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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS: FROM

ALEXANDER TO KASHIWARA AND VERGNE

DROR BAR-NATAN

Abstract. w-Knots, and more generally, w-knotted objects (w-braids, w-tangles, etc.)
make a class of knotted objects which is wider but weaker than their “usual” counterparts.
To get (say) w-knots from u-knots, one has to allow non-planar “virtual” knot diagrams,
hence enlarging the the base set of knots. But then one imposes a new relation, the “over-
crossings commute” relation, further beyond the ordinary collection of Reidemeister moves,
making w-knotted objects a bit weaker once again.

The group of w-braids was studied (under the name “welded braids”) by Fenn, Rimanyi
and Rourke

FennRimanyiRourke:BraidPermutation
[FRR] and was shown to be isomorphic to the McCool group

McCool:BasisConjugating
[Mc] of “basis-

conjugating” automorphisms of a free group Fn — the smallest subgroup of Aut(Fn) that
contains both braids and permutations. Brendle and Hatcher

BrendleHatcher:RingsAndWickets
[BH], in work that traces back

to Goldsmith
Goldsmith:MotionGroups
[Gol], have shown this group to be a group of movies of flying rings in R3.

Satoh
Satoh:RibbonTorusKnots
[Sa] studied several classes of w-knotted objects (under the name “weakly-virtual”)

and has shown them to be closely related to certain classes of knotted surfaces in R4. So
w-knotted objects are algebraically and topologically interesting.

In this article we study finite type invariants of several classes of w-knotted objects.
Following Berceanu and Papadima

BerceanuPapadima:BraidPermutation
[BP], we construct a homomorphic universal finite type

invariant of w-braids, and hence show that the McCool group of automorphisms is “1-
formal”. We also construct a homomorphic universal finite type invariant of w-tangles.
We find that the universal finite type invariant of w-knots is more or less the Alexander
polynomial (details inside).

Much as the spaces A of chord diagrams for ordinary knotted objects are related to
metrized Lie algebras, we find that the spaces Aw of “arrow diagrams” for w-knotted objects
are related to not-necessarily-metrized Lie algebras. Many questions concerning w-knotted
objects turn out to be equivalent to questions about Lie algebras. Most notably we find that
a homomorphic universal finite type invariant of w-knotted trivalent graphs is essentially
the same as a solution of the Kashiwara-Vergne

KashiwaraVergne:Conjecture
[KV] conjecture and much of the Alekseev-

Torrosian
AlekseevTorossian:KashiwaraVergne
[AT] work on Drinfel’d associators and Kashiwara-Vergne can be re-intepreted as

a study of w-knotted trivalent graphs.
The true value of w-knots, though, is likely to emerge later, for we expect them to serve

as a warmup example for what we expect will be even more interesting — the study of
virtual knots, or v-knots. We expect v-knotted objects to provide the global context whose
projectivization (or “associated graded structure”) will be the Etingof-Kazhdan theory of
deformation quantization of Lie bialgebras

EtingofKazhdan:BialgebrasI
[EK].
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1. Introduction
sec:introsubsec:dreams

1.1. Dreams. I have a dream1, at least partially founded on reality, that many of the
difficult algebraic equations in mathematics, especially those that are written in graded
spaces, more especially those that are related in one way or another to quantum groups

Drinfeld:QuantumGroup
[Dr1],

and even more especially those related to the work of Etingof and Kazhdan
EtingofKazhdan:BialgebrasI
[EK], can be

understood, and indeed, would appear more natural, in terms of finite type invariants of
various topological objects.

I believe this is the case for Drinfel’d’s theory of associators
Drinfeld:QuasiHopf
[Dr2], which can be interpreted

as a theory of well-behaved universal finite type invariants of parenthesized tangles2
LeMurakami:Universal,
[LM2,

BN3], and even more elegantly, as a theory of universal finite type invariants of knotted
trivalent graphs

Dancso:KIforKTG
[Da].

I believe this is the case for Drinfel’d’s “Grothendieck-Teichmuller group”
Drinfeld:GalQQ
[Dr3] which is

better understood as a group of automorphisms of a certain algebraic structure, also related
to universal finite type invariants of parenthesized tangles

Bar-Natan:Associators
[BN6].

And I’m optimistic, indeed I believe, that sooner or later the work of Etingof and Kazh-
dan

EtingofKazhdan:BialgebrasI
[EK] on quantization of Lie bialgebras will be re-interpreted as a construction of a

well-behaved universal finite type invariant of virtual knots
Kauffman:VirtualKnotTheory
[Ka2] or of some other class of

virtually knotted objects. Some steps in that direction were taken by Haviv
Haviv:DiagrammaticAnalogue
[Hav].

I have another dream, to construct a useful “Algebraic Knot Theory”. As at least a
partial writeup exists

Bar-Natan:AKT-CFA
[BN8], I’ll only state that an important ingredient necessary to fulfill

that dream would be a “closed form”3 formula for an associator, at least in some reduced
sense. Formulas for associators or reduced associators were in themselves the goal of several
studies undertaken for various other reasons

LeMurakami:HOMFLY, Lieberum:gl11, Kurlin:CompressedAssociato
[LM1, Lie, Kur, Lee].

1Understanding an author’s history and psychology ought never be necessary to understand his/her papers,
yet it may be helpful. Nothing material in the rest of this paper relies on Section

subsec:dreamssubsec:dreams
1.1.

2“q-tangles” in
LeMurakami:Universal
[LM2], “non-associative tangles” in

Bar-Natan:NAT
[BN3].

3The phrase “closed form” in itself requires an explanation. See Section
subsec:ClosedFormsubsec:ClosedForm
7.1.foot:ClosedForm
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1.2. Stories. Thus I was absolutely delighted when in January 2008 Anton Alekseev de-
scribed to me his joint work

AlekseevTorossian:KashiwaraVergne
[AT] with Charles Torossian — he told me they found a rela-

tionship between the Kashiwara-Vergne conjecture
KashiwaraVergne:Conjecture
[KV], a cousin of the Duflo isomorphism

(which I already knew to be knot-theoretic
Bar-NatanLeThurston:TwoApplications
[BLT]), and associators taking values in a space

called sder, which I could identify as “tree-level Jacobi diagrams”, also a knot-theoretic space
related to the Milnor invariants

Bar-Natan:Homotopy, HabeggerMasbaum:Milnor
[BN2, HM]. What’s more, Anton told me that in certain

quotient spaces the Kashiwara-Vergne conjecture can be solved explicitly; this should lead
to some explicit associators!

So I spent the following several months trying to understand
AlekseevTorossian:KashiwaraVergne
[AT], and this paper is a

summary of my efforts. The main thing I learned is that the Alekseev-Torossian paper, and
with it the Kashiwara-Vergne conjecture, fit very nicely with my first dream recalled above,
about interpreting algebra in terms of knot theory. Indeed much of

AlekseevTorossian:KashiwaraVergne
[AT] can be reformulated

as a construction and a discussion of a well-behaved universal finite type invariant Z of a
certain class of knotted objects (which I will call here w-knotted), a certain natural quotient of
the space of virtual knots (more precisely, virtual trivalent tangles). And my hopes remain
high that later I (or somebody else) will be able to exploit this relationship in directions
compatible with my second dream recalled above, on the construction of an “algebraic knot
theory”.

The story, in fact, is prettier than I was hoping for, for it has the following additional
qualities:

• w-Knotted objects are quite interesting in themselves: as stated in the abstract, they are
related to combinatorial group theory via “basis-conjugating” automorphisms of a free
group Fn, to groups of movies of flying rings in R3, and more generally, to certain classes
of knotted surfaces in R4. The references include

BrendleHatcher:RingsAndWickets, FennRimanyiRourke:Bra
[BH, FRR, Gol, Mc, Sa].

• The “chord diagrams” for w-knotted objects (really, these are “arrow diagrams”) describe
formulas for invariant tensors in spaces pertaining to not-necessarily-metrized Lie alge-
bras in much of the same way as ordinary chord diagrams for ordinary knotted objects
describe formulas for invariant tensors in spaces pertaining to metrized Lie algebras. This
observation is bound to have further implications.
• Arrow diagrams also describe the Feynman diagrams of topological BF theory

CattaneoCotta-Ramusin
[CCM,

CCFM] and of a certain class of Chern-Simons theories
Naot:BF
[Na]. Thus it is likely that our

story is directly related to quantum field theory4.
• When composed with the map from knots to w-knots, Z becomes the Alexander poly-
nomial. For links, it becomes an invariant stronger than the multi-variable Alexander
polynomial which contains the multi-variable Alexander polynomial as an easily identi-
fiable reduction. On other w-knotted objects Z has easily identifiable reductions that
can be considered as “Alexander polynomials” with good behaviour relative to various
knot-theoretic operations — cablings, compositions of tangles, etc. There is also a certain
specific reduction of Z that can be considered as the “ultimate Alexander polynomial” —
in the appropriate sense, it is the minimal extension of the Alexander polynomial to other
knotted objects which is well behaved under a whole slew of knot theoretic operations,
including the ones named above.

4Some non-perturbative relations between BF theory and w-knots was discussed by Baez, Wise and
Crans

BaezWiseCrans:ExoticStatistics
[BWC].
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v-Knots w-Knotsu-Knots

Ordinary (usual) knotted
objects in 3D — braids,
knots, links, tangles, knot-
ted graphs, etc.

Virtual knotted objects —
“algebraic” knotted objects,
or “not specifically embed-
ded” knotted objects; knots
drawn on a surface, modulo
stabilization.

Ribbon knotted objects in
4D; “flying rings”. Like v,
but also with “overcrossings
commute”.

Chord diagrams and Jacobi
diagrams, modulo 4T , STU ,
IHX, etc.

Arrow diagrams and v-
Jacobi diagrams, modulo
6T and various “directed”
STUs and IHXs, etc.

Like v, but also with “tails
commute”. Only “two in one
out” internal vertices.

Finite dimensional metrized
Lie algebras, represen-
tations, and associated
spaces.

Finite dimensional Lie
bi-algebras, representations,
and associated spaces.

Finite dimensional co-
commutative Lie bi-algebras
(i.e., g⋉g∗), representations,
and associated spaces.

The Drinfel’d theory of asso-
ciators.

Likely, quantum groups and
the Etingof-Kazhdan theory
of quantization of Lie bi-
algebras.

The Kashiwara-Vergne-
Alekseev-Torossian theory
of convolutions on Lie
groups and Lie algebras.
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figs/uvw

Figure 1. The u-v-w Stories fig:uvw

1.3. The Bigger Picture. Parallel to the w-story run the possibly more significant u-story
and v-story. The u-story is about u-knots, or more generally, u-knotted objects (braids,
links, tangles, etc.), where “u” stands for usual; hence the u-story is about ordinary knot
theory. The v-story is about v-knots, or more generally, v-knotted objects, where “v” stands
for virtual, in the sense of Kauffman

Kauffman:VirtualKnotTheory
[Ka2].

The three stories, u, v, and w, are different from each other. Yet they can be told along
similar lines — first the knots (topology), then their finite type invariants and their “chord
diagrams” (combinatorics), then those map into certain universal enveloping algebras and
similar spaces associated with various classes of Lie algebras (low algebra), and finally, in
order to construct a “good” universal finite type invariant, in each case one has to confront
a certain deeper algebraic subject (high algebra). These stories are summarized in a table
form in Figure

fig:uvwfig:uvw
1.

u-Knots map into v-knots, and v-knots map into w-knots5. The other parts of our stories,
the “combinatorics” and “low algebra” and “high algebra” rows of Figure

fig:uvwfig:uvw
1, are likewise

related, and this relationship is a crucial part of our overall theme. Thus we cannot and will
not tell the w-story in isolation, and while it is central to this article, we will necessarily also
include some episodes from the u and v series.

5Though the composition “u→ v → w” is not 0. In fact, the map u→ w is injective.
5
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1.4. Plans. Our order of proceedings is: w-braids (pp.
sec:w-braidssec:w-braids
7), w-knots (pp.

sec:w-knotssec:w-knots
23), generalities

(pp.
sec:generalitiessec:generalities
49), w-tangles (pp.

sec:w-tanglessec:w-tangles
59), w-tangled graphs (pp.

sec:w-graphssec:w-graphs
64), and then some odds and ends

(pp.
sec:OddsAndEndssec:OddsAndEnds
65). For more detailed information consult the “Section Summary” paragraph at the

beginning of each of the sections. A glossary of notation is on page
sec:glossarysec:glossary
71.

