The The obvious inclusion $2: D^{W} \rightarrow D^{\text {ww }}$ desconds to an isomorphism $A^{w} \rightarrow A^{t w}$, and in $A^{+w}$, the $\overrightarrow{I H X}$ relation is satisfied.
(The proof, joint with $b$ Thustonn is modeled)
Lr t $D_{k}^{t w}$ be the subset of $D_{k}^{\text {w }}$ consisting of diagrams with at most if internal vertices, ant let $\mathcal{L}_{k}$ bo the collection of $\overrightarrow{5 \pi}$ vesting That con be bitten guithin ob k. We will prove by induction on $k$ that the obviaes inclusion $v_{k}: D^{w} \rightarrow \mathcal{D}^{\text {w }}$ descends to an iso. As everything is graded and the number of internal practices is always bounded by tween The degree, The inductive statement at les ge enough $k$ proves That $U$ is an isomaxiusion.
$2^{n 1}$ attempt
To show That $r$ induces a well defined $\operatorname{map} \tau=A^{W} \rightarrow A^{+\omega}$ we just need to show that it carries relations to relations; hat is, that the $\overrightarrow{47}$ follows from the $\overrightarrow{S T U}$ relations. Inter,


It is clear that $\bar{\eta}$ is onto's indore, it is
by definition soto the diagrams that have no internal vertices, and given the comuctedness of w- Sac degroms,
it is clear that internal vertices in a wise dirgen can be eliminated one by one using the $\overrightarrow{T U}$ relations. To complete the proof that i is an isomorphism it is enough to show that this "elimination of the intanals" procuderc is wall defined: that it's vasult is indepmedent of the order in which $\overrightarrow{S T}$ relations ane applied to eliminate internal vertices. Fndeee, This done, This done, the elimination map would by definition satisfy the STO relations and thus descant to a wall defined inverse of $\bar{\eta}$.
On diagrams with one internal vortex, equation (*) shows that all ways of diviniting that vertex are equivalent mod 47, at hence The elimination map is carl defined on such dingmers. Now assume we have shown that the elimination map is well defined on all diagrams with at most 7 internal vertices, and let $D$ be a diagram with 8 . Lit $c$ and $e^{\prime}$ be adgos in D that conduct the skeleton to an internal vertex. we need to show that any elimination procedure that begins
with $e$ yields the same answer, mod 47 , as any elimination procedure that begins with $e^{\prime}$.
Case I e \& connuct the skeleton to different internal vertices.
In this case,... $y=4$
Case II e $k e^{\prime}$ are conducted to the same internal vertex, yet some other loge e" exists...
If use the transitivity of equally.
Case III Case III is what remains it neither Case I nor case II hold in that case, D must have the following schematic form:

(The "blob" is nut connected to the skeleton other than via e or $c^{\prime}$, further arrows may exist outside the blob, but no further vertices.)
case III splits into two subcases, depending upon the orientations of $l k c^{\prime}$ ?

Case III

case +11 a

case III cannot exist for arourientetion reasons.
case III $b$


In this case the "blob" must be minimal

using $\overrightarrow{S T V}$ along e we get

which derby holds.

