the relations along1197

with the topological reasoning behind them. However, for any rigorous purposes below,1198

wTFo is studied as a circuit algebra given by the declared generators and relations,1199

with topology serving only as intuition.1200

Recall that topologically, a cap represents a capped tube or equivalently, flying ring1201

shrinking to a point. Hence, a cap on the thin (or under) strand can be “pulled out”1202

from a crossing, but the same is not true for a cap on the thick (or over) strand, as1203

shown below. This is the case for any orientation of the strands. We denote this relation1204

by CP, for Cap Pull-out.1205
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,

,

CP :

yet

yet

1206

The Reidemeister 4 relations assert that a strand can be moved under or over a1207

crossing, as shown in the picture below. The ambiguously drawn vertices in the picture1208

denote a vertex of any kind (as described in Sect. 4.1.1), and the strands can be oriented1209

arbitrarily. The local topological (tube or flying ring) interpretations can be read from1210

the pictures below. These relations will be denoted R4.1211

R4 :

1212

4.1.3 The auxiliary operations of wTFo
1213

The circuit algebra wTFo is equipped with several extra operations.1214

The first of these is the familiar orientation switch. We will, as mentioned in1215

Sect. 3.4, distinguish between switching both the 2D and 1D orientations, or just1216

the strand (1D) direction.1217

Topologically orientation switch, denoted Se, is the switch of both orientations of1218

the strand e. Diagrammatically (and this is the definition) Se is the operation which1219

reverses the orientation of a strand in a wTFo diagram. The reader can check that when1220

applying Satoh’s tubing map, this amounts to reversing both the direction and the 2D1221

orientation of the tube arising from the strand.1222

The operation which, in topology world, reverses a tube’s direction but not its 2D1223

orientation is called “adjoint”, and denoted by Ae. This is slightly more intricate to1224

define rigorously in terms of diagrams. In addition to reversing the direction of the1225

strand e of the wTFo diagram, Ae also locally changes each crossing of e over another1226

strand by adding two virtual crossings, as shown on the right. We recommend for the1227

reader to convince themselves that this indeed represents a direction switch in topology1228

after reading Sect. 4.5.1229
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Finite type invariants of w-knotted objects

e e
1230

1231

Remark 4.3 As an example, let us observe how the negative generator vertex can be1232

obtained from the positive generator vertex by adjoint operations and composition1233

with virtual crossings, as shown in Fig. 14. Note that also all other vertices can be1234

obtained from the positive vertex via orientation switch and adjoint operations and1235

composition by virtual crossings.1236

As a small exercise, it is worthwhile to convince ourselves of the effect of orientation1237

switch operations on the band picture. For example, replace A1 A2 A3 by S1S2S3 in1238

Fig. 14. In the strand diagram, this will only reverse the direction of the strands. The1239

reader can check that in the band picture not only the arrows will reverse but also the1240

blue band will switch to be on top of the red band.1241

Comment 4.4 Framings were discussed in Sect. 3.4, but have not played a significant1242

role so far, except to explain the lack of a Reidemeister 1 relation. We now need to1243

discuss framings in order to provide a topological explanation for the unzip (tube1244

doubling) operation.1245

In the local topological interpretation of wTFo, strands represent ribbon-knotted1246

tubes with foam vertices, which are also equipped with a framing, arising from the1247

blackboard framing of the strand diagrams via Satoh’s tubing map. Strand doubling1248

is the operation of doubling a tube by “pushing it off itself slightly” in the framing1249

direction, as shown in Fig. 15.1250

Recall that ribbon knotted tubes have a “filling”, with only “ribbon” self-1251

intersections [38, Section 2.2.2]. When we double a tube, we want this ribbon property1252

to be preserved. This is equivalent to saying that the ring obtained by pushing off any1253

given girth of the tube in the framing direction is not linked with the original tube,1254

which is indeed the case.1255

Framings arising from the blackboard framing of strand diagrams via Satoh’s tubing1256

map always match at the vertices, with the normal vectors pointing either directly1257

compose w/
virtual xing

= The negative
vertex

21

3

A1A2A3

1

33

212

Fig. 14 Switching strand orientations at a vertex. The adjoint operation only switches the tube direction,
hence in the band picture only the arrows change. To express this vertex in terms of the negative generating
vertex in strand notation, we use a virtual crossing (see Fig. 13)

123

Journal: 208 Article No.: 1388 TYPESET DISK LE CP Disp.:2016/3/24 Pages: 70 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

D. Bar-Natan, Z. Dancso

Fig. 15 Unzipping a tube, in
band notation with orientations
and framing marked

towards or away from the center of the singular ring. Note that the orientations of the1258

three tubes may or may not match. An example of a vertex with the orientations and1259

framings shown is on the right. Note that the framings on the two sides of each band1260

are mirror images of each other, as they should be.1261

1262

Unzip, or tube doubling is perhaps the most interesting of the auxiliary wTFo
1263

operations. As mentioned above, topologically this means pushing the tube off itself1264

slightly in the framing direction. At each of the vertices at the two ends of the doubled1265

tube there are two tubes to be attached to the doubled tube. At each end, the normal1266

vectors pointed either directly towards or away from the center, so there is an “inside”1267

and an “outside” ending ring. The two tubes to be attached also come as an “inside”1268

and an “outside” one, which defines which one to attach to which. An example is1269

shown in Fig. 15. Unzip can only be done if the 1D and 2D orientations match at both1270

ends.1271

To define unzip rigorously, we must talk only of strand diagrams. The natural1272

definition is to let ue double the strand e using the blackboard framing, and then attach1273

the ends of the doubled strand to the connecting ones, as shown on the right. We restrict1274

unzip to strands whose two ending vertices are of different signs. This is a somewhat1275

artificial condition which we impose to get equations equivalent to the [2] equations.1276

e
ue

1277

A related operation, disk unzip, is unzip done on a capped strand, pushing the tube1278

off in the direction of the framing (in diagrammatic world, in the direction of the1279
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Finite type invariants of w-knotted objects

blackboard framing), as before. An example in the line and band notations (with the1280

framing suppressed) is shown below.1281

ue =ueee

1282

Finally, we allow deletion de of “long linear” strands, meaning strands that do not1283

end in a vertex on either side. To summarize,1284

wTF o = CA ,, , ,
R1s, R2, R3, R4,

OC, CP
Se, Ae, ue, de

1285

The goal, as before, is to construct a homomorphic expansion for wTFo. However,1286

first we need to understand its target space, the associated graded structure grad wTFo.1287

4.2 The associated graded structure1288

Mirroring the previous section, we describe the associated graded Asw of wTFo and1289

its “full version” Aw as circuit algebras on certain generators modulo a number of1290

relations. From now on we will write A(s)w to mean “Aw and/or Asw”.1291

A(s)w = CA , ,,
relations as in
Section 4.2.1

operations as in
Section 4.2.2

34
1292

In other words, A(s)w are the circuit algebras of arrow diagrams on trivalent (or foam)1293

skeletons with caps; that is, skeleta are elements of So as in Definition 4.1. Note that1294

all but the first of the generators are skeleton features (of degree 0), and that the single1295

arrow is the only generator of degree 1. As for the generating vertices, the same remark1296

applies as in Definition 4.1, that is, there are more vertices with all possible strand1297

orientations needed to generate A(s)w as circuit algebras.1298

4.2.1 The relations of A(s)w
1299

In addition to the usual
−→
4T and TC relations (see Fig. 5), as well as RI in the case of1300

Asw = Aw/RI , diagrams in A(s)w satisfy the following additional relations:1301

Vertex invariance, denoted by VI, are relations arising the same way as
−→
4T does,1302

but with the participation of a vertex as opposed to a crossing:1303

±±±±± ± = 0, 0=dna

1304
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The other end of the arrow is in the same place throughout the relation, somewhere1305

outside the picture shown. The signs are positive whenever the strand on which the1306

arrow ends is directed towards the vertex, and negative when directed away. The1307

ambiguously drawn vertex means any kind of vertex, but the same one throughout.1308

The CP relation (a cap can be pulled out from under a strand but not from over,1309

Sect. 4.1.2) implies that arrow heads near a cap are zero, as shown on the right. Denote1310

this relation also by CP. (Also note that a tail near a cap is not set to zero.)1311

= 0
1312

As in the previous sections, and in particular in Definition 3.12, we define a “w-1313