1.5. Acknowledgement. I wish to thank Anton Alekseev, Jana Archibald, Scott Carter,
Karene Chu, Zsuzsanna Dancso, Iva Halacheva, Joel Kamnitzer, Lou Kauffman, Peter Lee,
Louis Leung, and Dylan Thurston for comments and suggestions.
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2. w-Braids
sec:w-braids

Section Summary. This section is largely a compilation of existing literature,
though we also introduce the language of arrow diagrams that we use throughout
the rest of the paper. We define v-braids and then w-braids and survey their
relationship with basis-conjugating automorphisms of free groups and with “the
group of flying rings in R3” (really, a group of knotted tubes in R4). We then
play the usual game of introducing finite type invariants, weight systems, chord
diagrams (arrow diagrams, for this case), and 4T-like relations. Finally we define
and construct a universal finite type invariant for w-braids. It turns out that the
only algebraic tool we need to use is the formal exponential function exp(a) :=∑
an/n!.

subsec:VirtualBraids
2.1. Preliminary: Virtual Braids, or v-Braids. Our main object of study for this sec-
tion, w-braids, are best viewed as “virtual braids”

Bardakov:VirtualAndUniversal, KauffmanLambropoulou:Vi
[Ba, KL, BB], or v-braids, modulo one

additional relation. Hence we start with v-braids.
It is simplest to define v-braids in terms of generators and relations, either algebraically or

pictorially. This can be done in at least two ways — the easier-at-first but philosophically-
less-satisfactory “planar” way, and the harder to digest but morally more correct “abstract”
way.6

subsubsec:Planar
2.1.1. The “Planar” Way. For a natural number n set vBn to be the group generated by
symbols σi (1 ≤ i ≤ n−1), called “crossings” and graphically represented by an overcrossing! “between strand i and strand i + 1” (with inverse ")7, and si, called “virtual crossings”
and graphically represented by a non-crossing, P, also “between strand i and strand i+ 1”,
subject to the following relations:

• The subgroup of wBn generated by the virtual crossings si is the symmetric group Sn,
and the si’s correspond to the transpositions (i, i+ 1). That is, we have

s2i = 1, sisi+1si = si+1sisi+1, and if |i− j| > 1 then sisj = sjsi. (1) eq:sRelations

In pictures, this is

... ...

i i+2i+1 i i+2i+1

i i+1 i i+1 i i+1 i i+1 j j+1j j+1

= = =

figs/sRels

(2) eq:sRels

Note that we read our braids from bottom to top.
• The subgroup of wBn generated by the crossings σi’s is the usual braid group uBn, and
σi corresponds to the braiding of strand i over strand i+ 1. That is, we have

σiσi+1σi = σi+1σiσi+1, and if |i− j| > 1 then σiσj = σjσi. (3) eq:R3

6Compare with a similar choice that exists in the definition of manifolds, as either appropriate subsets
of some ambient Euclidean spaces (module some equivalences) or as abstract gluings of coordinate patches
(modulo some other equivalences). Here in the “planar” approach of Section

subsubsec:Planarsubsubsec:Planar
2.1.1 we consider v-braids

as “planar” objects, and in the “abstract approach” of Section
subsubsec:Abstractsubsubsec:Abstract
2.1.2 they are just “gluings” of abstract

“crossings”, not drawn anywhere in particular.
7We sometimes refer to ! as a “positive crossing” and to " as a “negative crossing”.

7
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In pictures, dropping the indices, this is

... ...and ==

figs/sigmaRels

(4) eq:sigmaRels

The first of these relations is the “Reidemeister 3 move”8 of knot theory. The second is
sometimes called “locality in space”

Bar-Natan:NAT
[BN3].

• Some “mixed relations”,

siσ
±1
i+1si = si+1σ

±1
i si+1, and if |i− j| > 1 then siσj = σjsi. (5) eq:MixedRelations

In pictures, this is

... ...= , = =and

figs/MixedRels

(6) eq:MixedRels

rem:Skeleton Remark 2.1. The “skeleton” of a v-braid B is the set of strands appearing in it, retaining
the association between their beginning and ends but ignoring all the crossing information.
More precisely, it is the permutation induced by tracing along B, and even more precisely
it is the image of B via the “skeleton morphism” ς : vBn → Sn defined by ς(σi) = ς(si) = si
(or pictorially, by ς(!) = ς(P) = P). Thus the symmetric group Sn is both a subgroup and
a quotient group of vBn.

Like there are pure braids to accompany braids, there are pure virtual braids as well:

Definition 2.2. A pure v-braid is a v-braid whose skeleton is the identity permutation; the
group PvBn of all pure v-braids is simply the kernel of the skeleton morphism ς : vBn → Sn.

We note the sequence of group homomorphisms

1 −→ PvBn −֒→ vBn
ς
−→ Sn −→ 1. (7) eq:ExcatSeqForPvB

This sequence is exact and split, with the splitting given by the inclusion Sn →֒ vBn men-
tioned above (

eq:sRelationseq:sRelations
1). Therefore we have that

vBn = PvBn ⋊ Sn. (8) eq:vBSemiDirect

subsubsec:Abstract
2.1.2. The “Abstract” Way. The relations (

eq:sRelseq:sRels
2) and (

eq:MixedRelseq:MixedRels
6) that govern the behaviour of virtual

crossings precisely say that virtual crossings really are “virtual” — if a piece of strand is
routed within a braid so that there are only virtual crossings around it, it can be rerouted
in any other “virtual only” way, provided the ends remain fixed (this is Kauffman’s “detour
move”

Kauffman:VirtualKnotTheory, KauffmanLambropoulou:VirtualBraids
[Ka2, KL]). Since a v-braid B is independent of the routing of virtual pieces of strand,

we may as well never supply this routing information.

8The Reidemeister 2 move is the relations σiσ
−1
i = 1 which is part of the definition of “a group”. There

is no Reidemeister 1 move in the theory of braids.
8
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1 2 3figs/PvBExample

Thus for example, a perfectly fair verbal description of the (pure!) v-braid
on the right is “strand 1 goes over strand 3 by a positive crossing then likewise
positively over strand 2 then negatively over 3 then 2 goes positively over 1”. We
don’t need to specify how strand 1 got to be near strand 3 so it can go over it —
it got there by means of virtual crossings, and it doesn’t matter how. Hence we
arrive at the following “abstract” presentation of PvBn and vBn:

Proposition 2.3. (E.g.
Bardakov:VirtualAndUniversal
[Ba])

(1) The group PvBn of pure v-braids is isomorphic to the group generated by symbols σij
for 1 ≤ i 6= j ≤ n (meaning “strand i crosses over strand j at a positive crossing”9),
subject to the third Reidemeister move and to locality in space (compare with (

eq:R3eq:R3
3)

and (
eq:sigmaRelseq:sigmaRels
4)):

σijσikσjk = σjkσikσij whenever |{i, j, k}| = 3,

σijσkl = σklσij whenever |{i, j, k, l}| = 4.

(2) If τ ∈ Sn, then with the action στ
ij := στi,τj we recover the semi-direct product decom-

position vBn = PvBn ⋊ Sn. �

9The inverse, σ−1
ij , is “strand i crosses over strand j at a negative crossing”

9



D
R
A
F
T

subsec:wBraids
2.2. On to w-Braids. To define w-braids, we break the symmetry between over crossings
and under crossings by imposing one of the “forbidden moves” virtual knot theory, but not
the other:

σiσi+1si = si+1σiσi+1, yet siσi+1σi 6= σi+1σisi+1. (9) eq:OvercrossingsCommute

Alternatively,
σijσik = σikσij , yet σikσjk 6= σjkσik.

In pictures, this is

yet

i j k i j k i j ki j k

6==

figs/OCUC

(10) eq:OC

The relation we have just imposed may be called the “unforbidden relation”, or, perhaps
more appropriately, the “overcrossings commute” relation (OC). Ignoring the non-crossings10P, the OC relation says that it is the same if strand i first crosses over strand j and then
over strand k, or if it first crosses over strand k and then over strand j. The “undercrossings
commute” relation UC, the one we do not impose in (

eq:OvercrossingsCommuteeq:OvercrossingsCommute
9), would say the same except with

“under” replacing “over”.

Definition 2.4. The group of w-braids is wBn := vBn/OC. Note that ς descends to wBn

and hence we can define the group of pure w-braids to be PwBn := ker ς : wBn → Sn.
We still have a split exact sequence as at (

eq:ExcatSeqForPvBeq:ExcatSeqForPvB
7) and a semi-direct product decomposition

wBn = PwBn ⋊ Sn.

Exercise 2.5. Show that the OC relation is equivalent to the relation

σ−1
i si+1σi = σi+1siσ

−1
i+1 or =

While mostly in this paper the pictorial / algebraic definition of w-braids (and other w-
knotted objects) will suffice, we ought describe at least briefly 2-3 further interpretations of
wBn:

subsubsec:FlyingRings
2.2.1. The group of flying rings. LetXn be the space of all placements of n numbered disjoint
geometric circles in R3, such that all circles are parallel to the xy plane. Such placements
will be called horizontal11. A horizontal placement is determined by the centers in R3 of the
n circles and by n radii, so dimXn = 3n + n = 4n. The permutation group Sn acts on Xn

by permuting the circles, and one may think of the quotient X̃n := Xn/Sn as the space of

all horizontal placements of n unmarked circles in R3. The fundamental group π1(X̃n) is
a group of paths traced by n disjoint horizontal circles (modulo homotopy), so it is fair to
think of it as “the group of flying rings”.

Theorem 2.6. The group of pure w-braids PwBn is isomorphic to the group of flying rings
π1(Xn). The group wBn is isomorphic to the group of unmarked flying rings π1(X̃n).

10Why this is appropriate was explained in the previous section.
11 For the group of non-horizontal flying rings see Section

subsubsec:NonHorRingssubsubsec:NonHorRings
2.5.4

10
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For the proof of this theorem, see
Goldsmith:MotionGroups, Satoh:RibbonTorusKnots
[Gol, Sa] and especially

BrendleHatcher:RingsAndWickets
[BH]. Here we will contend

ourselves with pictures describing the images of the generators of wBn in π1(X̃n) and a few
comments:

σi =si =

i i+ 1 i i+ 1

Thus we map the permutation si to the movie clip in which ring number i trades its
place with ring number i + 1 by having the two flying around each other. This acrobatic
feat is performed in R3 and it does not matter if ring number i goes “above” or “below” or
“left” or “right” of ring number i+1 when they trade places, as all of these possibilities are
homotopic. More interestingly, we map the braiding σi to the movie clip in which ring i+ 1
shrinks a bit and flies through ring i. It is a worthwhile exercise for the reader to verify that
the relations in the definition of wBn become homotopies of movie clips. Of these relations
it is most interesting to see why the “overcrossings commute” relation σiσi+1si = si+1σiσi+1

holds, yet the “undercrossings commute” relation σ−1
i σ−1

i+1si = si+1σ
−1
i σ−1

i+1 doesn’t.
NEW

ex:swBn Exercise 2.7. To be perfectly precise, we have to specify the fly-through direction. The
convention we use can be read from the picture above. Let “the signed w braid group”,
swBn, be the group of horizontal flying rings where both fly-through directions are allowed.
This introduces a “sign” for each crossing σi:

i i+ 1 i i+ 1

+ −σi− =σi+ =

In other words, swBn is generated by si, σi+ and σi−, for i = 1, ..., n. Check that in swBn

σi− = siσ
−1
i+ si, and this, along with the other obvious relations implies swBn

∼= wBn.

END NEW
subsubsec:ribbon

2.2.2. Certain ribbon tubes in R4. With time as the added dimension, a flying ring in R3

traces a tube (an annulus) in R4, as shown in the picture below:

i i+ 1 i i+ 1

si = σi =

Note that we adopt here the drawing conventions of Carter and Saito
CarterSaito:KnottedSurfaces
[CS] — we draw

surfaces as if they were projected from R4 to R3, and we cut them open whenever they are
“hidden” by something with a higher t coordinate.

11
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Note also that the tubes we get in R4 always bound natural 3D “solids” — their “insides”,
in the pictures above. These solids are disjoint in the case of si and have a very specific kind
of intersection in the case of σi — these are transverse intersections with no triple points,
and their inverse images are a meridional disk on the “thin” solid tube and an interior disk
on the “thick” one. By analogy with the case of ribbon knots and ribbon singularities in R3

(e.g.
Kauffman:OnKnots
[Ka1, Chapter V]) and following Satoh

Satoh:RibbonTorusKnots
[Sa], we call this kind if intersections of solids

in R4 “ribbon singularities” and thus our tubes in R4 are always “ribbon tubes”.
subsubsec:McCool

2.2.3. Basis conjugating automorphisms of Fn. Let Fn be the free (non-Abelian) group with
generators ξ1, . . . , ξn. Artin’s theorem (Theorems 15 and 16 of

Artin:TheoryOfBraids
[Ar]) says that that the

(usual) braid group uBn (equivalently, the subgroup of wBn generated by the σi’s) has a
faithful right action on Fn. In other words, uBn is isomorphic to a subgroup H of Autop(Fn)
(the group of automorphisms of Fn with opposite multiplication; ψ1ψ2 := ψ2 ◦ψ1). Precisely,
using (ξ, B) 7→ ξ�B to denote the right action of Autop(Fn) on Fn, the subgroup H consists
of those automorphisms B : Fn → Fn of Fn that satisfy the following two conditions:

(1) B maps any generator ξi to a conjugate of a generator (possibly different). That is,
there is a permutation β ∈ Sn and elements ai ∈ Fn so that for every i,

ξi � B = a−1
i ξβiai. (11) eq:BasisConjugating

(2) B fixes the ordered product of the generators of Fn,

ξ1ξ2 · · · ξn � B = ξ1ξ2 · · · ξn.

