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5. W-TANGLES

Section Summary. In 5.1 we introduyce v-tangles and w-tangles, the obvious
v- and w- counterparts of the standard”knot-theoretic notion of “tangles”, and
briefly discuss their finite type invariants and their associated spaces of “arrow
diagrams”, A*(1,) and A*(1,). We then construct a homomorphic expansion, or
a “well-behaved”™ universal finite type invariant for w-tangles. Once again. the only
algebraic tool we need to use is exp(a) := 3 a"/n!, and indeed, Section 5.1 is but ) p W

a routine extension of parts of Section 3. We break away in 5.2 and show that ﬁ[ ]V)-5+ Canon ¢ )
A"(14) = U(a, & e, x tr, ), where a,, is an Abelian algebra of rank n and where

tder,, and tr,,, two of the primary spaces used by Alekseev and Torossian [AT], have

simple descriptions in terms gfgwords and free Lie algebras. In 5.3 we discuss a Cyuce //Z,
subclass of w-tangles called “Specst” w-tangles, and relate them by similar means j

to Alekseev and Torossian’s sder,, and to “tree level” ordinary Vassiliev theory.

5.1. v-Tangles and w-Tangles. With the (surprisingly pleasant) task of defining circuit
algebras completed in Section 1.4, the definition of v-tangles and w-tangles is simple.

Definition 5.1. The (S-graded) cirenit algebra oI" of v-tangles is the S-graded directed
circuit algebra generated by two generators in 'y, called the “positive crossing” and the
“negative crossing”, modulo the usual R2 and R3 moves as depicted in Figure 6 (these
relations clearly make sense as circuit algebra relations between our two generators), with
the obvious meaning for their skeleta. The circuit algebra wl” of w-tangles is the same, except
we also mod out by the OC relation of Figure 6 (note that each side in that relation involves
only two generators, with the apparent third crossing being merely a projection artifact).

Remark 5.2. One may also define v-tangles and w-tangles using the language of planar
algebras, except then another generator is required (the “virtual crossing”) and also a few
further relations (VR1-VR3, M). and some of the operations (non-planar wirings) become
less elegant to define.

Our next task is to study the projectivizations proj I" and proj ul" of T" and uT'. Again,
the langnage of circuit algebras makes it exceedingly simple.

Definition 5.3. The (S-graded) circuit algebra D" = D" of ' 1 o 5
arrow diagrams is the graded and S-graded directed circuit — N
algebra generated by a single degree 1 generator a in Chy N rs Ay
called “the arrow™ as shown on the right. with the obvious

meaning for its skeleton. There are morphisms 7 : D" — oI and = : D* — uil’ defined
by mapping the arrow to an overcrossing minus a no-crossing. (On the right some virtual
crossings were added to make the skeleta match). Let A° be D°/67 and let A* := A*/TC =
D“'/I’f’ ,TC, with 67, 3T, and TC' being the same relation as in Figures 8 and 9 (allowing
skeleta parts that are not expleitly connected to really lie on separate skeleton components).

Proposition 5.4. The maps = above induce surjections 7 : A" — projl' and = : AY —
proj uil'. Hence in the language of Definition 4.7, A" and A" are candidate projectivizations
of ul" and wil'.

Proof. MORE
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We do not know if A" is indeed the projectivizations of 1" (also see [BHLR]). Yet in the
w case, the picture is simple:
Theorem 5.5. The assignment X v ¢ (with an obvious interpretation for ¢ ) extends to
a well defined Z : wl' — A". The resulting map 7Z is a homomorphic A" -expansion, and in
particular, A* = projul’ and Z is a homomorphic expansion.

Proof. There is nothing new here. Z is satisfies the Reidemeister moves for the same
reasons as in Theorem 2.12 and Theorem 3.11 and as there it also satisfies the universallity
property. The rest follows from Proposition 4.8. 0

In a similar spirit to Definition 3.13, one may define a “w-Jacobi diagram” (often shorts
to “arrow diagram”) on an arbitrary skeleton. Denote the circnit algebra of formal linear
combinations of arrow diagrams by A*‘. We have the following bracket-rise theorem:

Theorem 5.6. The obvious inclusion of diagrams induces a circuit algebra isomorphism
AY = A", Furthermore, the AS and IHX relations of Figure 12 hold in A™.
Proof.  The proof of Theorem 3.15 can be repeated verbatim. Note that that proof does
not make use of the connectivity of the skeleton.

Given the above theorem, we no longer keep the distinction between A" and A",
5.2. A“(],) and the Alekseev-Torossian Spaces.

Definition 5.7. Let oI'(1,) (likewise ui'(1,)) be the set of v-tangles (w-tangles) whose
skeleton is the disjoint union of n directed lines. Likewise let A“(1,) and A“(1,) be the
parts of A* and A" in which the skeleton is the disjoint union of n directed lines.

In the same manner as in the case of knots (Theorem 3.16),

A"(1,) is a bi-algebra isomorphic (via a diagrammatic PBW

theorem, applied independently on each component of the
@-o?j(!/i\,skvlvhm) to a pacevB(x,) of unitravelent diagrams with Aéﬂj

symmetrized ends coloured with colours in some n-element set S . .7 .

(say {xy,...,x,}). modulo AS and m The primitives P, zs PRy {3, borp Bt p %V /]

of B"(«,) are the connected diagrams (and hence the primitives of A¥(7,) are the diagrams n "9 ,4}

that remain connected even when the skeleton is removed). Given the “two in one out™ rule

for internal vertices, the diagrams in P, can only be trees or wheels (“wheels of trees” can

be reduced to simple wheels by repeatedly using THX, as on the right).

Thus P, is easy to identify. It is a direct sum P, = (trees) @& (wheels). The wheels part is
simply the vector space generated by all cyvclic words in the letters ry, ... x,. Alekseev and
Torossian [AT] denote this space tr,,, and so shall we. The trees in P, have leafs coloured

T, » Modulo F nn(l THX, they correspond to elements of the free Lie algebra Lie,, on
|||1' generators ry, . But the root of each such tree also carries a label in {xy,....3 T}, .
hence there are n I\p:\ nt such trees as gyt by their roots. and so P, is isomorphic to C/’Lf!//':/ td
the direct sum te, @ @', Lie, of tr, and n copies of Lic,.
By the Milnor-Moore theorem [MM], A*(1,) is isomrphic to the universal enveloping
algebra U(P,,). with P, identified as a subspace of A“(1,) using the PBW symmetrization
map y : B(x,) — A“(1,). Thus in order to understand A“(1,) as an associative algebra, it
is enough to understand the Lie algebra structure induced on P, via the commutator bracket

of A“(1,).
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