Jacobi diagram” (or just “arrow diagram”) on a foam skeleton by allowing trivalent1314

chord vertices. Denote the circuit algebra of formal linear combinations of arrow1315

diagrams by A(s)wt . We have the following bracket-rise theorem:1316

Theorem 4.5 The obvious inclusion of diagrams induces a circuit algebra isomor-1317

phism A(s)w ∼= A(s)wt . Furthermore, the
−→
AS and

−−−→
I H X relations of Fig. 7 hold in1318

A(s)wt .1319

Proof Same as the proof of Theorem 3.13. ⊓⊔1320

As in Sect. 3.1, the primitive elements of A(s)w are connected diagrams (that is,1321

connected even with the skeleton removed), namely trees and wheels. Before moving1322

on to the auxiliary operations of A(s)w, let us make two useful observations:1323

Lemma 4.6 Aw( ), the part of Aw with skeleton , is isomorphic as a vector space to1324

the completed polynomial algebra freely generated by wheels wk with k ≥ 1. Likewise1325

Asw( ) , except here k ≥ 2.1326

Proof Any arrow diagram with an arrow head at its top is zero by the Cap Pull-out1327

(CP) relation. If D is an arrow diagram that has a head somewhere on the skeleton but1328

not at the top, then one can use repeated
−−→
ST U relations to commute the head to the1329

top at the cost of diagrams with one fewer skeleton head.1330

Iterating this procedure, we can get rid of all arrow heads, and hence write D as1331

a linear combination of diagrams having no heads on the skeleton. All connected1332

components of such diagrams are wheels.1333

To prove that there are no relations between wheels in A(s)w( ), let SL : A(s)w
1334

(↑1) → A(s)w(↑1) (resp. SR) be the map that sends an arrow diagram to the sum of1335

all ways of dropping one left (resp. right) arrow (on a vertical strand, left means down1336

and right means up). Define1337

F :=

∞
∑

k=0

(−1)k

k!
Dk

R(SL + SR)k,1338
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Finite type invariants of w-knotted objects

where DR is a short right arrow. We leave it as an exercise for the reader to check that1339

F is a bi-algebra homomorphism that kills diagrams with an arrow head at the top1340

(i.e., CP is in the kernel of F), and F is injective on wheels. This concludes the proof.1341

⊓⊔1342

Lemma 4.7 A(s)w(Y ) = A(s)w(↑2), where A(s)w(Y ) stands for the space of arrow1343

diagrams whose skeleton is a Y -graph with any orientation of the strands, and as1344

before A(s)w(↑2) is the space of arrow diagrams on two strands.1345

Proof We can use the vertex invariance (VI) relation to push all arrow heads and tails1346

from the “trunk” of the vertex to the other two strands. ⊓⊔1347

4.2.2 The auxiliary operations of A(s)w
1348

Recall from Sect. 3.4 that the orientation switch Se (i.e. changing both the 1D and 2D1349

orientations of a strand) always changes the sign of a crossing involving the strand e.1350

Hence, letting S denote any foam (trivalent) skeleton, the induced arrow diagrammatic1351

operation is a map Se : A(s)w(S) → A(s)w(Se(S)) which acts by multiplying each1352

arrow diagram by (−1) raised to the number of arrow endings on e (counting both1353

heads and tails).1354

The adjoint operation Ae (i.e. switching only the strand direction), on the other1355

hand, only changes the sign of a crossing when the strand being switched is the under-1356

(or through) strand. (See Sect. 3.4 for pictures and explanation.) Therefore, the arrow1357

diagrammatic Ae acts by switching the direction of e and multiplying each arrow1358

diagram by (−1) raised to the number of arrow heads on e. Note that in A(s)w(↑n)1359

taking the adjoint on every strand gives the adjoint map of Definition 3.26.1360

The arrow diagram operations induced by unzip and disc unzip (both to be denoted1361

ue, and interpreted appropriately according to whether the strand e is capped) are1362

maps ue : A(s)w(S) → A(s)w(ue(S)), where each arrow ending (head or tail) on e is1363

mapped to a sum of two arrows, one ending on each of the new strands, as shown on1364

the right. In other words, if in an arrow diagram D there are k arrow ends on e, then1365

ue(D) is a sum of 2k arrow diagrams.1366

e

ue +

1367

The operation induced by deleting the long linear strand e is the map de : A(s)w(S) →1368

A(s)w(de(S)) which kills arrow diagrams with any arrow ending (head or tail) on e,1369

and leaves all else unchanged, except with e removed.1370

Definition 4.8 In summary,1371

A(s)w = CA , ,,
−→
4T , TC, VI, CP,

(RI for Asw)
Se, Ae, ue, de

1372
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4.3 The homomorphic expansion1373

The following is one of the main theorems of this paper:1374

Theorem 4.9 [Proof in Sect. 4.4] There exists a group-like13 homomorphic expan-1375

sion for wTFo, i.e. a group-like expansion Z : wTFo → Asw which is a map of circuit1376

algebras and also intertwines the auxiliary operations of wTFo with their arrow dia-1377

grammatic counterparts. In fact, there is a bijection between the set of solutions (F, a)1378

of the generalized KV problem (see Sect. 4.4) and the set of homomorphic expansions1379

for wTFo which do not contain local arrows14 in the value V of the vertex.1380

Since both wTFo and Asw are circuit algebras defined by generators and relations,1381

when looking for a suitable Z all we have to do is to find values for each of the1382

generators of wTFo so that these satisfy (in Asw) the equations which arise from the1383

relations in wTFo and the homomorphicity requirement. In this section we derive these1384

equations and in the next section we show that they are equivalent to the Alekseev–1385

Torossian version of the Kashiwara–Vergne equations [2]. In [3] Alekseev Enriquez1386

and Torossian construct explicit solutions to these equations using associators. In [39]1387

we will interpret these results in our context of homomorphic expansions for w-tangled1388

foams.1389

Let R := Z( ) ∈ Asw(↑2). It follows from the Reidemeister 2 relation that1390

Z( ) = (R−1)21. As discussed in Sects. 3.1 and 3.5, Reidemeister 3 with group-1391

likeness and homomorphicity implies that R = ea , where a is a single arrow pointing1392

from the over to the under strand. Let C := Z( ) ∈ Asw( ). By Lemma 4.6, we1393

know that C is made up of wheels only. Finally, let1394

V = V + := Z( ) ∈ Asw( ) ∼= Asw(↑2), and1395

V − := Z( ) ∈ Asw( ) ∼= Asw(↑2).
.1396

Before we translate each of the relations of Sect. 4.1.2 to equations let us slightly1397

extend the notation used in Sect. 3.5. Recall that R23, for instance, meant “R placed1398

on strands 2 and 3”. In this section we also need notation such as R(23)1, which means1399

“R with its first strand doubled, placed on strands 2, 3 and 1”.1400

Now on to the relations, note that Reidemeister 2 and 3 and Overcrossings Commute1401

have already been dealt with. Of the two Reidemeister 4 relations, the first one induces1402

an equation that is automatically satisfied. Pictorially, the equation looks as follows:1403

13 The formal definition of the group-like property is along the lines of [38, Section 2.5.1.2]. In practice,
it means that the Z -values of the vertices, crossings, and cap (denoted V, R and C below) are exponentials
of linear combinations of connected diagrams.
14 For a detailed explanation of this minor point see the third paragraph of the proof.
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Finite type invariants of w-knotted objects

Z
=

V

V

R

R
=

+

V
R

R
VR

R

VI

1404

In other words, we obtained the equation1405

V 12 R3(12) = R32 R31V 12.1406

However, observe that by the “head-invariance” property of arrow diagrams (Remark1407

3.14) V 12 and R3(12) commute on the left hand side. Hence the left hand side equals1408

R3(12)V 12 = R32 R31V 12. Also, R3(12) = ea31+a32
= ea32

ea31
= R32 R31, where the1409

second step is due to the fact that a31 and a32 commute. Therefore, the equation is1410

true independently of the choice of V .1411

We have no such luck with the second Reidemeister 4 relation, which, in the same1412

manner as in the paragraph above, translates to the equation1413

V 12 R(12)3 = R23 R13V 12. (11)1414

There is no “tail invariance” of arrow diagrams, so V and R do not commute on the left1415

hand side; also, R(12)3 �= R23 R13. As a result, this equation puts a genuine restriction1416

on the choice of V .1417

The Cap Pull-out (CP) relation translates to the equation R12C2 = C2. This is true1418

independently of the choice of C : by head-invariance, R12C2 = C2 R12. Now R12 is1419

just below the cap on strand 2, and the cap “kills heads”, in other words, every term of1420

R12 with an arrow head at the top of strand 2 is zero. Hence, the only surviving term1421

of R12 is 1 (the empty diagram), which makes the equation true.1422

The homomorphicity of the orientation switch operation was used to prove the1423

uniqueness of R in Theorem 3.30. The homomorphicity of the adjoint leads to the1424

equation V− = A1 A2(V ) (see Fig. 14), eliminating V− as an unknown. Note that we1425

also silently assumed these homomorphicity properties when we did not introduce 321426

different values of the vertex depending on the strand orientations.1427

Homomorphicity of the (annular) unzip operation leads to an equation for V , which1428

we are going to refer to as “unitarity”. This is illustrated in the figure below. Recall1429

that A1 and A2 denote the adjoint (direction switch) operation on strand 1 and 2,1430

respectively.1431

u =

u ◦ Zw Zw

1V · A1A2(V )
1432
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D. Bar-Natan, Z. Dancso