McCool’s theorem
McCool:BasisConjugating
[Mc] says that the same holds true12 if one replaces the braid group

uBn with the bigger group wBn and drops the second condition above. So wBn is precisely
the group of “basis-conjugating” automorphisms of the free group Fn, the group of those
automorphisms which map any “basis element” in {ξ1, . . . , ξn} to a conjugate of a (possibly
different) basis element.

The relevant action is explicitly defined on the generators of wBn and Fn as follows (with
the omitted generators of Fn always fixed):

(ξi, ξi+1) � si = (ξi+1, ξi) (ξi, ξi+1) � σi = (ξi+1, ξi+1ξiξ
−1
i+1) ξj � σij = ξiξjξ

−1
i (12) eq:ExplicitPsi

It is a worthwhile exercise to verify that � respects the relations in the definition of wBn

and that the permutation β in (
eq:BasisConjugatingeq:BasisConjugating
11) is the skeleton ς(B).

There is a more conceptual description of �, in terms of the structure of wBn+1. Consider
the inclusions

wBn

ι
−֒→ wBn+1

iu
←−֓ Fn. (13) eq:inclusions

1 i i+1 nn+1
· · · · · ·

xi 7→

figs/xi

Here ι is the map of wBn into wBn+1 by adding an inert (n +
1)−st strand (it is injective as it has a well defined one sided
inverse — the deletion of the (n + 1)-st strand). The inclusion
iu of the free group Fn into wBn+1 is defined by iu(ξi) := σi,n+1.
The image iu(Fn) ⊂ wBn+1 is the set of all w-braids whose first n strands are straight and
vertical, and whose (n+1)-st strand wanders among the first n strands mostly virtually (i.e.,
mostly using virtual crossings), occasionally slipping under one of those n strands, but never
going over anything. In the “flying rings” picture of Section

subsubsec:FlyingRingssubsubsec:FlyingRings
2.2.1, the image iu(Fn) ⊂ wBn+1

can be interpreted as the fundamental group of the complement in R3 of n stationary rings

12Though see Warning
warn:NoArtinwarn:NoArtin
2.8.

12



D
R
A
F
T

(which is indeed Fn) — in iu(Fn) the only ring in motion is the last, and it only goes under,
or “through”, other rings, so it can be replaced by a point object whose path is an element
of the fundamental group. The injectivity of iu follows from this geometric picture. Putting
the carriage ahead of the horses, we also sketch an algebraic proof of the injectivity of iu
which uses the existence of � in Section

subsec:FreeInWsubsec:FreeInW
7.2.

B−1

B

γ

figs/Bgamma

One may explicitly verify that iu(Fn) is normalized by ι(wBn) in wBn+1 (that
is, the set iu(Fn) is preserved by conjugation by elements of ι(wBn)). Thus the
following definition (also shown as a picture on the right) makes sense, for B ∈
wBn ⊂ wBn+1 and for γ ∈ Fn ⊂ wBn+1:

γ � B := i−1
u (B−1γB) (14) eq:ConceptualPsi

It is a worthwhile exercise to recover the explicit formulas in (
eq:ExplicitPsieq:ExplicitPsi
12) from the above definition.

warn:NoArtin Warning 2.8. People familiar with the Artin story for ordinary braids should be warned that
even though wBn acts on Fn and the action is induced from the inclusions in (

eq:inclusionseq:inclusions
13) in much

of the same way as the Artin action is induced by inclusions uBn

ι
−֒→ uBn+1

i
←−֓ Fn, there are

also some differences, and some further warnings apply:

• In the ordinary Artin story, i(Fn) is the set of braids in uBn+1 whose first n strands are
unbraided (that is, whose image in uBn via “dropping the last strand” is the identity).
This is not true for w-braids. For w-braids, in iu(Fn) the last strand always goes “under”
all other strands (or just virtually crosses them), but never over.
• Thus unlike the isomorphism PuBn+1

∼= PuBn ⋉Fn, it is not true that PwBn+1 is isomor-
phic to PwBn ⋉ Fn.
• The Overcrossings Commute relation imposed in wB breaks the symmetry between over-
crossings and undercrossings. Thus let io : Fn → wBn be the “opposite” of iu, mapping
into braids in which the last strand is always “over” or virtual. Then io is not injective
(its image is in fact Abelian) and its image is not normalized by ι(wBn). So there is no
“second” action of wBn on Fn defined using io.
• For v-braids, both iu and io are injective and there are two actions of vBn on Fn — one
defined by first projecting into w-braids, and the other defined by first projecting into v-
braids modulo “Undercrossings Commute”. Yet v-braids contain more information than
these two actions can see. The “Kishino” v-braid below, for example, is visibly trivial
if either overcrossings or undercrossings are made to commute, yet by computing its
Kauffman bracket we know it is non-trivial as a v-braid

Bar-Natan:WKO
[BN0, “The Kishino Braid”]:

a bfigs/KishinoBraid




The commutator ab−1a−1b
of v-braids a, b annihilated
by OC/UC, respectively,
with a minor cancellation.




prob:wCombing Problem 2.9. Is PwBn a semi-direct product of free groups? Note that both PuBn and
PvBn are such semi-direct products: For PuBn, this is the well known “combing of braids”;
it follows from PuBn

∼= PuBn−1 ⋉ Fn−1 and induction. For PvBn, it is a result stated in
Bardakov:VirtualAnd
[Ba]

(though my own understanding of
Bardakov:VirtualAndUniversal
[Ba] is incomplete).

rem:GutierrezKrstic Remark 2.10. Note that Gutiérrez and Krstić
GutierrezKrstic:NormalForms
[GK] find “normal forms” for the elements of

PwBn, yet they do not decide whether PwBn is “automatic” in the sense of
Epstein:WordProcessing
[Ep].

13
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subsec:FT4Braids
2.3. Finite Type Invariants of v-Braids and w-Braids. Just as we had two defini-
tions for v-braids (and thus w-braids) in Section

subsec:VirtualBraidssubsec:VirtualBraids
2.1, we will give two (obviously equiv-

alent) developments of the theory of finite type invariants of v-braids and w-braids — a
pictorial/topological version in Section

subsubsec:FTPictorialsubsubsec:FTPictorial
2.3.1, and a more abstract algebraic version in Sec-

tion
subsubsec:FTAlgebraicsubsubsec:FTAlgebraic
2.3.2.

subsubsec:FTPictorial

2.3.1. Finite Type Invariants, the Pictorial Approach. In the standard theory of finite type
invariants of knots (also known as Vassiliev or Goussarov-Vassiliev invariants)

Goussarov:nEquivalence, Vassiliev:CohKno
[Gou1, Vas,

BN1, BN7] one progresses from the definition of finite type via iterated differences to chord
diagrams and weight systems, to 4T (and other) relations, to the definition of universal finite
type invariants, and beyond. The exact same progression (with different objects playing sim-
ilar roles, and sometimes, when yet insufficiently studied, with the last step or two missing) is
also seen in the theories of finite type invariants of braids

Bar-Natan:Braids
[BN5], 3-manifolds

Ohtsuki:IntegralHomology, LeMurakamiOhtsuki
[Oh, LMO, Le],

virtual knots
GoussarovPolyakViro:VirtualKnots, Polyak:ArrowDiagrams
[GPV, Po] and of several other classes of objects. We thus assume that the

reader has familiarity with these basic ideas, and we only indicate briefly how they are
implemented in the case of v-braids and w-braids. Some further details are in Section

subsec:FTDetailssubsec:FTDetails
7.3.

1 2 3 4 1 2 3 4

1 2 3 41 2 3 4
β

D

↔ (a12a41a23, 3421)

Figure 2. A 3-singular v-braid

and its corresponding 3-arrow

diagram, in picture and in al-

gebraic notation. fig:Dvh1

Much like the formula = !−" of the Vassiliev-
Goussarov fame, given a v-braid invariant V : vBn →
A valued in some Abelian group A, we extend it
to “singular” v-braids, braids that contain “semi-
virtual crossings” like Q and R using the formulas
V (Q) := V (!)− V (P) and V (R) := V (P)− V (")
(see

GoussarovPolyakViro:VirtualKnots, Polyak:ArrowDiagrams
[GPV, Po]). We say that “V is of type m” if

its extension vanishes on singular v-braids having
more than m semi-virtual crossings. Up to invari-
ants of lower type, an invariant of type m is deter-
mined by its “weight system”, which is a functional
W = Wm(V ) defined on “m-singular v-braids mod-
ulo ! = P = "”. Let us denote the vector space of
all formal linear combinations of such equivalence
classes by GmD

v
n. Much as m-singular knots modulo ! = " can be identified with chord

diagrams, the basis elements of GmD
v
n can be identified with pairs (D, β), where D is a

horizontal arrow diagram and β is a “skeleton permutation”. See the figure on the right.
We assemble the spaces GmD

v
n together to form a single graded space, Dv

n := ⊕∞
m=0GmD

v
n.

Note that throughout this paper, whenever we write an infinite direct sum, we automatically
complete it. Thus in Dv

n we allow infinite sums with one term in each homogeneous piece
GmD

v
n.

In the standard finite-type theory for knots, weight systems always satisfy the 4T relation,
and are therefore functionals onA := D/4T . Likewise, in the case of v-braids, weight systems
satisfy the “6T relation” of

GoussarovPolyakViro:VirtualKnots, Polyak:ArrowDiagrams
[GPV, Po], shown in Figure

fig:6Tfig:6T
3, and are therefore functionals on

Av
n := Dv

n/6T . In the case of w-braids, the “overcrossings commute” relation (
eq:OvercrossingsCommuteeq:OvercrossingsCommute
9) implies the

“Tails Commute” (TC) relation on the level of arrow diagrams, and in the presence of the

TC relation, two of the terms in the 6T relation drop out, and what remains is the “
−→
4T”

relation. These relations are shown in Figure
fig:TCand4Tfig:TCand4T
4. Thus weight systems of finite type invariants

of w-braids are linear functionals on Aw
n := Dv

n/TC,
−→
4T .

14
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kji kji kji

+ +

kji kji kji

+ +=

aijaik + aijajk + aikajk = aikaij + ajkaij + ajkaik
or [aij , aik] + [aij , ajk] + [aik, ajk] = 0

Figure 3. The 6T relation. Standard knot theoretic conventions apply — only the relevant

parts of each diagram is shown; in reality each diagram may have further vertical strands

and horizontal arrows, provided the extras are the same in all 6 diagrams. Also, the vertical

strands are in no particular order — other valid 6T relations are obtained when those strands

are permuted in other ways. fig:6T

i j k i j k

=

i j k i j ki j k i j k

+ +=

aijaik = aikaij aijajk + aikajk = ajkaij + ajkaik
or [aij, aik] = 0 or [aij + aik, ajk] = 0

Figure 4. The TC and the
−→
4T relations. fig:TCand4T

The next question that arises is whether we have already found all the relations that weight
systems always satisfy. More precisely, given a degree m linear functional on Av

n = Dv
n/6T

(or on Aw
n = Dv

n/TC,
−→
4T ), is it always the weight system of some type m invariant V of

v-braids (or w-braids)? As in every other theory of finite type invariants, the answer to this
question is affirmative if and only if there exists a “universal finite type invariant” (or simply,
an “expansion”) of v-braids (w-braids):

def:vwbraidexpansion Definition 2.11. An expansion for v-braids (w-braids) is an invariant Z : vBn → A
v
n (or

Z : wBn → A
w
n ) satisfying the following “universality condition”:

• If B is anm-singular v-braid (w-braid) andD ∈ GmD
v
n is its underlying arrow diagram

as in Figure
fig:Dvh1fig:Dvh1
2, then

Z(B) = D + (terms of degree > m).

Indeed if Z is an expansion and W ∈ GmA
⋆,13 the universality condition implies that

W ◦ Z is a finite type invariant whose weight system is W . To go the other way, if (Di) is a
basis of A consisting of homogeneous elements, if (Wi) is the dual basis of A⋆ and (Vi) are
finite type invariants whose weight systems are the Wi’s, then Z(B) :=

∑
iDiVi(B) defines

an expansion.
In general, constructing a universal finite type invariant is a hard task. For knots, one uses

either the Kontsevich integral or perturbative Chern-Simons theory (also known as “configu-
ration space integrals”

BottTaubes:SelfLinking
[BT] or “tinker-toy towers”

Thurston:IntegralExpressions
[Th]) or the rather fancy algebraic theory

of “Drinfel’d associators” (a summary of all those approaches is at
Bar-NatanStoimenow:Fundamental
[BS]). For homology

spheres, this is the “LMO invariant”
LeMurakamiOhtsuki:Universal, Le:UniversalIHS
[LMO, Le] (also the “Århus integral”

Bar-NatanGaroufalidisRozansk
[BGRT]). For

13A here denotes either Av
n or Aw

n , or in fact, any of many similar spaces that we will discuss later on.
15
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v-braids, we still don’t know if an expansion exists. As we shall see below, the construction
of an expansion for w-braids is quite easy.

NEW
subsubsec:FTAlgebraic

2.3.2. Finite Type Invariants, the Algebraic Approach. For any group G, one can form the
group algebra kG for some field k by allowing formal linear combinations of group elements
and extending multiplication linearly. The augmentation ideal is the ideal generated by
differences, or eqvivalently, the set of linear combinations of group elements whose coefficients
sum to zero:

I :=
{ k∑

i=1

aigi : ai ∈ k, gi ∈ G,

k∑

i=1

ai = 0
}
.

Powers of the augmentation ideal provide a filtration of the group algebra. Let A(G) :=⊕
m≥0 I

m/Im+1 be the associated graded space corresponding to this filtration.

def:grpexpansion Definition 2.12. An expansion for the group G is a map Z : G → A(G), such that the
linear extension Z : kG→ A(G) is filtration preserving and the induced map

gr Z : (gr kG = A(G))→ (gr A(G) = A(G))

is the identity. An eqvivalent way to phrase this is that Z restricted to the Im is the
projection onto Im/Im+1.

Exercise 2.13. Verify that for the groups vBn and wBn the m-th power of the augmentation
ideal coincides with resolutions of m-singular v- or w-braids (by a resolution we mean the
formal linear combination where each semivirtual crossing is replaced by the appropriate
difference of a virtual and a regular crossing). Then check that the notion of expansion
defined above is the same as that of Definition

def:vwbraidexpansiondef:vwbraidexpansion
2.11.

Finally, note the functorial nature of the construction above. What we have described is
a functor, called “projectivization” proj : Groups → Graded algebras, which assigns to
each group G the graded algebra A(G). To each homomorphism φ : G → H , proj assigns
the induced map gr φ : (A(g) = gr kG)→ (A(H) = gr kH).

MORE. END NEW
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subsec:wBraidExpansion

2.4. Expansions for w-Braids. The space Aw
n of arrow diagrams on n strands is an asso-

ciative algebra in an obvious manner: If the permutations underlying two arrow diagrams
are the identity permutations, we simply juxtapose the diagrams. Otherwise we “slide” ar-
rows through permutations in the obvious manner — if τ is a permutation, we declare that
τa(τi)(τj) = aijτ . Instead of seeking an expansion wBn → A

w
n , we set the bar a little higher

and seek a “homomorphic expansion”:

def:Universallity Definition 2.14. A homomorphic expansion Z : wBn → A
w
n is an expansion that carries

products in wBn to products in Aw
n .

To find a homomorphic expansion, we just need to define it on the generators of wBn

and verify that it satisfies the relations defining wBn and the universality condition. Follow-
ing

BerceanuPapadima:BraidPermutation
[BP, Section 5.3] and

AlekseevTorossian:KashiwaraVergne
[AT, Section 8.1] we set Z(P) = P (that is, a transposition in wBn

gets mapped to the same transposition in Aw
n , adding no arrows) and Z(!) = exp(S)P.

This last formula is important so deserves to be magnified, explained and replaced by some
new notation:

Z

(!)
= exp

(S)
·P = + + 1

2
+ 1

3!

figs/ZIsExp

+ . . . =:
ea

figs/ArrowReservoir

. (15) eq:reservoir

Thus the new notation
ea

−→ stands for an “exponential reservoir” of parallel arrows, much
like ea = 1+ a+ aa/2 + aaa/3! + . . . is a “reservoir” of a’s. With the obvious interpretation

for
e−a

−→ (the − sign indicates that the terms should have alternating signs, as in e−a =
1− a+ a2/2− a3/3! + . . .), the second Reidemeister move !" = 1 forces that we set

Z

(")
=P · exp

(
−S)

=
e−a

figs/NegReservoir1

=
e−a

figs/NegReservoir2

.

thm:RInvariance Theorem 2.15. The above formulas define an invariant Z : wBn → A
w
n (that is, Z satisfies

all the defining relations of wBn). The resulting Z is a homomorphic expansion (that is, it
satisfies the universality property of Definition

def:Universallitydef:Universallity
2.14).

Proof. (Following
BerceanuPapadima:BraidPermutation, AlekseevTorossian:KashiwaraVergne
[BP, AT]) For the invariance of Z, the only interesting relations to check

are the Reidemeister 3 relation of (
eq:sigmaRelseq:sigmaRels
4) and the Overcrossings Commute relation of (

eq:OCeq:OC
10). For

Reidemeister 3, we have

=
Z

ea
ea
ea

eaea

ea

figs/R3Left

= ea12ea13ea23τ
1
= ea12+a13ea23τ

2
= ea12+a13+a23τ,
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where τ is the permutation 321 and equality 1 holds because [a12, a13] = 0 by a Tails Commute

(TC) relation and equality 2 holds because [a12 + a13, a23] = 0 by a
−→
4T relation. Likewise,

again using TC and
−→
4T ,

=
Z

ea

ea

ea
ea

ea

ea

figs/R3Right

= ea23ea13ea12τ = ea23ea13+a12τ = ea23+a13+a12τ,

and so Reidemeister 3 holds. An even simpler proof using just the Tails Commute relation
shows that the Overcrossings Commute relation also holds. Finally, since Z is homomorphic,
it is enough to check the universality property at degree 1, where it is very easy:

Z

(Q)
= exp

(S)
·P −P =S ·P + (terms of degree > 1),

and a similar computation manages the R case. �
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2.5. Some Further Comments.

2.5.1. Compatibility with Braid Operations. As with any new gadget, we would like to know
how compatible the expansion Z of the previous section is with the gadgets we already
have; namely, with various operations that are available on w-braids and with the action of
w-braids on the free group Fn (Section

subsubsec:McCoolsubsubsec:McCool
2.2.3).

wBn
θ //

Z
��

wBn

Z
��

Aw
n θ

// Aw
n

	

par:theta

2.5.1.1. Z is Compatible with Braid Inversion. Let θ denote both the
“braid inversion” operation θ : wBn → wBn defined by B 7→ B−1 and the
“antipode” anti-automorphism θ : Aw

n → A
w
n defined by mapping permu-

tations to their inverses and arrows to their negatives (that is, aij 7→ −aij).
Then the diagram on the right commutes.

wBn
∆ //

Z
��

wBn × wBn

Z×Z
��

Aw
n ∆

// Aw
n ⊗A

w
n

	

par:Delta

2.5.1.2. Braid Cloning and the Group-Like Property. Let ∆ denote
both the “braid cloning” operation ∆ : wBn → wBnwBn defined
by B 7→ (B,B) and the “co-product” algebra morphism ∆ : Aw

n →
Aw

n ⊗A
w
n defined by cloning permutations (that is, τ 7→ τ ⊗ τ) and

by treating arrows as primitives (that is, aij 7→ aij ⊗ 1 + 1 ⊗ aij).
Then the diagram on the right commutes. In formulas, this is ∆(Z(B)) = Z(B) ⊗ Z(B),
which is the statement “Z(B) is group-like”.

wBn
ι //

Z

��

wBn+1

Z
��

Aw
n ι

// Aw
n+1

	

par:iota

2.5.1.3. Strand Insertions. Let ι : wBn → wBn+1 be an operation of
“inert strand insertion”. Given B ∈ wBn, the resulting ιB ∈ wBn+1

will be B with one strand S added at some location chosen in advance
— to the left of all existing strands, or to the right, or starting from
between the 3rd and the 4th strand of B and ending between the 6th and
the 7th strand of B; when adding S, add it “inert”, so that all crossings on it are virtual (this
is well defined). There is a corresponding inert strand addition operation ι : Aw

n → A
w
n+1,

obtained by adding a strand at the same location as for the original ι and adding no arrows.
It is easy to check that Z is compatible with ι; namely, that the diagram on the right is
commutative.

wBn

dk //

Z

��

wBn−1

Z
��

Aw
n dk

// Aw
n−1

	

2.5.1.4. Strand Deletions. Given k between 1 and n, let dk : wBn →
wBn−1 the operation of “removing the kth strand”. This operation
induces a homonymous operation dk : Aw

n → A
w
n−1: if D ∈ Aw

n is an
arrow diagram, dkD is D with its kth strand removed if no arrows in D
start or end on the kth strand, and it is 0 otherwise. It is easy to check
that Z is compatible with dk; namely, that the diagram on the right is
commutative.14

14Using the language of Section
subsec:Projectivizationsubsec:Projectivization
4.2, “dk : wBn → wBn−1” is an algebraic structure made of two spaces

(wBn and wBn−1), two binary operations (braid composition in wBn and in wBn−1), and one unary opera-
tion, dk. After projectivization we get the algebraic structure dk : Aw

n → A
w
n−1 with dk as described above,

and an alternative way of stating our assertion is to say that Z is a morphism of algebraic structures. A
similar remark applies (sometimes in the negative form) to the other operations discussed in this section.

19



D
R
A
F
T

Fn V
Z

��

wBn

Z
��

FAn V Aw
n

	

par:action

2.5.1.5. Compatibility with the action on Fn. Let FAn denote the (degree-
completed) free associative (but not commutative) algebra on generators
x1, . . . , xn. Then there is an “expansion” Z : Fn → FAn defined by
ξi 7→ exi (see

Lin:Expansions
[Lin] and the related “Magnus Expansion” of

MagnusKarrasSolitar:CGT
[MKS]). Also,

there is a right action of Aw
n on FAn defined on generators by xiτ = xτi

for τ ∈ Sn and by xjaij = [xi, xj ] and xkaij = 0 for k 6= j and extended multiplicatively to
the rest of Aw

n and FAn.

Exercise 2.16. Using the language of Section
subsec:Projectivizationsubsec:Projectivization
4.2, verify that FAn = projFn and that when

the actions involved are regarded as instances of the algebraic structure “one monoid acting
on another”, we have that

(
FAnVAw

n

)
= proj

(
FnVwBn

)
. Finally, use the definition of the

action in (
eq:ConceptualPsieq:ConceptualPsi
14) and the commutative diagrams of paragraphs

par:thetapar:theta
2.5.1.1,

par:Deltapar:Delta
2.5.1.2 and

par:iotapar:iota
2.5.1.3 to

show that the diagram of paragraph
par:actionpar:action
2.5.1.5 is also commutative.

k

+

+
k

:=

=: x+ y

k uk

uk

uk

figs/StrandDoubling

wBn

uk //

Z

��

wBn+1

Z
��

Aw
n uk

// Aw
n+1

6	

2.5.1.6. Unzipping a Strand. Given k between 1 and n, let uk : wBn →
wBn+1 the operation of “unzipping the kth strand”, briefly defined on
the right15. The induced operation uk : Aw

n → A
w
n+1 is also shown on

the right — if an arrow starts (or ends) on the strand being doubled,
it is replaced by a sum of two arrows that start (or end) on either
of the two “daughter strands” (and this is performed for each arrow
independently; so if there are t arrows touching the kth strands in a
diagram D, then ukD will be a sum of 2t diagrams).

In some sense, this whole paper as well as the work of Kashiwara
and Vergne

KashiwaraVergne:Conjecture
[KV] and Alekseev and Torossian

AlekseevTorossian:KashiwaraVergne
[AT] is about coming to

grips with the fact that Z is not compatible with uk (that the diagram
on the right is not commutative). Indeed, let x := a13 and y := a23 be
as on the right, and let s be the permutation 21 and τ the permutation
231. Then d1Z(!) = d1(e

a12s) = ex+yτ while Z(d1!) = eyexτ . So
the failure of d1 and Z to commute is the ill-behaviour of the exponential function when its
arguments are not commuting, which is measured by the BCH formula, central to both

KashiwaraVergne:Con
[KV]

and
AlekseevTorossian:KashiwaraVergne
[AT].

2.5.2. Power and Injectivity. The following theorem is due to Berceanu and Papadima
BerceanuPapadima:B
[BP,

Theorem 5.4]; a variant of this theorem are also true for ordinary braids
Bar-Natan:Homotopy, Kohno:deRham,
[BN2, Ko, HM],

and can be proven by similar means:

Theorem 2.17. Z : wBn → A
w
n is injective. In other words, finite type invariants separate

w-braids.