Reading off the equation, we have1433

V · A1 A2(V ) = 1. (12)1434

Homomorphicity of the disk unzip leads to an equation for C which we will refer1435

to as the “cap equation”. The translation from homomorphicity to equation is shown1436

in the figure on the right. C , as we introduced before, denotes the Z -value of the cap.1437

Hence, the cap equation reads1438

u

u ◦ Z
w

Z
w

V C(12) C1C2
1439

V 12C(12) = C1C2 in Asw( 2)
(13)1440

The homomorphicity of deleting long strands does not lead to an equation on its1441

own, however it was used to prove the uniqueness of R (Theorem 3.30).1442

To summarize, we have reduced the problem of finding a homomorphic expansion1443

Z to finding the Z -values of the (positive) vertex and the cap, denoted V and C , subject1444

to three equations: the “hard Reidemeister 4” equation (11); “unitarity of V” Eq. (12);1445

and the “cap equation” (13).1446

4.4 The equivalence with the Alekseev–Torossian equations1447

First let us recall Alekseev and Torossian’s formulation of the generalized Kashiwara–1448

Vergne problem (see [2, Section 5.3]):1449

Generalized KV problem Find an element F ∈ T Aut2 with the properties1450

F(x + y) = log(ex ey), and j (F) ∈ im(δ̃). (14)1451

Here δ̃ : tr1 → tr2 is defined by (δ̃a)(x, y) = a(x) + a(y) − a(log(ex ey)), where1452

tr2 is generated by cyclic words in the letters x and y. (See [2], Equation (8)). Note1453

that an element of tr1 is a power series in one variable with no constant term. In1454

other words, the second condition says that there exists a ∈ tr1 such that j F =1455

a(x) + a(y) − a(log(ex ey)).1456

Proof of Theorem 4.9 We have reduced the problem of finding a homomorphic expan-1457

sion to finding group-like solutions V and C to the hard Reidemeister 4 equation (11),1458

the unitarity equation (12), and the cap equation (13).1459

Suppose we have found such solutions and write V = ebeu D , where b ∈ trs
2, D ∈1460

tder2 ⊕ a2, and where u is the map u : tder2 → Asw(↑2) which plants the head of1461

a tree above all of its tails, as introduced in Sect. 3.2. V can be written in this form1462
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Finite type invariants of w-knotted objects

without loss of generality because wheels can always be commuted to the bottom of a1463

diagram (at the possible cost of more wheels). Furthermore, V is group-like and hence1464

it can be written in exponential form. Similarly, write C = ec with c ∈ tr
s
1.1465

Note that u(a2) is central in Asw(↑2) and that replacing a solution (V, C) by1466

(eu(a)V, C) for any a ∈ a2 does not interfere with any of the Eqs. (11), (12) or (13).1467

Hence we may assume that D does not contain any single arrows, that is, D ∈ tder2.1468

Also, a solution (V, C) in Asw can be lifted to a solution in Aw by simply setting the1469

degree one terms of b and c to be zero. It is easy to check that this b ∈ tr2 and c ∈ tr11470

along with D still satisfy the equations. (In fact, in Aw (12) and (13) respectively1471

imply that b is zero in degree 1, and that the degree 1 term of c is arbitrary, so we may1472

as well assume it to be zero.) In light of this we declare that b ∈ tr2 and c ∈ tr1.1473

The hard Reidemeister 4 equation (11) reads V 12 R(12)3 = R23 R13V 12. Denote the1474

arrow from strand 1 to strand 3 by x , and the arrow from strand 2 to strand 3 by y.1475

Substituting the known value for R and rearranging, we get1476

ebeu Dex+ye−u De−b = eyex .1477

Equivalently, eu Dex+ye−u D = e−beyex eb. Now on the right side there are only tails1478

on the first two strands, hence eb commutes with eyex , so e−beb cancels. Taking1479

logarithm of both sides we obtain eu D(x + y)e−u D = log eyex . Now for notational1480

alignment with [2] we switch strands 1 and 2, which exchanges x and y so we obtain:1481

eu D21
(x + y)e−u D21

= log ex ey . (15)1482

The unitarity of V (Eq. (12)) translates to 1 = ebeu D(ebeu D)∗, where ∗ denotes1483

the adjoint map (Definition 3.26). Note that the adjoint switches the order of a product1484

and acts trivially on wheels. Also, eu D(eu D)∗ = J (eD) = e j (eD), by Proposition 3.27.1485

So we have 1 = ebe j (eD)eb. Multiplying by e−b on the right and by eb on the left, we1486

get 1 = e2be j (eD), and again by switching strand 1 and 2 we arrive at1487

1 = e2b21
e j (eD21

). (16)1488

As for the cap equation, if C1 = ec(x) and C2 = ec(y), then C12 = ec(x+y). Note1489

that wheels on different strands commute, hence ec(x)ec(y) = ec(x)+c(y), so the cap1490

equation reads1491

ebeu Dec(x+y) = ec(x)+c(y).1492

As this equation lives in the space of arrow diagrams on two capped strands, we can1493

multiply the left side on the right by e−u D: u D has its head at the top, so it is 0 by the1494

Cap relation, hence eu D = 1 near the cap. Hence,1495

ebeu Dec(x+y)e−u D = ec(x)+c(y).1496
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On the right side of the equation above eu Dec(x+y)e−u D reminds us of Eq. (15),1497

however we cannot use (15) directly as we are working in a different space now. In1498

particular, x there meant an arrow from strand 1 to strand 3, while here it means a1499

one-wheel on (capped) strand 1, and similarly for y. Fortunately, there is a map σ :1500

Asw(↑3) → Asw( 2) , where σ “closes the third strand and turns it into a chord (or1501

internal) strand, and caps the first two strands”, as shown on the right. This map is1502

well defined (in fact, it kills almost all relations, and turns one
−−→
ST U into an

−−−→
I H X ).1503

Under this map, using our abusive notation, σ(x) = x and σ(y) = y.1504

σ

1505

Now we can apply Eq. (15) to get eu Dec(x+y)e−u D = ec(log eyex ). Substituting this1506

into the cap equation we obtain ebec(log eyex ) = ec(x)+c(y), which, using that tails1507

commute, implies b = c(x) + c(y) − c(log eyex ). Switching strands 1 and 2, we1508

obtain1509

b21 = c(x) + c(y) − c(log ex ey) (17)1510

In summary, we can use (V, C) to produce F := eD21
(sorry15) and a := −2c1511

which satisfy the Alekseev–Torossian equations (14), as follows: eD21
acts on lie2 by1512

conjugation by eu D21
, so the first part of (14) is implied by (15). The second half of1513

(14) is true due to (16) and (17).1514

On the other hand, suppose that we have found F ∈ T Aut2 and a ∈ tr1 satisfying1515

(14). Then set D21 := log F, b21 :=
− j (eD21

)
2 , and c ∈ δ̃−1(b21), in particular c =1516

− a
2 works. Then V = ebeu D and C = ec satisfy the equations for homomorphic1517

expansions (11), (12) and (13).1518

Furthermore, the two maps between solutions of the KV problem and homomorphic1519

expansions for wTFo defined in the last two paragraphs are obviously inverses of each1520

other, and hence they provide a bijection between these sets as stated. ⊓⊔1521

4.5 The wen1522

A topological feature of w-tangled foams which we excluded from the theory so far is1523

the wen w. The wen is a Klein bottle cut apart (as mentioned in [38, Section 2.5.4]);1524

in other words it amounts to changing the 2D orientation of a tube, as shown in the1525

picture below:1526

15 We apologize for the annoying 2 ↔ 1 transposition in this equation, which makes some later equations,
especially (22), uglier than they could have been. There is no depth here, just mis-matching conventions
between us and Alekseev–Torossian.
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Finite type invariants of w-knotted objects

w =

1527

In this section we study the circuit algebra of w-Tangled Foams with the wen1528

included as a generator, and denote this space by wTF . The wen is also added to the1529

circuit algebra of skeleta. We will find that homomorphic expansions for wTF are in1530

bijection with solutions to the KV problem with “even Duflo function”, as explained1531

below.1532

4.5.1 The relations and auxiliary operations of wTF1533

Adding the wen as a generator means we have to impose additional relations involving1534

the wen to keep our topological heuristics intact, as follows:1535

The interaction of a wen and a crossing is described by the following relation1536