Proof. Follows immediately from the faithfulness of the action FnVwBn, from the com-
patibility of Z with this action, and from the injectivity of Z : Fn → FAn (the latter is
well known, see e.g.

MagnusKarrasSolitar:CGT, Lin:Expansions
[MKS, Lin]). Indeed if B1 and B2 are w-braids and Z(B1) = Z(B2),

then Z(ξ)Z(B1) = Z(ξ)Z(B2) for any ξ ∈ Fn, therefore ∀ξ Z(ξ �B1) = Z(ξ �B2), therefore
∀ξ ξ �B1 = ξ �B2, therefore B1 = B2.

15Unzipping a knotted zipper turns a single band into two parallel ones. This operation is also known as
“strand doubling”, but for compatibility with operations that will be introduced later, we prefer “unzipping”.
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Remark 2.18. Apart from the obvious, that Aw
n can be computed degree by degree in ex-

ponential time, we do not know a simple formula for the dimension of the degree m piece
of Aw

n or a natural basis of that space. This compares unfavourably with the situation for
ordinary braids (see e.g.

Bar-Natan:Braids
[BN5]). Also compare with Problem

prob:wCombingprob:wCombing
2.9 and with Remark

rem:GutierrezKrsticrem:GutierrezKrstic
2.10.

2.5.3. Uniqueness. There is certainly not a unique expansion for w-braids — if Z1 is an
expansion and and P is any degree-increasing linear map Aw → Aw (a “pollution” map),
then Z2 := (I + P ) ◦ Z1 is also an expansion, where I : Aw → Aw is the identity. But that’s
all, and if we require a bit more, even that freedom disappears.

Proposition 2.19. If Z1,2 : wBn → A
w
n are expansions then there exists a degree-increasing

linear map P : Aw → Aw so that Z2 := (I + P ) ◦ Z1.

Proof. (Sketch). Let ŵBn be the unipotent completion of wBn. That is, let QwBn be the
algebra of formal linear combinations of w-braids, let I be the ideal in QwBn be the ideal
generated by Q = !−P and by R = P−", and set

ŵBn := lim←−m→∞QwBn /I
m .

ŵBn is filtered with FmŵBn := lim←−m′>mI
m
/
Im

′

. An “expansion” can be re-interpreted as

an “isomorphism of ŵBn and Aw
n as filtered vector spaces”. Always, any two isomorphisms

differ by an automorphism of the target space, and that’s the essence of I + P . �

Proposition 2.20. If Z1,2 : wBn → A
w
n are homomorphic expansions that commute with

braid cloning (paragraph
par:Deltapar:Delta
2.5.1.2) and with strand insertion (paragraph

par:iotapar:iota
2.5.1.3), then Z1 =

Z2.

Proof. (Sketch). A homomorphic expansion that commutes with strand insertions is
determined by its values on the generators !, " and P of wB2. Commutativity with braid
cloning implies that these values must be (up to permuting the strands) group like, that is,
the exponentials of primitives. But the only primitives are a12 and a21, and one may easily
verify that there is only one way to arrange these so that Z will respect P2 = ! ·" = 1 andQ 7→ S + (higher degree terms). �

NEW
subsubsec:NonHorRings

2.5.4. The group of non-horizontal flying rings. Let Yn denote the space of all placements of n
numbered disjoint oriented unlinked geometric circles in R3. Such a placement is determined
by the centers in R3 of the circles, the radii, and a unit normal vector for each circle pointing
in the positive direction, so dimYn = 3n + n + 3n = 7n. Sn ⋉ Zn

2 acts on Yn by permuting
the circles and mapping each circle to its image in either an orientation-preserving or an
orientation-reversing way. Let Ỹn denote the quotient Yn/Sn ⋉ Zn

2 . The fundamental group

π1(Ỹn) can be thought of as the “group of flippable flying rings”. Without loss of generality,
we can assume that the basepoint is chosen to be a horizontal placement. We want to study
the relationship of this group to wBn.

Theorem 2.21. π1(Ỹn) is a Zn
2 -extension of wBn, generated by si, σi and wi (“flips”), for

i = 1, ..., n; with the relations as above, and in addition:

w2
i = 1, wiwj = wjwi, wisj = sjwi, (16)

wiσj = σjwi if i 6= j, but wiσj = sjσ
−1
j sjwi. (17) eq:FlipCross
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The two interesting flip relations in pictures:

yet

w

i j

==
w

i j

w

i j
i j

w

i

wwi =

Instead of a proof, we provide some heuristics. Since each circle
starts out in a horizontal position and returns to a horizontal position,
there is an integer number of “flips” they do in between, these are the
generators wi, as shown on the right.

The first line of relations are obvious: two consecutive flips return
the ring to its original position; flips of different rings commute, and if two rings fly around
each other and one of them flips, the order of these moves can be switched by homotopy.

The only subtle point is how flips interact with crossings. First of all, if one ring flies
through another while a third one flips, the order clearly does not matter. If a ring flies
through another and also flips, the order can be switched. The first two observations com-
bined give the first relation of

eq:FlipCrosseq:FlipCross
17. However, if ring A flips and then ring B flies through it,

this is homotopic to ring B flying through ring A from the other direction and then ring A
flipping. In other words, commuting σi with wi changes the “sign of the crossing” in the
sense of Exercise

ex:swBnex:swBn
2.7. This gives the last, and the only non-trivial flip relation.

To explain why the flip is denoted by w, let us consider the alternative descrip-
tion by ribbon tubes. A flipping ring traces a so called wen16 in R4. A wen is a
Klein bottle cut along a meridian circle, as shown. The wen is embedded in R4.

Finally, note that π1Yn is exactly the pure w-braid group wPBn: since each ring
has to return to its original position and orientation, each does an even number
of flips. The flips (or wens) can all be moved to the bottoms of the braid diagram
strands (to the bottoms of the tubes, to the beginning of words), at a possible
cost, as specified by Equation

eq:FlipCrosseq:FlipCross
17. Once together, they pairwise cancel each other.

As a result, this group can be thought of as not containing wens at all. END NEW
NEW

2.5.5. The Relationship with u-Braids. MORE. For the sake of ignoring strand permutations,
we restrict our attention to pure braids.

PuBn

PwBn

Au
n

Aw
n

Zw

Zu

α

By Section
subsubsec:FTAlgebraicsubsubsec:FTAlgebraic
2.3.2, for any expansion Zu : PuBn → A

u
n (where PuBn

stands for the “usual” braid group and Au
n is the algebra of horizontal

chord diagrams on n strands), there is a square of maps as shown on
the right, where Zw is the expansion constructed in Section

subsec:wBraidExpansionsubsec:wBraidExpansion
2.4, the

left horizontal map is the composition of the inclusion and projection
maps PuBn → PvBn → PwBn, and α maps each chord to the sum of its two possible
directed versions.

Note that this square is not commutative for any choice of Zu even in degree 2: END
NEW

16The term wen was coined by kanenobu and Shima in
KanenobuShima:TwoFiltrationsR2K
[KS]
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3. w-Knots
sec:w-knots

Section Summary. We define v-knots and w-knots (long v-knots and long w-
knots, to be precise). We determine the space of “chord diagrams” for w-knots to

be the space Aw(↑) of arrow diagrams modulo
−→
4T and TC relations. We show that

Aw(↑) can be re-interpreted as a space of trivalent graphs modulo STU- and IHX-
like relations, and this allows us to completely determine Aw(↑). With no difficulty
at all we construct a universal finite type invariant for w-knots. With a bit of
further difficulty we show that it is essentially equal to the Alexander polynomial.

Knots are the wrong object for study in knot theory, v-knots are the wrong object
for study in the theory of v-knotted objects and w-knots are the wrong object for study in
the theory of w-knotted objects. Studying uvw-knots on their own is the parallel of studying
cakes and pastries as they come out of the bakery — we sure want to make them our own, but
the theory of deserts is more about the ingredients and how they are put together than about
the end products. In algebraic knot theory this reflects through the fact that knots are not
finitely generated in any sense (hence they must be made of some more basic ingredients),
and through the fact that there are very few operations defined on knots (connected sums
and satellite operations being the main exceptions), and thus most interesting properties of
knots are transcendental, or non-algebraic, when viewed from within the algebra of knots
and operations on knots

Bar-Natan:AKT-CFA
[BN8].

The right objects for study in knot theory, or v-knot theory or w-knot theory, are thus
the ingredients that make up knots and that permit a richer algebraic structure. These are
braids, studied in the previous section, and even more so tangles and tangled graphs, studied
in the following sections. Yet tradition has its place and the sweets are tempting, and I feel
compelled to introduce some of the tools we will use in the deeper and healthier study of
w-tangles and w-tangled graphs in the limited but tasty arena of the baked goods of knot
theory, the knots themselves.
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figs/VKnot

Figure 5. A long v-knot diagram with 2 virtual crossings, 2 positive crossings and 2 negative

crossings. A positive-negative pair can easily be canceled using R2, and then a virtual crossing

can be canceled using VR1, and it seems that the rest cannot be simplified any further. fig:VKnot

6=

=
w
= 6=

M OC UC

= = = = =

R2 R3 VR1 VR2 VR3R1

figs/VKnotRels

Figure 6. The relations defining v-knots and w-knots, along with two relations that are not

imposed. fig:VKnotRels

subsec:VirtualKnots
3.1. v-Knots and w-Knots. v-Knots may be understood either as knots drawn on sur-
faces modulo the addition or removal of empty handles

Kauffman:VirtualKnotTheory, Kuperberg:VirtualLink
[Ka2, Kup] or as “Gauss diagrams”

(Remark
rem:GDrem:GD
3.4), or simply “unimbedded but wired together” crossings modulo the Reidemeis-

ter moves (
Kauffman:VirtualKnotTheory, Roukema:GPV
[Ka2, Rou] and Section

subsec:CircuitAlgebrassubsec:CircuitAlgebras
4.4). But right now we forgo the topological and the

abstract and give only the “planar” (and somewhat less philosophically satisfying) definition
of v-knots.

Definition 3.1. A “long v-knot diagram” is an arc smoothly drawn in the plane from −∞
to +∞, with finitely many self-intersections, divided into “virtual crossings” P and over- and
under-crossings, ! and ", and regarded up to planar isotopy. A picture is worth more than
a more formal definition, and one appears in Figure

fig:VKnotfig:VKnot
5. A “long v-knot” is an equivalence

class of long v-knot diagrams, modulo the equivalence generated by the Reidemeister 2 and
3 moves (R2 and R3), the virtual Reidemeister 1 through 3 moves (VR1 through VR3), and
by the mixed relations (M); all these are shown in Figure

fig:VKnotRelsfig:VKnotRels
6. Finally, “long w-knots” are

obtained from long v-knots by also dividing by the Overcrossings Commute (OC) relation,
also shown in Figure

fig:VKnotRelsfig:VKnotRels
6. Note that we never mod out by the Reidemeister 1 (R1) move or by

the Undercrossings Commute relation (UC).

Definition and Warning 3.2. A “circular v-knot” is like a long v-knot, except parametrized
by a circle rather than by a long line. Unlike the case of ordinary knots, circular v-knots are
not equivalent to long v-knots. The same applies to w-knots.

Definition and Warning 3.3. Long v-knots form a monoid using the concatenation oper-
ation #. Unlike the case of ordinary knots, the resulting monoid is not Abelian. The same
applies to w-knots.

rem:GD Remark 3.4. A “Gauss diagram” is a straight “skeleton line” along with signed directed
chords (signed “arrows”) marked along it (more at

Kauffman:VirtualKnotTheory, GoussarovPolyakViro:Virtua
[Ka2, GPV]). Gauss diagrams are in an
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L,−: R,+: R,−:L,+:

figs/Kinks

Figure 7. The positive and negative under-then-over kinks (left), and the positive and

negative over-then-under kinks (right). In each pair the negative kink is the #-inverse of the

positive kink. fig:Kinks

obvious bijection with long v-knot diagrams; the skeleton line of a Gauss diagram corresponds
to the parameter space of the v-knot, and the arrows correspond to the crossings, with each
arrow heading from the upper strand to the lower strand, marked by the sign of the relevant
crossing:

2 3 4 1 2 4 31

−
+ +

−

2 4 31

figs/GDExample

One may also describe the relations in Figure
fig:VKnotRelsfig:VKnotRels
6 as well as circular v-knots and other types

of v-knots (as we will encounter later) in terms of Gauss diagrams with varying skeletons.

Remark 3.5. Since we do not mod out by R1, it is perhaps more appropriate to call our class
of v-knots “framed long v-knots”, but since we care more about framed v-knots than about
unframed ones, we reserve the unqualified name for the framed case, and when we do wish
to mod out by R1 we will explicitly write “unframed long v-knots”. This said, note that
the monoid of long v-knots is just a central extension by Z2 of the monoid of unframed long
v-knots, and so studying the framed case is not very different from studying the unframed
case. Indeed the four “kinks” of Figure

fig:Kinksfig:Kinks
7 generate a central Z2 within long v-knots, and it

is not hard to show that the sequence

1 −→ Z2 −→ {long v-knots} −→ {unframed long v-knots} −→ 1 (18) eq:FramedAndUnframed

is split and exact. The same applies to w-knots.

ex:sl Exercise 3.6. Show that a splitting of the sequence (
eq:FramedAndUnframedeq:FramedAndUnframed
18) is given by the “self-linking” invari-

ants sl = (slL, slR) : {long v-knots} → Z2 defined by

slL(K) :=
∑

left crossings
x in D

sign x and slR(K) :=
∑

right crossings
x in D

sign x,

where D is a v-knot diagram, a “left crossing” (“right crossing”) is a crossing in which when
traversing D, the lower strand is visited before (after) the upper strand, and the sign of a
crossing x is defined so as to agree with the signs in Figure

fig:Kinksfig:Kinks
7.

Remark 3.7. w-Knots are strictly weaker than v-knots — a notorious example is the Kishino
knot (e.g.

Dye:Kishinos
[Dye]) which is non-trivial as a v-knot yet both it and its mirror are trivial as

w-knots. Yet ordinary knots inject even into w-knots, as the Wirtinger presentation makes
sense for w-knots and therefore w-knots have a “fundamental quandle” which generalizes the
fundamental quandle of ordinary knots

Kauffman:VirtualKnotTheory
[Ka2], and as the fundamental quandle of ordinary

knots separates ordinary knots
Joyce:TheKnotQuandle
[Joy].
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Following Satoh
Satoh:RibbonTorusKnots
[Sa] and using the same constructions as in Section

subsubsec:ribbonsubsubsec:ribbon
2.2.2, we can map w-

knots to (“long”) ribbon tubes in R4 (and the relations in Figure
fig:VKnotRelsfig:VKnotRels
6 still hold). It is natural to

expect that this map is an isomorphism; in other words, that the theory of w-knots provides
a “Reidemeister framework” for long ribbon tubes in R4 — that every long ribbon tube is
in the image of this map and that two “w-knot diagrams” represent the same long ribbon
tube iff they differ by a sequence of moves as in Figure

fig:VKnotRelsfig:VKnotRels
6. This remains unproven, though

very similar theorem about ribbon 2-spheres in R4 was proven by Winter
Winter:RibbonEmbeddings
[Win]. It is likely

that Winter’s techniques are sufficient to give a Reidemeister framework for w-knots and for
all other classes of w-knotted objects studied elsewhere in this paper.
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+ +

++= figs/ADand6T

Figure 8. An arrow diagram of degree 6 and a 6T relation. fig:ADand6T

+

+=

=

and

figs/TCand4TForKnots

Figure 9. The TC and the
−→
4T relations for knots. fig:TCand4TForKnots

3.2. Finite Type Invariants of v-Knots and w-Knots. Much as for v-braids and w-
braids (Section

subsec:FT4Braidssubsec:FT4Braids
2.3) and much as for ordinary knots (e.g.

Bar-Natan:OnVassiliev
[BN1]) we define finite type in-

variants for v-knots and for w-knots using an alternation scheme with Q → ! − P andR→ P−". That is, we extend any Abelian-group-valued invariant of v- or w-knots to v- or
w-knots also containing “semi-virtual crossings” like Q and R using the above assignments,
and we declare an invariant “of type m” if it vanishes on v- or w-knots with more than m
semi-virtuals. As for v- and w-braids and as for ordinary knots, such invariants have an
“mth derivative”, their “weight system”, which is a linear functional on the space Av(↑) (for
v-knots) or Aw(↑) (for w-knots). We turn to the definition of these spaces:

def:ArrowDiagrams Definition 3.8. An “arrow diagram” is a chord diagram along a long line (called “the
skeleton”), in which the chords are oriented (hence “arrows”). An example is in Figure

fig:ADand6Tfig:ADand6T
8.

Let Dv(↑) be the space of formal linear combinations of “arrow diagrams”. Let Av(↑) be
Dv(↑) modulo all “6T relations”, where a 6T relation is any (signed) combination of arrow
diagrams obtained from the diagrams in Figure

fig:6Tfig:6T
3 by placing the 3 vertical strands there along

a long line in any order, and possibly adding some further arrows in between. An example
is in Figure

fig:ADand6Tfig:ADand6T
8. Let Aw(↑) be the further quotient of Av(↑) by the “Tails Commute” (TC)

relation, first displayed in Figure
fig:TCand4Tfig:TCand4T
4 and reproduced for the case of a long-line skeleton in

Figure
fig:TCand4TForKnotsfig:TCand4TForKnots
9. Alternatively, Aw(↑) is the space of formal linear combinations of arrow diagrams

modulo TC and
−→
4T relations, displayed in Figures

fig:TCand4Tfig:TCand4T
4 and

fig:TCand4TForKnotsfig:TCand4TForKnots
9. Finally, grade Dv(↑), Av(↑), and

Aw(↑) by declaring that the degree of an arrow diagram is the number of arrows in it.

As an example, the spaces Av(↑) and Aw(↑) restricted to degrees up to 2 are studied in
detail in Section

subsec:ToTwosubsec:ToTwo
7.5.
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In the same manner as in the theory of finite type invariants of ordinary knots (see es-
pecially

Bar-Natan:OnVassiliev
[BN1, Section 3], the spaces Av,w(↑) carry much algebraic structure. The obvious

juxtaposition product makes them into graded algebras. The product of two finite type
invariants is a finite type invariant (whose type is the sum of the types of the factors); this
induces a product for weight systems, and therefore a co-product ∆ on arrow diagrams. In
brief (and much the same as in the usual finite type story), the co-product ∆D of an arrow
diagram D is the sum of all ways of dividing the arrows in D between a “left co-factor” and
a “right co-factor”. In summary,

prop:CoarseStructure Proposition 3.9. Av(↑) and Aw(↑) are co-commutative graded bi-algebras.

By the Milnor-Moore theorem
MilnorMoore:Hopf
[MM] we find that Av(↑) and Aw(↑) are the universal

enveloping algebras of their Lie algebras of primitive elements. Denote these (graded) Lie
algebras by Pv(↑) and Pw(↑).

When I grow up I’d like to understand Av(↑). At the moment I know only very little
about it beyond the generalities of Proposition

prop:CoarseStructureprop:CoarseStructure
3.9: in the next section some dimensions of

low degree parts of Av(↑) are displayed, and given a finite dimensional Lie bialgebra and
a finite dimensional representation thereof, we know how to construct linear functionals on
Av(↑) (one in each degree)

Haviv:DiagrammaticAnalogue, Leung:CombinatorialFormulas
[Hav, Leu]. But we don’t even know which degree m linear

functionals on Av(↑) are the weight systems of degree m invariants of v-knots (that is, we
have not solved the “Fundamental Problem”

Bar-NatanStoimenow:Fundamental
[BS] for v-knots).

As we shall see below, the situation is much brighter for Aw(↑).
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subsec:SomeDimensions
3.3. Some Dimensions. The table below lists what we could find about Av and Aw by
crude brute force computations in low degrees. We list degrees 0 through 7. The spaces we
study are A−(↑), Ar−(↑) which is A−(↑) moded out by “short” arrows 17, P−(↑) which is the
space of primitives in A−(↑), and A−(©) and Ar−(©), which are the same as A−(↑) and
Ar−(↑) except with closed knots (knots with a circle skeleton) replacing long knots. Each of
these spaces we study in three variants: the “v” and the “w” variants, as well as the usual
knots “u” variant which is here just for comparison. We also include a row “dimGmLie

−(↑)”
for the dimensions of “Lie-algebraic weight systems”. Those are not explained here; for
details, see

Bar-Natan:OnVassiliev, Haviv:DiagrammaticAnalogue, Leung:CombinatorialFormulas
[BN1, Hav, Leu].

See Section
subsec:ToTwosubsec:ToTwo
7.5

m 0 1 2 3 4 5 6 7 Comments

dimGmA
−(↑)

u | v
w

1 | 1
1

1 | 2
2

2 | 7
4

3 | 27
7

6 | 139
12

10 |?
19

19 |?
30

33 |?
45

com:uknotscom:uknots
1 |

com:longvcom:longv
2

com:wknotscom:wknots
3,

com:longwcom:longw
4

dimGmLie
−(↑)

u | v
w

1 | 1
1

1 | 2
2

2 | 7
4

3 | 27
7

6 | ≥128
12

10 |?
19

19 |?
30

33 |?
45

com:uknotscom:uknots
1 |

com:Liecom:Lie
5

com:wLiecom:wLie
6

dimGmA
r−(↑)

u | v
w

1 | 1
1

0 | 0
0

1 | 2
1

1 | 7
1

3 | 42
2

4 |?
2

9 |?
4

14 |?
4

com:uknotscom:uknots
1 |

com:fiwarningcom:fiwarning
7

com:wknotscom:wknots
3,

com:nextfewcom:nextfew
8

dimGmP
−(↑)

u | v
w

0 | 0
0

1 | 2
2

1 | 4
1

1 | 15
1

2 | 82
1

3 |?
1

5 |?
1

8 |?
1

com:uknotscom:uknots
1 |

com:Pvcom:Pv
9

com:wknotscom:wknots
3

dimGmA
−(©)

u | v
w

1 | 1
1

1 | 1
1

2 | 2
1

3 | 5
1

6 | 19
1

10 | 77
1

19 |?
1

33 |?
1

com:uknotscom:uknots
1 |

com:closedvcom:closedv
10
com:wknotscom:wknots
3

dimGmA
r−(©)

u | v
w

1 | 1
1

0 | 0
0

1 | 0
0

1 | 1
0

3 | 4
0

4 | 17
0

9 |?
0

14 |?
0

com:uknotscom:uknots
1 |

com:closedvcom:closedv
10
com:wknotscom:wknots
3

com:uknots Comments 3.10. (1) Much more is known computationally on the u-knots case. See
especially

Bar-Natan:OnVassiliev, Bar-Natan:Computations, Kneissler:Twelve, Amir-KhosraviSankaran:
[BN1, BN4, Kn, AS].

com:longv (2) These dimensions were computed by Louis Leung and myself using a program avail-
able at

Bar-Natan:WKO
[BN0, “Dimensions”]. Degree 5 is probably also within reach but we have not

attempted to optimize our program.
com:wknots (3) As we shall see in Section

subsec:Jacobisubsec:Jacobi
3.5, the spaces associated with w-knots are understood to

all degrees.
com:longw (4) To degree 4, these numbers were also verified by

Bar-Natan:WKO
[BN0, “Dimensions”].

com:Lie (5) These dimensions were computed by Louis Leung and myself using a program avail-
able at

Bar-Natan:WKO
[BN0, “Arrow Diagrams and gl(N)”]. Note the match with the row above,

and note that the degree 4 computation is still on going.
com:wLie (6) See Section

subsec:LieAlgebrassubsec:LieAlgebras
3.6.

com:fiwarning (7) These numbers were computed by
Bar-Natan:WKO
[BN0, “Dimensions”]. Contrary to the Au case,

Arv is not the quotient of Av by the ideal generated by degree 1 elements, and
therefore the dimensions of the graded pieces of these two spaces cannot be deduced
from each other using the Milnor-Moore theorem.

com:nextfew (8) The next few numbers in this sequence are 7,8,12,14,21.

17That is, Ar−(↑) is A−(↑) modulo “Framing Independence” (FI) relations
Bar-Natan:OnVassiliev
[BN1]. It is the space related

to finite type invariants of unframed knots, on which the first Reidemeister move is also imposed) in the
same way as A−(↑) is related to framed knots.
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com:Pv (9) These dimensions were deduced from the dimensions of GmA
v(↑) using the Milnor-

Moore theorem.
com:closedv (10) Computed by

Bar-Natan:WKO
[BN0, “Dimensions”]. Contrary to the Au case, Av(©) and Arv(©)

are not isomorphic to Av(↑) and Arv(↑) and separate computations are required.
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3.4. Expansions for w-Knots. The notion of “an expansion” (or “a universal finite type
invariant”) for w-knots (or v-knots) is defined in complete analogy with the parallel notion for
ordinary knots (e.g.