(cf. [38, Section 2.5.4]):1537

yet

A B A B
A B A B

==
w

w

w

w

1538

To explain this relation note that in flying ring language, a wen is a ring that flips1539

over. It does not matter whether ring B flips first and then flies through ring A or vice1540

versa. However, the movies in which ring A first flips and then ring B flies through1541

it, or B flies through A first and then A flips differ in the fly-through direction of B1542

through A, which is cancelled by virtual crossings, as in the figure above. We will1543

refer to these relations as the Flip Relations, and abbreviate them by FR.1544

A double flip is homotopic to no flip, in other words two consecutive wens equal1545

no wen. Let us denote this relation by W 2, for Wen squared. Note that this relation1546

explains why there are no “left and right wens”.1547

A cap can slide through a wen, hence a capped wen disappears, as shown on the1548

right, to be denoted CW.1549

w

1550

The last wen relation describes the interaction of wens and vertices. Recall that there1551

are four types of vertices with the same strand orientation: among the bottom two bands1552

(in the pictures on the left) there is a non-filled and a filled band (corresponding to1553
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over/under in the strand diagrams), meaning the “large” ring and the “small” one which1554

flies into it before they merge. Furthermore, there is a top and a bottom band (among1555

these bottom two, with apologies for the ambiguity in overusing the word bottom): this1556

denotes the fly-in direction (flying in from below or from above). Conjugating a vertex1557

by three wens switches the top and bottom bands, as shown in the figure on the left: if1558

both rings flip, then merge, and then the merged ring flips again, this is homotopic to1559

no flips, except the fly-in direction (from below or from above) has changed. We are1560

going to denote this relation by TV, for “twisted vertex”.1561

1562

The auxiliary operations are the same as for wTFo: orientation switches, adjoints,1563

deletion of long linear strands, cap unzips and unzips.16
1564

Definition 4.10 Summarizing the above, we have1565

wTF = CA
,, , , ,

w
R1s, R2, R3, R4, OC, CP,

FR, W 2, CW, TV
Se, Ae, ue, de

1566

4.5.2 The associated graded structure1567

The associated graded structure of wTF (still denoted Asw) is the same as the associated1568

graded for wTFo but with the wen added as a generator (a degree 0 skeleton feature),1569

and with extra relations describing the behaviour of the wen. Of course, the relations1570

describing the interaction of wens with the other skeleton features (W 2, TV, and CW)1571

still apply, as well as the old
−→
4T , TC, VI, CP, and RI relations.1572

In addition, the Flip Relations FR imply that wens “commute” with arrow heads,1573

but “anti-commute” with tails. We also call these FR relations:1574

16 We need not specify how to unzip an edge e that carries a wen. To unzip such e, first use the TV relation
to slide the wen off e.
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Finite type invariants of w-knotted objects

,w w w w= −=FR:

1575

That is,1576

Asw = CA
, , ,

w
,

W 2, TW, CW,
−→
4T , TC,

VI, CP, RI, FR
Se, Ae, ue, de

1577

4.5.3 The homomorphic expansion1578

The goal of this section is to prove that there exists a homomorphic expansion Z for1579

wTF . This involves solving a similar system of equations to Sect. 4.3, but with an1580

added unknown for the value of the wen, as well as added equations arising from the1581

wen relations. Let W ∈ Asw(↑1) denote the Z -value of the wen, and let us agree that1582

the arrow diagram W always appears just above the wen on the skeleton. In fact, we1583

are going to show that W = 1 for any homomorphic expansion.1584

As two consecutive wens on the skeleton cancel, we obtain the equation shown in1585

the picture and explained below:1586

w

w
w w

= =

W

W

W

W

W

W

1587

The Z -value of two consecutive wens on a strand is a skeleton wen followed by1588

W followed by a skeleton wen and another W . Sliding the bottom W through the1589

skeleton wen “multiplies each tail by (−1)”. Let us denote this operation by “bar”, i.e.1590

for an arrow diagram D, D = D · (−1)# of tails in D . Cancelling the two skeleton wens,1591

we obtain W W = 1. Recall that Asw(↑1) consists only of wheels and single arrows.1592

Since we are looking for a group-like Z , we can assume that W = ew and W W = 11593

means that w is a linear combination of odd wheels and possibly single arrows.1594

Now recall the Twisted Vertex relation of Sect. 4.5.1. Note that the Z -value of the1595

negative vertex on the right hand side of the relation can be written as S1S2 A1 A2(V ) =1596

V (cf Remark 4.3). On the other hand, applying Z to the left hand side of the relation1597

we obtain:1598

w w

ww

==

= 1ww
V

V
V

W W
W W

u(W )

W W

u(W )

W W

W
W

1599
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Hence, using that W = W −1, the twisted vertex relation induces the equation1600

W 1W 2 = W (12) in Asw(↑2). One can verify degree by degree, using that W can be1601

written as an exponential, that the only solution to this equation is W = 1.1602

We have yet to verify that the CW relation (i.e., a cap can slide through a wen)1603

can be satisfied with W = 1. Keep in mind that the wen as a skeleton feature anti-1604

commutes with tails (this is the Flip Relation of Sect. 4.2.1). The value of the cap C1605

is a combination of only wheels (Lemma 4.6), hence the CW relation translates to the1606

equation C = C , which is equivalent to saying that C consists only of even wheels.1607

The fact that Z can be chosen to have this property follows from Proposition 6.21608

of [2]: the value of the cap is C = ec, where c can be set to c = − a
2 , as explained1609

in the proof of Theorem 4.9. Here a is such that δ̃(a) = j F as in Eq. (14). A power1610

series f so that a = tr f (where tr is the trace which turns words into cyclic words) is1611

called the Duflo function of F . In Proposition 6.2 Alekseev and Torossian show that1612

the even part of f is 1
2

log(ex/2−e−x/2)
x

, and that for any f with this even part there is1613

a corresponding solution F of the generalized K V problem. In particular, f can be1614

assumed to be even, namely the power series above, and hence it can be guaranteed1615

that C consists of even wheels only. Thus we have proven the following:1616

Theorem 4.11 Group-like homomorphic expansions Z : wTF → Asw (with no local1617

arrows in the value of V ) are in one-to one correspondence with solutions to the KV1618

problem with an even Duflo function.1619

4.6 Interlude: u-knotted trivalent graphs1620

The “usual”, or classical knot-theoretical objects corresponding to wTF are loosely1621

speaking Knotted Trivalent Graphs, or KTGs. We give a brief introduction/review of1622

this structure before studying the relationship between their homomorphic expansions1623

and homomorphic expansions for wTF . The last goal of this paper is to show that the1624

topological relationship between the two spaces explains the relationship between the1625

KV problem and Drinfel’d associators.1626

A trivalent graph is a graph with three edges meeting at each vertex, equipped with a1627

cyclic orientation of the three half-edges at each vertex. KTGs are framed embeddings1628

of trivalent graphs into R3, regarded up to isotopies. The skeleton of a KTG is the1629

trivalent graph (as a combinatorial object) behind it. For a detailed introduction to1630

KTGs see for example [8]. Here we only recall the most important facts. The reader1631

might recall that in Sect. 3, the w-knot section, of [38] we only dealt with long w-1632

knots, as the w-theory of round knots is essentially trivial (see [38, Theorem 3.17]). A1633

similar issue arises with “w-knotted trivalent graphs”. Hence, the space we are really1634

interested in is “long KTGs”, meaning, trivalent tangles with 1 or 2 ends.1635

Long KTGs form an algebraic structure with operations as follows. Orientation1636

switch reverses the orientation of a specified edge. Edge unzip doubles a specified1637

edge as shown on the right. Tangle insertion is inserting a small copy of a (1, 1)-tangle1638

S into the middle of some specified strand of a tangle T , as shown in the second row on1639

the right (tangle composition is a special case of this). The stick-on operation “sticks1640

a 1-tangle S onto a specified edge of another tangle T ”, as shown. (In the figures T is1641
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Finite type invariants of w-knotted objects

a 2-tangle, but this is irrelevant.) Disjoint union of two 1-tangles produces a 2-tangle.1642

Insertion, disjoint union and stick-on are a slightly weaker set of operations than the1643

connected sum of [8].1644

ST

,

ST

,

TST

S

γ e ue(γ)

stick-on e

insert in e

unzip e

e

e

1645

The associated graded structure of the algebraic structure of long KTGs is the graded1646

space Au of chord diagrams on trivalent graph skeleta, modulo the 4T and vertex1647

invariance (VI) relations. The induced operations on Au are as expected: orientation1648

switch multiplies a chord diagram by (−1) to the number of chord endings on the edge.1649