Bar-Natan:OnVassiliev
[BN1]), except replacing double points ( ) with semi-virtual crossings

(Q and R) and replacing chord diagrams by arrow diagrams. Alternatively, it is the same as
an expansion for w-braids (Definition

def:vwbraidexpansiondef:vwbraidexpansion
2.11), with the obvious replacement of w-braids by w-

knots. Just as in the cases of ordinary knots and/or w-braids, the existence of an expansion
Z : {w-knots} → Aw(↑) is equivalent to the statement “every weight system integrates”,
i.e., “every degree m linear functional on Aw(↑) is the mth derivative of a type m invariant
of long w-knots”.

thm:ExpansionForKnots Theorem 3.11. There exists an expansion Z : {w-knots} → Aw(↑).

Proof. It is best to define Z by an example, and it is best to display the example only as
a picture:

1 2 3 4 1 2 4 3

Z = =
e−a ea

ea e−a
e−a

ea ea

e−aea

21 4 3

e−a

figs/ZwKnotsExample

It is clear how to define Z(K) in the general case — for every crossing in K place an
exponential reservoir of arrows (compare with (

eq:reservoireq:reservoir
15)) next to that crossing, with the arrows

heading from the upper strand to the lower strand, taking positive reservoirs (ea, with
a symbolizing the arrow) for positive crossings and negative reservoirs (e−a) for negative
crossings, and then tug the skeleton until it looks like a straight line. Note that the Tails
Commute relation in Aw is used to show that all reasonable ways of placing an arrow reservoir
at a crossing (with its heading and sign fixed) are equivalent:

= = =
ea

ea

ea
ea

figs/FourWays

The same proof that shows the invariance of Z in the braids case (Theorem
thm:RInvariancethm:RInvariance
2.15) works

here as well, and the same argument as in the braids case shows the universality of Z. �

rem:ZwForGD Remark 3.12. Using the language of Gauss diagrams (Remark
rem:GDrem:GD
3.4) the definition of Z is even

simpler. Simply map every positive arrow in a Gauss diagram to a positive (ea) reservoir,
and every negative one to a negative (e−a) reservoir:

Z−
+ +

− e−a
ea ea

e−a

figs/ZwForGD

An expansion (a universal finite type invariant) is as interesting as its target space, for it
is just a tool that takes linear functionals on the target space to finite type invariants on its
domain space. The purpose of the next section is to find out how interesting is our present
target space, Aw(↑).
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lr

figs/wJacDiag

Figure 10. A w-Jacobi diagram on a long line skeleton of degree 11. It has a skeleton line

at the bottom, 13 vertices along the skeleton (of which 2 are incoming and 11 are outgoing),

9 internal vertices (with only one explicitly marked with “left” (l) and “right” (r)) and one

bubble. The four quadrivalent vertices that seem to appear in the diagram are just projection

artifacts and graph-theoretically, they don’t exist. fig:wJacDiag

subsec:Jacobi
3.5. Jacobi Diagrams, Trees and Wheels. In studying Aw(↑) we again follow the model
set by ordinary knots. Compare the following definitions and theorem with

Bar-Natan:OnVassiliev
[BN1, Section 3].

def:wJac Definition 3.13. A “w-Jacobi diagram on a long line skeleton”18 is a connected graph made
of the following ingredients:

• A “long” oriented “skeleton” line. We usually draw the skeleton line a bit thicker for
emphasis.
• Other directed edges, sometimes called “arrows”.
• Trivalent “skeleton vertices” in which an arrow starts or ends on the skeleton line.
• Trivalent “internal vertices” in which two arrows end and one arrow begins. The
internal vertices are “oriented” — of the two arrows that end in an internal vertices,
one is marked as “left” and the other is marked as “right”. In reality when a diagram
is drawn in the plane, we almost never mark “left” and “right”, but instead assume
the “left” and “right” inherited from the plane, as seen from the outgoing arrow from
the given vertex.

Note that we allow multiple arrows connecting the same two vertices (though at most two
are possible, given connectedness and trivalence) and we allow “bubbles” — arrows that
begin and end in the same vertex. Note that for the purpose of determining equality of
diagrams the skeleton line is distinguished. The “degree” of a w-Jacobi diagram is half the
number of trivalent vertices in it, including both internal and skeleton vertices. An example
of a w-Jacobi diagram is in Figure

fig:wJacDiagfig:wJacDiag
10.

Definition 3.14. Lat Dwt(↑) be the graded vector space of formal linear combinations of

w-Jacobi diagrams on a long line skeleton, and let Awt(↑) be Dwt(↑) modulo the “
−−−→
STU1,2”

and TC relations of Figure
fig:aSTUfig:aSTU
11. Note that that each diagram appearing in each

−−−→
STU relation

has a “central edge” e which can serve as an “identifying name” for that
−−−→
STU . Thus given

a diagram D with a marked edge e which is either on the skeleton or which contacts the

skeleton, there is an unambiguous
−−−→
STU relation “around” or “along” the edge e.

I like to call the following theorem “the bracket-rise theorem”, for it justifies the intro-

duction of internal vertices, and as should be clear from the
−−−→
STU relations and as will

18What a mouthful! We usually short this to “w-Jacobi diagram”, or sometimes “arrow diagram” or just
“diagram”.
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= − = −

−−−→

STU1:
−−−→

STU2:
e

e

e

e
e

e

= −0
−−−→

STU3 =TC:

e

e figs/aSTU

Figure 11. The
−−−→
STU1,2 and TC relations with their “central edges” marked e. fig:aSTU

= −

−−−→

IHX: e e

e

−→

AS: 0 = +

l r r l

figs/aIHX

Figure 12. The
−→
AS and

−−−→
IHX relations. fig:aIHX

become even clearer in Section
subsec:LieAlgebrassubsec:LieAlgebras
3.6, internal vertices can be viewed as “brackets”. Two other

bracket-rise theorems are Theorem 6 of
Bar-Natan:OnVassiliev
[BN1] and Ohtsuki’s theorem, Theorem 4.9 of

Polyak:ArrowDiagram
[Po].

thm:BracketRise Theorem 3.15 (bracket-rise). The obvious inclusion ι : Dv(↑)→ Dwt(↑) of arrow diagrams
(Definition

def:ArrowDiagramsdef:ArrowDiagrams
3.8) into w-Jacobi diagrams descends to the quotient Aw(↑) and induces an iso-

morphism ῑ : Aw(↑)
∼
−→ Awt(↑). Furthermore, the

−→
AS and

−−−→
IHX relations of Figure

fig:aIHXfig:aIHX
12 hold

in Awt(↑).

Proof. The proof, joint with D. Thurston, is modeled after the proof of Theorem 6

of
Bar-Natan:OnVassiliev
[BN1]. To show that ι descends to Aw(↑) we just need to show that in Awt(↑),

−→
4T follows

from
−−−→
STU1,2. Indeed, applying

−−−→
STU1 along the edge e1 and

−−−→
STU2 along e2 in the picture

below, we get the two sides of
−→
4T :

=

=

−

−

−−−→
STU1

−−−→
STU2

e2 e1

figs/STUto4T

(19) eq:STUto4T

The fact that ῑ is surjective is obvious; indeed, for diagrams in Awt(↑) that have no internal
vertices there is nothing to show, for they are really in Aw(↑). Further, by repeated use of
−−−→
STU1,2 relations, all internal vertices in any diagram in Awt(↑) can be removed (remember
that the diagrams in Awt(↑) are always connected, and in particular, if they have an internal
vertex they must have an internal vertex connected by an edge to the skeleton, and the latter
vertex can be removed first).

To complete the proof that ῑ is an isomorphism it is enough to show that the “elimination
of internal vertices” procedure of the last paragraph is well defined — that its output is

independent of the order in which
−−−→
STU1,2 relations are applied in order to eliminate internal
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vertices. Indeed, this done, the elimination map would by definition satisfy the
−−−→
STU1,2

relations and thus descend to a well defined inverse for ῑ.
On diagrams with just one internal vertex, Equation (

eq:STUto4Teq:STUto4T
19) shows that all ways of eliminating

that vertex are equivalent modulo
−→
4T relations, and hence the elimination map is well defined

on such diagrams.
Now assume that we have shown that the elimination map is well defined on all diagrams

with at most 7 internal vertices, and let D be a diagram with 8 internal vertices19. Let e
and e′ be edges in D that connect the skeleton of D to an internal vertex. We need to show
that any elimination process that begins with eliminating e yields the same answer, modulo
−→
4T , as any elimination process that begins with eliminating e′. There are several cases to
consider.

e e′

figs/CaseI

Case I. e and e′ connect the skeleton to different internal vertices of
D. In this case, after eliminating e we get a signed sum of two diagrams
with exactly 7 internal vertices, and since the elimination process is well
defined on such diagrams, we may as well continue by eliminating e′ in each of those, getting
a signed sum of 4 diagrams with 6 internal vertices each. On the other hand, if we start
by eliminating e′ we can continue by eliminating e, and we get the same signed sum of 4
diagrams with 6 internal vertices.

e e′ e′′

figs/CaseII

Case II. e and e′ are connected to the same internal vertex v of D,
yet some other edge e′′ exists in D that connects the skeleton of D to
some other internal vertex v′ in D. In that case, use the previous case
and the transitivity of equality: (elimination starting with e)=(elimination starting with
e′′)=(elimination starting with e′).

e
e′

f

figs/CaseIII

Case III. Case III is what remains if neither Case I nor Case II
hold. In that case, D must have a schematic form as on the right,
with the “blob” not connected to the skeleton other than via e or
e′, yet further arrows may exist outside of the blob. Let f denote
the edge connecting the blob to e and e′. The “two in one out”
rule for vertices implies that any part of a diagram must have an excess of incoming edges
over outgoing edges, equal to the total number of vertices in that diagram part. Applying
this principle to the blob, we find that it must contain exactly one vertex, and that f and
therefore e and e′ must all be oriented upwards.

f

e′e

figs/CaseIIIa

We leave it to the reader to verify that in this case the two ways of
applying the elimination procedure, e and then f or e′ and then f , yield

the same answer modulo
−→
4T (in fact, that answer is 0).

We also leave it to the reader to verify that
−−−→
STU 1 implies

−→
AS and

−−−→
IHX. Algebraically, these are restatements of the anti-symmetry of
the bracket and of Jacobi’s identity: if [x, y] := xy − yx, then 0 =
[x, y] + [y, x] and [x, [y, z]] = [[x, y], z]− [[x, z], y]. �

Note thatAwt(↑) inherits algebraic structure fromAw(↑): it is an algebra by concatenation
of diagrams, and a co-algebra with ∆(D), for D ∈ Dwt(↑), being the sum of all ways of

19“7” here is a symbol denoting an arbitrary natural number and “8” denotes 7 + 1.
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· · ·kwk =DL = DR =
figs/AwGenerators

Figure 13. The left-arrow diagram DL, the right-arrow diagram DR and the k-wheel wk. fig:AwGenerators

dividingD between a “left co-factor” and a “right co-factor” so that connected components of
D−S are kept intact, where S is the skeleton line of D (compare with

Bar-Natan:OnVassiliev
[BN1, Definition 3.7]).

As Aw(↑) and Awt(↑) are canonically isomorphic, from this point on we will not keep the
distinction between the two spaces.

thm:Aw Theorem 3.16. The bi-algebra Aw(↑) is the bi-algebra of polynomials in the diagrams DL,
DR and wk (for k ≥ 1) shown in Figure

fig:AwGeneratorsfig:AwGenerators
13, where degDL = degDR = 1 and degwk = k,

subject to the one relation w1 = DL −DR. Thus Aw(↑) has two generators in degree 1 and
one generator in every degree greater than 1, as stated in Section

subsec:SomeDimensionssubsec:SomeDimensions
3.3.

Proof. (sketch). Readers familiar with the diagrammatic PBW theorem
Bar-Natan:OnVassiliev
[BN1, Theorem 8]

will note that it has an obvious analogue for the Aw(↑) case, and that the proof in
Bar-Natan:OnVassiliev
[BN1]

carries through almost verbatim. Namely, the space Aw(↑) is isomorphic to a space Bw(⋆)

of “unitrivalent diagrams” with symmetrized univalent ends modulo
−→
AS and

−−−→
IHX. Given

the “two in one out” rule for arrow diagrams in Aw(↑) (and hence in Bw(⋆)) the connected
components of diagrams in Bw(⋆) can only be trees or wheels. Trees vanish if they have more
than one leaf, as their leafs are symmetric while their internal vertices are anti-symmetric, so
Bw(⋆) is generated by wheels (which become the wk’s in A

w(↑)) and by the one-leaf-one-root
tree, which is simply a single arrow, and which becomes the average of DL and DR. The

relation w1 = DL −DR is then easily verified using
−−−→
STU2.