The edge unzip ue maps a chord diagram with k chord endings on the edge e to a sum1650

of 2k diagrams where each chord ending has a choice between the two daughter edges.1651

Finally, tangle insertion, stick-on and disjoint union induces the insertion, sticking on1652

and disjoint union of chord diagrams, respectively.1653

In [8] the authors prove that there is no homomorphic expansion for KTGs. This1654

theorem, as well as the proof, applies to long KTGs with slight modifications. However1655

there are well-known—and nearly homomorphic—expansions constructed by extend-1656

ing the Kontsevich integral to KTGs, or from Drinfel’d associators. There are several1657

such constructions ([14,17,35]). For now, let us denote any one of these expansions by1658

Zold . All Zold are “almost homomorphic”: they intertwine every operation except for1659

edge unzip with their chord-diagrammatic counterparts; but commutativity with unzip1660

fails by a controlled amount, as shown on the right. Here ν denotes the “invariant of1661

the unknot”, the value of which was conjectured in [9] and proven in [11].1662
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u(ν1/2)

ν−1/2 ν−1/2

Zold(γ) Zold(u(γ))
1663

In [8] the authors fix this anomaly by slightly changing the space of KTGs and1664

adding some extra combinatorics (“dots” on the edges), and construct a homomorphic1665

expansion for this new space by a slight adjustment of Zold . Here we are going to use1666

a similar but different adjustment of the space of trivalent 1- and 2-tangles. Namely1667

we break the symmetry of the vertices and restrict the set of allowed unzips.1668

Definition 4.12 A “signed KTG”, denoted sKTG, is a trivalent oriented 1- or 2-tangle1669

embedded in R3 with a cyclic orientation of edges meeting at each vertex, and in1670

addition each vertex is equipped with a sign and one of the three incident edges is1671

marked as distinguished (sometimes denoted by a thicker line). Our pictorial conven-1672

tion will be that a vertex drawn in a “

Y

” shape with all strands oriented up and the top1673

strand distinguished is always positive and a vertex drawn in a “Y ” shape with strands1674

oriented up and the bottom strand distinguished is always negative (see Fig. 18).1675

The algebraic structure sKTG has one kind of objects for each skeleton (a skeleton1676

is a uni-trivalent graph with signed vertices but no embedding), as well as several1677

operations: orientation switch, edge unzip, tangle insertion, disjoint union of 1-tangles,1678

and stick-on. Orientation switch of either of the non-distinguished strands changes the1679

sign of the vertex, switching the orientation of the distinguished strand does not. Unzip1680

of an edge is only allowed if the edge is distinguished at both of its ends and the vertices1681

at either end are of opposite signs. The stick-on operation can be done in either one1682

of the two ways shown on the right (i.e., the stuck-on edge can be attached at a vertex1683

of either sign, but it can not become the distinguished edge of that vertex).1684

TST

S
,

,

TST

S

stick-on +

stick-on
−

1685
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Finite type invariants of w-knotted objects

To consider expansions of sKTG, and ultimately the compatibility of these with1686

Zw, we first note that sKTG is finitely generated (and therefore any expansion Zu is1687

determined by its values on finitely many generators). The proof of this is not hard but1688

somewhat lengthy, so we postpone it to Sect. 5.2.1689

Proposition 4.13 The algebraic structure sKTG is finitely generated by the following1690

list of elements:1691

, ,
+

−

,
−

+

,

+

−

right

twist

left

twist
strand

+
+

−
−

,

right

associator

left

associator

+

−
−

+
,

esoonnoollabelbbub

+ ,
−

,

1692

Note that we ignore strand orientations for simplicity in the statement of this propo-1693

sition; this is not a problem as orientation switches are allowed in sKTG without1694

restriction.1695

4.6.1 Homomorphic expansions for sKTG1696

Suppose that Zu : sKTG → Au is a homomorphic expansion. We hope to determine1697

the value of Zu on each of the generators.1698

The value of Zu on the single strand is an element of Au(↑) whose square is itself,1699

hence it is 1. The value of the bubble is an element x ∈ Au(↑2), as all chords can be1700

pushed to the “bubble” part using the VI relation. Two bubbles can be composed and1701

unzipped to produce a single bubble (see on the right), hence we have x2 = x , which1702

implies x = 1 in Au(↑2).1703

u

1704

Recall that a Drinfel’d associator is a group-like element � ∈ Au(↑3) along with1705

a group-like element Ru ∈ Au(↑2) satisfying the so-called pentagon and positive and1706

negative hexagon equations, as well as a non-degeneracy and mirror skew-symmetry1707

property. For a detailed explanation see Section 4 of [8]; associators were first defined1708

in [19]. We claim that the Zu-value � of the right associator, along with the value1709

Ru of the right twist forms a Drinfel’d associator pair. The proof of this statement is1710

the same as the proof of Theorem 4.2 of [8], with minor modifications (making heavy1711

use of the assumption that Zu is homomorphic). It is easy to check by composition1712

and unzips that the value of the left associator and the left twist are �−1 and (Ru)−1,1713

respectively. Note that if � is required to be a horizontal chord associator (i.e., all1714

the chords of � are horizontal on three strands) then Ru is forced to be ec/2 where1715
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D. Bar-Natan, Z. Dancso

c denotes a single chord. Note that the reverse is not true: there exist non-horizontal1716

chord associators � that satisfy the hexagon equations with Ru = ec/2.1717

Let b and n denote the Zu-values of the balloon and the noose, respectively. Note1718

that using the V I relation all chord endings can be pushed to the “looped” strands,1719

so b and n live in Au(↑), as seen in Fig. 16. The argument in that figure shows that1720

n · b is the inverse in Au(↑) of “an associator on a squiggly strand”, as shown on the1721

right. In Fig. 16 we start with the sKTG on the top left and either apply Zu followed1722

by unzipping the edges marked by stars, or first unzip the same edges and then apply1723

Zu . Since Zu is homomorphic, the two results in the bottom right corner must agree.1724

(Note that two of the four unzips we perform are “illegal”, as the strand directions1725

can’t match. However, it is easy to get around this issue by inserting small bubbles at1726

the top of the balloon and the bottom of the noose, and switching the appropriate edge1727

orientations before and after the unzips. The Zu-value of a bubble is 1, hence this will1728

not effect the computation and so we ignore the issue for simplicity.)1729

−1

n · b = Φ

1730

In addition, it follows from Theorem 4.2 of [8] via deleting two edges that the1731

inverse of an “associator on a squiggly strand” is ν, the invariant of the unknot. To1732

summarize, we have proven the following:1733

Lemma 4.14 If Zu is a homomorphic expansion then the Zu values of the strand and1734

the bubble are 1, the values of the right associator and right twist form an associator1735

pair (�, Ru), and the values of the left twist and left associator are inverses of these.1736

With n and b denoting the value of the noose and the balloon, respectively, and ν being1737

the invariant of the unknot, we have n · b = ν in Au(↑).1738

The natural question to ask is whether any triple (�, Ru, n) gives rise to a homo-1739

morphic expansion. We don’t know whether this is true, but we do know that any pair1740

(�, Ru) gives rise to a “nearly homomorphic” expansion of KTGs [14,17,35], and1741

we can construct a homomorphic expansion for sKTG from any of these (as shown1742

below). However, all of these expansions take the same specific value on the noose and1743

the balloon (also see below). We don’t know whether there really is a one parameter1744

family of homomorphic expansions Zu for each choice of (�, Ru) or if we are simply1745

missing a relation.1746

We now construct explicit homomorphic expansions Zu : sKTG → Au from any1747

Zold (where Zold stands for an “almost homomorphic” expansion of KTGs) as follows.1748

First of all we need to interpret Zold as an invariant of 2-tangles. This can be done1749

by connecting the top and bottom ends by a non-interacting long strand followed by1750

a normalization, as shown on the right. By “multiplying by ν−1” we mean that after1751

computing Zold we insert ν−1 on the long strand (recall that ν is the “invariant of the1752

unknot”). We interpret Zold of a 1-tangle as follows: stick the 1-tangle onto a single1753

strand to obtain a 2-tangle, then proceed as above. The result will only have chords on1754
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Finite type invariants of w-knotted objects

*
*

*
*

unzip *

unzip *

*
*

*
*

Zu

Zu

nn

b b

Φ
Φ

Fig. 16 Unzipping a noose and a balloon to a squiggle

close
up

stick
on

Zold

·ν−1

remove
extras

Konts.
integral

ν

ν ν

Fig. 17 Computing the Zold value of the noose. The third step uses that the Kontsevich integral of KTGs
is homomorphic with respect to the “connected sum” operation and that the value of the unknot is ν (see
[8] for an explanation of both of these facts)

the 1-tangle (using that the extensions of the Kontsevich Integral are homomorphic1755

with respect to “connected sums”), so we define the result to be the value of Zold on1756

the 1-tangle. As an example, we compute the value of Zold for the noose in Fig. 171757

(note that the computation for the balloon is the same).1758

T TZold := ν−1 · Zold

1759

Now to construct a homomorphic Zu from Zold we add normalizations near the1760

vertices, as in Fig. 18, where c denotes a single chord. Checking that Zu is a homo-1761
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+

e
c/4

ν
−1/4

ν
1/4

ν
−1/4

−−

e
−c/4

ν
1/4

ν
−1/4

ν
−1/4

+

Fig. 18 Normalizations for Zu at the vertices

morphic expansion is a simple calculation using the almost homomorphicity of Zold ,1762

which we leave to the reader. The reader can also verify that Zu of the strand and the1763

bubble is 1 as it should be. Zu of the right twist is ec/2 and Zu of the right associator1764

is a Drinfel’d associator � (note that � depends on which Zold was used). From the1765

calculation of Fig. 17 it follows that the Zu value of the balloon and the noose (for1766

any Zold ) are as shown on the right, and indeed n · b = ν.1767

b =

n = e−c/4

ν1/2

ec/4

ν1/2

1768

4.7 The relationship between sKTG and wTF1769

We move on to the question of compatibility between the homomorphic expansions1770

Zu and Zw (from now on we are going to refer to the homomorphic expansion of1771

wTF—called Z in the previous section—as Zw to avoid confusion).1772

There is a map a : sKTG → wTF , given by interpreting sKTG diagrams as wTF1773

diagrams. In particular, positive vertices (of edge orientations as shown in Fig. 18) are1774

interpreted as the positive wTF vertex and negative vertices as the negative vertex1775

. (The map a can also be interpreted topologically as Satoh’s tubing map.) The1776

induced map α : Au → Asw is as defined in Sect. 3.3, that is, α maps each chord to1777

the sum of its two possible orientations. Hence we can ask whether the two expansions1778

are compatible (or can be chosen to be compatible), which takes us to the main result1779

of this section:1780

Theorem 4.15 Let Zu be a homomorphic expansion for sKTG with the properties that1781

� is a horizontal chord associator and n = e−c/4ν1/2 in the sense of Sect. 4.6.1.17
1782

Then there exists a homomorphic expansion Zw for wTF compatible with Zu in the1783

sense that the square on the right commutes.1784

17 It will become apparent that in the proof we only use slightly weaker but less aesthetic conditions on
Zu .
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Finite type invariants of w-knotted objects

sKTG

Zu

��

a �� wTF

Zw

��
Au α �� Asw

(18)1785

Furthermore, such Zw are in one to one correspondence18 with “symmetric solu-1786

tions of the KV problem” satisfying the KV equations (14), the “twist equation” (20)1787

and the associator equation (22).1788

Before moving on to the proof let us state and prove the following Lemma, to be1789

used repeatedly in the proof of the theorem.1790

Lemma 4.16 If a and b are group-like elements in Asw(↑n), then a = b if and only1791

if π(a) = π(b) and aa∗ = bb∗. Here π is the projection induced by π : Pw(↑n) →1792

tdern ⊕ an (see Sect. 3.2), and ∗ refers to the adjoint map of Definition 3.26. In the1793

notation of this section ∗ is applying the adjoint A on all strands.1794

Proof Write a = eweu D and b = ew′
eu D′

, where w ∈ trn, D ∈ tdern ⊕ an and1795

u : tdern ⊕ an → Pn is the “upper” map of Sect. 3.2. Assume that π(a) = π(b) and1796

aa∗ = bb∗. Since π(a) = eD and π(b) = eD′
, we conclude that D = D′. Now1797

we compute aa∗ = eweu De−l Dew = ewe j (D)ew, where j : tdern → trn is the map1798

defined in Section 5.1 of [2] and discussed in 3.27 of this paper. Now note that both1799

w and j (D) are elements of trn , hence they commute, so aa∗ = e2w+ j (D). Thus,1800

aa∗ = bb∗ means that e2w+ j (D) = e2w′+ j (D), which implies that w = w′ and a = b.1801

⊓⊔1802

Proof of Theorem 4.15 In addition to being a homomorphic expansion for wTF, Zw
1803

has to satisfy an the added condition of being compatible with Zu . Since sKTG is1804

finitely generated, this translates to one additional equation for each generator of1805

sKTG, some of which are automatically satisfied. To deal with the others, we use the1806

machinery established in the previous sections to translate these equations to conditions1807

on F , and they turn out to be the properties studied in [2] which link solutions of the1808

KV problem with Drinfel’d associators.1809

To start, note that for the single strand and the bubble the commutativity of the1810

square (18) is satisfied with any Zw: both the Zu and Zw values are 1 (note that1811

the Zw value of the bubble is 1 due to the unitarity (12) of Zw). Each of the other1812

generators will require more study. ⊓⊔1813

Commutativity of (18) for the twists Recall that the Zu-value of the right twist (for a1814

Zu with horizontal chord �) is Ru = ec/2; and note that its Zw-value is V −1 RV 21,1815

where R = ea12 is the Zw-value of the crossing (and a12 is a single arrow pointing from1816

strand 1 to strand 2). Hence the commutativity of (18) for the right twist is equivalent1817

18 An even nicer theorem would be a classification of homomorphic expansions for the combined algebraic

structure
(

sKTG
a

−→ wTF
)

in terms of solutions of the KV problem. The two obstacles to this are clarifying

whether there is a free choice of n for Zu , and — probably much harder—how much of the horizontal chord
condition is necessary for a compatible Zw to exist.
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Fig. 19 The Zw-value of the
right associator

1
2 3

Using V I to push to

the middle three strands.

V

V

V
−

V
−

to the “Twist Equation” α(Ru) = V −1 RV 21. By definition of α, α(Ru) = e
1
2 (a12+a21),1818

where a12 and a21 are single arrows pointing from strand 1 to 2 and 2 to 1, respectively.1819

Hence we have1820

e
1
2 (a12+a21) = V −1 RV 21. (19)1821

To translate this to the language of [2], we use Lemma 4.16, which implies that it is1822

enough for V to satisfy the Twist Equation “on tree level” (i.e., after applying π ), and1823

for which the adjoint condition of the Lemma holds.1824

We first prove that the adjoint condition holds for any homomorphic expansion of1825

wTF . Multiplying the left hand side of the Twist Equation by its adjoint, we get1826

e
1
2 (a12+a21)(e

1
2 (a12+a21))∗ = e

1
2 (a12+a21)e− 1

2 (a12+a21) = 1.1827

As for the right hand side, we have to compute V −1 RV 21(V 21)∗ R∗(V −1)∗. Since V is1828

unitary (Eq. (12)), V V ∗ = V · A1 A2(V ) = 1. Now R = ea12 , so R∗ = e−a12 = R−1,1829

hence the expression on the right hand side also simplifies to 1, as needed.1830

As for the “tree level” of the Twist Equation, recall that in Sect. 4.3 we used1831

Alekseev and Torossian’s solution F ∈ T Aut2 to the Kashiwara–Vergne equations1832

[2] to find solutions V to Eqs. (11), (12) and (13). We produced V from F by setting1833

F = eD21
with D ∈ tder

s
2, b :=

− j (F)
2 ∈ tr2 and V := ebeu D , so F is “the tree part”1834

of V , up to re-numbering strands. Hence, the tree level Twist Equation translates to1835

a new equation for F . Substituting V = ebeu D into the Twist Equation we obtain1836

e
1
2 (a12+a21) = e−u De−bea12 eb21

eu D21
, and applying π , we get1837

e
1
2 (a12+a21) = (F21)−1ea12 F. (20)1838

In [2] the solutions F of the KV equations which also satisfy this equation are called1839

“symmetric solutions of the Kashiwara–Vergne problem” discussed in Sections 8.21840

and 8.3. (Note that in [2] R denotes ea21 ).1841

Commutativity of (18) for the associators Recall that the Zu value of the right asso-1842

ciator is a Drinfel’d associator � ∈ Au(↑3); for the Zw value see Fig. 19. Hence the1843

new condition on V is the following:1844

α(�) = V
(12)3
− V 12

− V 23V 1(23) in Asw(↑3) (21)1845
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Finite type invariants of w-knotted objects

Again we treat the “tree and wheel parts” separately using Lemma 4.16. As � is1846

by definition group-like, let us denote � =: eφ . We first verify that the “wheel part”1847

or adjoint condition of the Lemma holds. Starting with the right hand side of Eq. (21),1848

the unitarity V V ∗ = 1 of V implies that1849

V
(12)3
− V 12

− V 23V 1(23)(V 1(23))∗(V 23)∗(V 12
− )∗(V

(12)3
− )∗ = 1.1850

For the left hand side of (21) we need to show that eα(φ)(eα(φ))∗ = 1 as well, and1851

this is true for any horizontal chord associator. Indeed, restricted to the α-images of1852

horizontal chords ∗ is multiplication by −1, and as it is an anti-Lie morphism, this1853

fact extends to the Lie algebra generated by α-images of horizontal chords. Hence1854

eα(φ)(eα(φ))∗ = eα(φ)eα(φ)∗ = eα(φ)e−α(φ) = 1.1855

On to the tree part, applying π to Eq. (21) and keeping in mind that V− = V −1 by1856

the unitarity of V , we obtain1857

eπα(φ) = (F3(12))−1(F21)−1 F32 F (23)1 = e−D(12)3
e−D12

eD23
eD1(23)

1858

in SAut3 := exp(sder3) ⊂ T Aut3. (22)1859

This is Equation (26) of [2], up to re-numbering strands 1 and 2 as 2 and 119. The1860

following fact from [2] (their Theorem 7.5, Propositions 9.2 and 9.3 combined) implies1861

that there is a solution F to the KV equations (14) which also satisfies (20) and1862

(22).1863

Fact 4.17 If �′ = eφ′
is an associator in SAut3 so that j (�′) = 020 then Eq. (22)1864

has a solution F = eD21
which is also a solution to the KV equations, and all such1865

solutions are symmetric (i.e. verify the Twist Equation (20)). ⊓⊔1866

To use this Fact, we need to show that �′ := πα(�) is an associator in SAut3 and1867

that j (�′) = j (πα(�)) = 0. The latter is the unitarity of � which is already proven.1868

The former follows from the fact that � is an associator and the fact (Theorem 3.28)1869

that the image of πα is contained in sder (ignoring degree 1 terms, which are not1870

present in an associator anyway).1871

In summary, the condition of the Fact are satisfied and so there exists a solution F1872

which in turn induces a Zw which is compatible with Zu for the strand, the bubble, the1873

twists and the associators. That is, all generators of sKTG except possibly the balloon1874

and the noose. As the last step of the proof of Theorem 4.15 we show that any such1875

Zw also automatically make (18) commutative for the balloon and the noose.1876

Commutativity of (18) for the balloon and the noose Since we know the Zu-values1877

B and n of the balloon and the noose, we start by computing Zw of the noose. Zw
1878

assigns a V value to the vertex with the first strand orientation switched as shown in1879

19 Note that in [2] “�′ is an associator” means that �′ satisfies the pentagon equation, mirror skew-
symmetry, and positive and negative hexagon equations in the space SAut3. These equations are stated
in [2] as equations (25), (29), (30), and (31), and the hexagon equations are stated with strands 1 and 2

re-named to 2 and 1 as compared to [8,19]. This is consistent with F = eD21
.

20 The condition j (φ′) = 0 is equivalent to the condition � ∈ K RV 0
3 in [2]. The relevant definitions in

[2] can be found in Remark 4.2 and at the bottom of page 434 (before Section 5.2).
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D. Bar-Natan, Z. Dancso

the figure on the right. The balloon is the same, except with a negative vertex and the1880

second strand reversed. Hence what we need to show is that the two equations below1881

hold:1882

=Zw
S1(V )

1883

==S1(V ) S2(V−
)

α(ν)1/2

e
−DA

2

e
DA

2

α(ν)1/2

1884

Let us denote the left hand side of the first equation above by nw and bw (the1885

Zw value of the noose and the balloon, respectively). We will start by proving that1886

the product of these two equations holds, namely that nwbw = α(ν). (We used that1887

any local (small) arrow diagram on a single strand is central in Asw(↑n), hence the1888

cancellations.) This product equation is satisfied due to an argument identical to that1889

of Fig. 16, but carried out in wTF , and using that by the compatibility with associators,1890

Zw of an associator is α(�).1891

What remains is to show that the noose and balloon equations hold individually. In1892

light of the results so far, it is sufficient to show that1893

nw = bw · e−DA , (23)1894

where DA stands for a single arrow on one strand (whose direction doesn’t matter1895

due to the RI relation. As stated in [38, Theorem 3.15], Asw(↑1) is the polynomial1896

algebra freely generated by the arrow DA and wheels of degrees 2 and higher. Since V1897

is group-like, nw (resp. bw) is an exponential eA1 (resp. eA2 ) with A1, A2 ∈ Asw(↑1).1898

We want to show that eA1 = eA2 · e−DA , equivalently that A1 = A2 − DA.1899

In degree 1, this can be done by explicit verification. Let A
≥2
1 and A

≥2
2 denote1900

the degree 2 and higher parts of A1 and A2, respectively. We claim that capping the1901

strand at both its top and its bottom takes eA1 to eA
≥2
1 , and similarly eA2 to eA

≥2
2 . (In1902

other words, capping kills arrows but leaves wheels un-changed.) This can be proven1903

similarly to the proof of Lemma 4.6, but using1904

F ′ :=

∞
∑

k1,k2=0

(−1)k1+k2

k1!k2!
D

k1+k2
A S

k1
L S

k2
R1905

in place of F in the proof. What we need to prove, then, is the following equality, and1906

the proof is shown in Fig. 20.1907
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Finite type invariants of w-knotted objects

Zw

Zw u

u

C

S1(V )

C

S2(V−)

CS(C)

S1(V )

CS(C)

S2(V−)

Fig. 20 The proof of Eq. (24). Note that the unzips are “illegal”, as the strand directions don’t match.
This can be fixed by inserting a small bubble at the bottom of the noose and doing a number of orientation
switches. As this doesn’t change the result or the main argument, we suppress the issue for simplicity.
Equation (24) is obtained from this result by multiplying by S(C)−1 on the bottom and by C−1 on the top

= .S2(V−)S1(V )

(24)1908

This concludes the proof of Theorem 4.15.1909

Recall from Sect. 3.3 that there is no commutative square linking Zu : uT → Au
1910

and Zw : wT → Asw, for the simple reason that the Kontsevich integral for tangles Zu
1911

is not canonical, but depends on a choice of parenthesizations for the “bottom” and the1912

“top” strands of a tangle T . Yet given such choices, a tangle T can be “closed up with1913

trees” as within the proof of Proposition 4.13 (see Sect. 5) into an sKTG which we will1914

denote G. For G a commutativity statement does hold as we have just proven. The Zu
1915

and Zw invariants of T and of G differ only by a number of vertex-normalizations and1916

vertex-values on skeleton-trees at the bottom or at the top of G, and using VI, these1917

values can slide so they are placed on the original skeleton of T . This is summarized1918

as the following proposition:1919

Proposition 4.18 Let n and n′ be natural numbers. Given choices c and c′ of parenthe-1920

sizations of n and n′ strands respectively, there exists invertible elements C ∈ Asw(↑n)1921

and C ′ ∈ Asw(↑n′) so that for any u-tangle T with n “bottom” ends and n′ “top”1922

ends we have1923

αZu
c,c′(T ) = C−1 Zw(aT )C ′,1924

where Zu
c,c′ denotes the usual Kontsevich integral of T with bottom and top parenthe-1925

sizations c and c′.1926

For u-braids the above proposition may be stated with c = c′ and then C and C ′
1927

are the same.1928
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5 Odds and ends1929

5.1 Motivation for circuit algebras: electronic circuits1930

Electronic circuits are made of “components” that can be wired together in many1931

ways. On a logical level, we only care to know which pin of which component is1932

connected with which other pin of the same or other component. On a logical level,1933

we don’t really need to know how the wires between those pins are embedded in space1934

(see Figs. 21, 22). “Printed Circuit Boards” (PCBs) are operators that make smaller1935

components (“chips”) into bigger ones (“circuits”)—logically speaking, a PCB is1936

simply a set of “wiring instructions”, telling us which pins on which components1937

are made to connect (and again, we never care precisely how the wires are routed1938

provided they reach their intended destinations, and ever since the invention of multi-1939

layered PCBs, all conceivable topologies for wiring are actually realizable). PCBs can1940

be composed (think “plugging a graphics card onto a motherboard”); the result of a1941

composition of PCBs, logically speaking, is simply a larger PCB which takes a larger1942

number of components as inputs and outputs a larger circuit. Finally, it doesn’t matter1943

if several PCB are connected together and then the chips are placed on them, or if the1944

chips are placed first and the PCBs are connected later; the resulting overall circuit1945

remains the same.1946

K

J

CP

Q

Q’

Fig. 21 The J-K flip flop, a very basic memory cell, is an electronic circuit that can be realized using 9
components—two triple-input “and” gates, two standard “nor” gates, and 5 “junctions” in which 3 wires
connect (many engineers would not consider the junctions to be real components, but we do). Note that
the “crossing” in the middle of the figure is merely a projection artifact and does not indicate an electrical
connection, and that electronically speaking, we need not specify how this crossing may be implemented
in R3. The J-K flip flop has 5 external connections (labelled J, K, CP, Q, and Q’) and hence in the circuit
algebra of computer parts, it lives in C5. In the directed circuit algebra of computer parts it would be in
C3,2 as it has 3 incoming wires (J, CP, and K) and two outgoing wires (Q and Q’)

Fig. 22 The circuit algebra product of 4 big black components and 1 small black component carried out
using a green wiring diagram, is an even bigger component that has many golden connections (at bottom).
When plugged into a yet bigger circuit, the CPU board of a laptop, our circuit functions as 4,294,967,296
binary memory cells
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Finite type invariants of w-knotted objects

5.2 Proof of Proposition 4.131947

We are going to ignore strand orientations throughout this proof for simplicity. This1948

is not an issue as orientation switches are allowed in sKTG without restriction. We are1949

also going to omit vertex signs from the pictures given the pictorial convention stated1950

in Sect. 4.6.1951

We need to prove that any sKTG (call it G) can be built from the generators listed1952

in the statement of the proposition, using sKTG operations. To show this, consider a1953

Morse drawing of G, that is, a planar projection of G with a height function so that all1954

singularities along the strands are Morse and so that every “feature” of the projection1955

(local minima and maxima, crossings and vertices) occurs at a different height.1956

The idea in short is to decompose G into levels of this Morse drawing where at each1957

level only one “feature” occurs. The levels themselves are not sKTG’s, but we show1958

that the composition of the levels can be achieved by composing their “closed-up”1959

sKTG versions followed by some unzips. Each feature gives rise to a generator by1960

“closing up” extra ends at its top and bottom. We then show that we can construct each1961

level using the generators and the tangle insert operation.1962

So let us decompose G into a composition of trivalent tangles (“levels”), each of1963

which has one “feature” and (possibly) some straight vertical strands. Note that by1964

isotopy we can make sure that every level has strands ending at both its bottom and1965

top, except for the first or the last level in the case of 1-tangles. An example of level1966

decomposition is shown in the figure below. Note that the levels are generally not1967

elements of sKTG (have too many ends). However, we can turn each of them into a1968

(1, 1)-tangle (or a 1-tangle in case of the aforementioned top first or last levels) by1969

“closing up” their tops and bottoms by arbitrary trees. In the example below we show1970

this for one level of the Morse-drawn sKTG containing a crossing and two vertical1971

strands.1972

1

2

3

4

5

6

3

1973

Now we can compose the sKTG’s obtained from closing up each level. Each tree1974

that we used to close up the tops and bottoms of levels determines a “parenthesization”1975

of the strand endings. If these parenthesizations match on the top of each level with the1976

bottom of the next, then we can recreate tangle composition of the levels by composing1977

their closed versions followed by a number of unzips performed on the connecting1978

trees. This is illustrated in the example below, for two consecutive levels of the sKTG1979

of the previous example.1980
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unzips

3

4

3

4

1981

If the trees used to close up consecutive levels correspond to different parenthesiza-1982

tions, then we can use insertion of the left and right associators (the 5th and 6th pictures1983

of the list of generators in the statement of the theorem) to change one parenthesization1984

to match the other. This is illustrated in the figure below.1985

insert
associator

unzip
these edges

unzips

1986

So far we have shown that G can be assembled from closed versions of the levels in1987

its Morse drawing. The closed versions of the levels of G are simpler sKTG’s, and it1988

remains to show that these can be obtained from the generators using sKTG operations.1989

Let us examine what each level might look like. First of all, in the absence of any1990

“features” a level might be a single strand, in which case it is the first generator itself.1991

Two parallel strands when closed up become the “bubble”, as shown on the right.1992

=close
up

1993

Now suppose that a level consists of n parallel strands, and that the trees used to1994

close it up on the top and bottom are horizontal mirror images of each other, as shown1995

below (if not, then this can be achieved by associator insertions and unzips). We want1996

to show that this sKTG can be obtained from the generators using sKTG operations.1997

Indeed, this can be achieved by repeatedly inserting bubbles into a bubble, as shown:1998

123

Journal: 208 Article No.: 1388 TYPESET DISK LE CP Disp.:2016/3/24 Pages: 70 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

Finite type invariants of w-knotted objects

close
up

=

1999

A level consisting of a single crossing becomes a left or right twist when closed up2000

(depending on the sign of the crossing). Similarly, a single vertex becomes a bubble.2001

A single minimum or maximum becomes a noose or a balloon, respectively.2002

It remains to see that the sKTG’s obtained when closing up simple features accom-2003

panied by more through strands can be built from the generators. A minimum2004

accompanied by an extra strand gives rise to the sKTG obtained by sticking a noose2005

onto a vertical strand (similarly, a balloon for a maximum). In the case of all the2006

other simple features and for minima and maxima accompanied by more strands, we2007

inserting the already generated elements into nested bubbles (bubbles inserted into2008

bubbles), as in the example shown below. This completes the proof.2009

close
up

=

2010

6 Glossary of notation2011

Greek letters, then Latin, then symbols:2012

δ Satoh’s tube map 3.42013

� Co-product 3.22014

ι Inclusion trn → Pw(↑n) 3.22015

ν The invariant of the unknot 4.62016

π The projection Pw(↑n) → an ⊕ tdern 3.22017

φ Log of an associator 4.62018

� An associator 4.62019

ψβ “operations” 2.12020

an n-Dimensional Abelian Lie algebra 3.22021

A A candidate associated graded structure 2.32022

Asv Dv mod 6T, RI 3.12023

Asw Dw mod
−→
4T , TC, RI 3.12024

Asw grad wTFo 4.22025

Asw grad wTF 4.5.22026

A(s)w Aw and/or Asw 4.22027

Au Chord diagrams mod rels for KTGs 4.62028

Av Dv mod 6T 3.12029

Aw Dw mod
−→
4T , TC 3.12030
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Aw grad wTFo without RI 4.22031

A−(↑n) A− for pure n-tangles 3.22032

Ae 1D orientation reversal 4.1.32033

Ass Associative words 3.22034

Ass+ Non-empty associative words 3.22035

Bw
n n-coloured unitrivalent arrow2036

diagrams 3.22037

C The invariant of a cap 4.32038

CP The Cap-Pull relation 4.1.2, 4.22039

CW Cap-Wen relations 4.5.12040

c A chord in Au 4.62041

der Lie-algebra derivations 3.22042

Dv , Dw Arrow diagrams for v/w-tangles 3.12043

div The “divergence” 3.22044

F A map Aw → Aw 4.22045

F The main [2] unknown 4.42046

FR Flip Relations 4.5.1, 4.5.22047

fil A filtered structure 2.32048

I Augmentation ideal 2.22049

J A map T Autn → exp(trn) 3.22050

j A map T Autn → trn 3.22051

KTG Knotted Trivalent Graphs 4.62052

lien Free Lie algebra 3.22053

l A map tdern → Pw(↑n) 3.22054

O An “algebraic structure” 2.12055

Pw
n Primitives of Bw

n 3.22056

P−(↑n) Primitives of A−(↑n) 3.22057

grad Associated graded structure 2.22058

R The invariant of a crossing 4.32059

R4 A Reidemeister move for2060

foams/graphs 4.1.22061

sder Special derivations 3.32062

S The circuit algebra of skeletons 2.42063

SAutn The group exp(sdern) 4.62064

Sk Complete orientation reversal 3.52065

Se Complete orientation reversal 4.1.32066

sKTG Signed long KTGs 4.62067

TV Twisted Vertex relations 4.5.12068

tder Tangential derivations 3.22069

trn Cyclic words 3.22070

tr
s
n Cyclic words mod degree 1 3.22071

T Autn The group exp(tdern) 3.22072

u A map tdern → Pw(↑n) 3.22073

ue Strand unzips 4.1.32074

uT U-tangles 3.32075

V , V + The invariant of a (positive) vertex 4.32076
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Finite type invariants of w-knotted objects

V − The invariant of a negative vertex 4.32077

II Vertex Invariance 4.22078

vT v-tangles 3.12079

W Z(w) 4.5.32080

W 2 Wen squared 4.5.12081

w The wen 4.52082

wT w-tangles 3.12083

wTF w-tangled foams with wens 4.52084

wTFo Orientable w-tangled foams 4.12085

Z Expansions throughout2086

ZA An A-expansion 2.32087

4T 4T relations 4.62088

↑ A “long” strand throughout2089

↑ The quandle operation 2.12090

∗ The adjoint on Aw(↑n) 3.22091
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