One may also argue directly, without using sophisticated tools. In short, letD be a diagram
in Aw(↑) and S is its skeleton. Then D−S may have several connected components, whose

“legs” are intermingled along S. Using the
−−−→
STU relations these legs can be sorted (at a cost

of diagrams with fewer connected components, which could have been treated earlier in an
inductive proof). At the end of the sorting procedure one can see that the only diagrams
that remain are our declared generators. It remains to show that our generators are linearly
independent (apart for the relation w1 = DL −DR). For the generators in degree 1, simply
write everything out explicitly in the spirit of Section

subsubsec:DegreeOnesubsubsec:DegreeOne
7.5.2. In higher degrees there is only

one primitive diagram in each degree, so it is enough to show that wk 6= 0 for every k. This
can be done “by hand”, but it is more easily done using Lie algebraic tools. See Section

subsec:LieAlgebrassubsec:LieAlgebras
3.6.

�

Exercise 3.17. Show that the bi-algebra Arw(↑) (see Section
subsec:SomeDimensionssubsec:SomeDimensions
3.3) is the bi-algebra of polyno-

mials in the wheel diagrams wk (k ≥ 2).

thm:AwCirc Theorem 3.18. In Aw(©) all wheels vanish and hence the bi-algebra Aw(©) is the bi-
algebra of polynomials in a single variable DL = DR.

Proof. This is Lemma 2.7 of
Naot:BF
[Na]. In short, a wheel in Aw(©) can be reduced using

−−−→
STU 2

to a difference of trees. On of these trees has two adjoining leafs and hence is 0 by TC and
−→
AS. In the other two of the leafs can be commuted “around the circle” using TC until they
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are adjoining and hence vanish by TC and
−→
AS. A picture is worth a thousand words, but

sometimes it takes up more space. �

Exercise 3.19. Show that Arw(©) vanishes except in degree 0.

The following two exercises may help the reader to develop a better “feel” for Aw(↑)
and will be needed, within the discussion of the Alexander polynomial (especially within
Definition

def:InterpretationMapdef:InterpretationMap
3.32).

= 0

figs/CC

Exercise 3.20. Show that the “Commutators Commute” (CC) relation, shown
on the right, holds in Aw(↑). (Interpreted in Lie algebras as in the next
section, this relation becomes [[x, y], [z, w]] = 0, and hence the name “Com-
mutators Commute”). Note that the proof of CC depends on the skeleton
having a single component; later, when we will work with Aw-spaces with more complicated
skeleta, the CC relation will not hold.

W

h a i r

Y

figs/Hair

ex:Hair Exercise 3.21. Show that “detached wheels” and “hairy
Y ’s” make sense in Aw(↑). As on the right, a detached
wheel is a wheel with a number of spokes, and a hairy
Y is a combinatorial Y shape with further “hair” on its
trunk (its outgoing arrow). It is specified where the trunk and the leafs of the Y connect to
the skeleton, but it is not specified where the spokes of the wheel and where the hair on the
Y connect to the skeleton. The content of the exercise is to show that modulo the relations
of Aw(↑), it is not necessary to specify this further information: all ways of connecting the
spokes and the hair to the skeleton are equivalent. Like the previous exercise, this result
depends on the skeleton having a single component.

Remark 3.22. On some level, the results of this section remain incomplete. In the case of
classical knots and classical chord diagrams, Jacobi diagrams have a topological interpre-
tation using the Goussarov-Habiro calculus of claspers

Goussarov:3Manifolds, Habiro:Claspers
[Gou2, Hab]. In the w case such

interpretation is still missing, though it is possible that many of the necessary hints are
present in

HabiroKanenobuShima:R2K, HabiroShima:R2KII
[HKS, HS].
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subsec:LieAlgebras
3.6. The Relation with Lie Algebras. The theory of finite type invariants of knots is
related to the theory of metrized Lie algebras via the space A of chord diagrams, as explained
in

Bar-Natan:OnVassiliev
[BN1, Theorem 4, Exercise 5.1]. In a similar manner the theory of finite type invariants of

w-knots is related to inhomogenized arbitrary finite-dimensional Lie algebras (or equivalently,
to doubles of co-commutative Lie bialgebra) via the space Aw(↑) of arrow diagrams.

3.6.1. Preliminaries. Given a finite dimensional Lie algebra g let Ig := g∗ ⋊ g be the semi-
direct product of the dual g∗ of g with g, with g∗ taken as an Abelian algebra and with g

acting on g∗ by the usual coadjoint action. In formulas,

Ig = {(ϕ, x) : ϕ ∈ gast, x ∈ g},

[(ϕ1, x1), (ϕ2, x2)] = (x1ϕ2 − x2ϕ1, [x1, x2]).

In the case where g is the algebra so(3) of infinitesimal symmetries of R3, its dual g∗ is
itself R3 with the usual action of so(3) on it, and Ig is the algebra R3⋊so(3) of infinitesimal
affine isometries of R3. This is the Lie algebra of the Euclidean group of isometries of R3,
which is often denoted ISO(3). This explains our choice of the name Ig.

Note that if g is a co-commutative Lie bialgebra then Ig is the “double” of g
Drinfeld:QuantumGroups
[Dr1]. This

is a significant observation, for it is a part of the relationship between this paper and the
Etingof-Kazhdan theory of quantization of Lie bialgebras

EtingofKazhdan:BialgebrasI
[EK]. Yet we will make no explicit

use of this observation below.

3.6.2. The Construction. Fixing a finite dimensional Lie algebra g we construct a map T w
g :

Aw → U(Ig) which assigns to every arrow diagram D an element of the universal enveloping
algebra U(Ig). As is often the case in our subject, a picture of a typical example is worth
more than a formal definition:

g∗ ⊗ g∗ ⊗ g⊗ g⊗ g∗ ⊗ g∗ U(Ig)
I

g
∗

g
∗

g g
∗

g
∗

g

B B

contract

g g
∗

figs/Twg

In short, we break up the diagram D into its constituent pieces and assign a copy of
the structure constants tensor B ∈ g∗ ⊗ gast ⊗ g to each internal vertex v of D (keeping
an association between the tensor factors in g∗ ⊗ g∗ ⊗ g and the edges emanating from
v, as dictated by the orientations of the edges and of the vertex v itself). We assign the
identity tensor in g∗ ⊗ g to every arrow in D that is not connected to an internal vertex,
and contract any pair of factors connected by a fully internal arrow. The remaining tensor
factors (g∗⊗ g∗⊗ g⊗ g⊗ g∗⊗ g∗ in our examples) are all along the skeleton and can thus be
ordered by the skeleton. We then multiply these factors to get an output T w

g (D) in U(Ig).
It is also useful to restate this construction given a choice of a basis. Let (xj) be a basis

of g and let ϕi be the dual basis of g∗, so that ϕi(xj) = δij , and let bkij denote the structure

constants of g in the chosen basis: [xi, xj] =
∑
bkijxk. Mark every arrow in D with lower

case Latin letter from within {i, j, k, . . . }20. Form a product PD by taking one bγαβ factor for
each internal vertex v of D using the letters marking the edges around v for α, β and γ and

20The supply of these can be made inexhaustible by the addition of numerical subscripts.
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by taking one xα or ϕβ factor for each skeleton vertex of D, taken in the order that they
appear along the skeleton, with the indices α and β dictated by the edge markings and with
the choice between factors in g and factors in g∗ dictated by the orientations of the edges.
Finally let T w

g (D) be the sum of PD over the indices i, j, k, . . . running from 1 to dim g:

i j

k

lmn

bm
kl

bkji
dim g∑

i,j,k,l,m,n=1

b
k
ijb

m
klϕ

i
ϕ

j
xnxmϕ

l
∈ U(Ig)

ϕi ϕj xn xm ϕn ϕl
figs/Twb

(20) eq:Twb

The following is easy to verify (compare with
Bar-Natan:OnVassiliev
[BN1, Theorem 4, Exercise 5.1]):

Proposition 3.23. The above two definitions of Tw
g agree, are independent of the choices

made within them, and respect all the relations defining Aw. �

While we do not provide a proof of this proposition here, it is worthwhile to state the
correspondence between the relations defining Aw and the Lie algebraic information in U(Ig):
−→
AS is the antisymmetry of the bracket of g,

−−−→
IHX is the Jacobi identity of g,

−−−→
STU1 and

−−−→
STU2 are the relations [xi, xj] = xixj − xjxi and [ϕi, xj ] = ϕixj − xjϕ

i in U(Ig), TC is the

fact that g⋆ is taken as an Abelian algebra, and
−→
4T is the fact that the identity tensor in

g∗ ⊗ g is g-invariant.

3.6.3. Example: The 2 Dimensional Non-Abelian Lie Algebra. Let g be the Lie algebra with
two generators x1,2 satisfying [x1, x2] = x2, so that the only non-vanishing structure constants
bkij of g are b212 = −b221 = 1. Let ϕi ∈ g∗ be the dual basis of xi; by an easy calculation,

we find that in Ig the element ϕ1 is central, while [x1, ϕ
2] = −ϕ2 and [x2, ϕ

2] = ϕ1. We
calculate T w

g (DL), T
w
g (DR) and T w

g (wk) using the “in basis” technique of Equation (
eq:Twbeq:Twb
20).

The outputs of these calculations lie in U(Ig); we display these results in a PBW basis in
which the elements of g∗ precede the elements of g:

T w
g (DL) = x1ϕ

1 + x2ϕ
2 = ϕ1x1 + ϕ2x2 + [x2, ϕ

2] = ϕ1x1 + ϕ2x2 + ϕ1,

T w
g (DR) = ϕ1x1 + ϕ2x2, (21)

T w
g (wk) = (ϕ1)k.

1 1 1 1

2

222

ϕ1 ϕ1 ϕ1 ϕ1figs/4wheel

For the last assertion above, note that all non-vanishing structure
constants bkij in our case have k = 2, and therefore all indices corre-
sponding to edges that exit an internal vertex must be set equal to
2. This forces the “hub” of wk to be marked 2 and therefore the legs
to be marked 1, and therefore wk is mapped to (ϕ1)k.

Note that the calculations in (
eq:2DExampleeq:2DExample
21) are consistent with the relation DL − DR = w1 of

Theorem
thm:Awthm:Aw
3.16 and that they show that other than that relation, the generators of Aw are

linearly independent.
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1 2 3 4

5

6 7 8

figs/8-17

Figure 14. A long 817, with the span of crossing #3 marked. The projection is as in Brian

Sanderson’s garden. See
Bar-Natan:WKO
[BN0]/SandersonsGarden.html. fig:817

subsec:Alexander
3.7. The Alexander Polynomial. Let K be a long w-knot, let Z(K) be the invariant of
Theorem

thm:ExpansionForKnotsthm:ExpansionForKnots
3.11. Theorem

thm:Alexanderthm:Alexander
3.27 below asserts that apart from framing issues, Z(K) contains

precisely the same information as the Alexander polynomial A(K) of K (defined below).
But we have to start with some definitions as well as with an embarrassing acknowledgment
(Conjecture

conj:Alexanderconj:Alexander
3.26).

def:STA Definition 3.24. Enumerate the crossings ofK from 1 to n in some arbitrary order. For 1 ≤
j ≤ n, the “span” of crossing #i is the connected open interval along the line parametrizing
K between the two times K “visits” crossing #i (see Figure

fig:817fig:817
14). Form a matrix T = T (K)

with Tij the indicator function of “the lower strand of crossing #j is within the span of
crossing #i” (so Tij is 1 if for a given i, j the quoted statement is true, and 0 otherwise). Let
si be the sign of crossing #i ((−,−,−,−,+,+,+,+) for Figure

fig:817fig:817
14), let di be +1 if K visits

the “over” strand of crossing #i before visiting the “under” strand of that crossing, and let
di = −1 otherwise ((−,+,−,+,−,+,−,+) for Figure

fig:817fig:817
14). Let S = S(K) be the diagonal

matrix with Sii = sidi, and for an indeterminate X , let X−S denote the diagonal matrix with
diagonal entries X−sidi . Finally, let A(K) be the Laurent polynomial in Z[X,X−1] given by

A(K)(X) := det
(
I + T (I −X−S)

)
. (22) eq:AKDef

Example 3.25. For the knot diagram in Figure
fig:817fig:817
14,

T=













0 1 1 1 1 0 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 1
0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0













, S=















1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1















, and A=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1−X 1−X−1 1−X 1−X 0 1−X 0
0 1 1−X−1 0 1−X 0 0 0
0 1−X 1 0 1−X 0 0 0
0 1−X 0 1 1−X 0 1−X 0
0 1−X 0 1−X 1 1−X−1 1−X 1−X−1

0 1−X 0 1−X 0 1 1−X 0
0 0 0 1−X 0 1−X−1 1 0
0 0 0 1−X 0 1−X−1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The last determinant equals −X3 + 4X2 − 8X + 11 − 8X−1 + 4X−2 −X−3, the Alexander
polynomial of the knot 817 (e.g.

Rolfsen:KnotsAndLinks
[Rol]).

conj:Alexander Conjecture 3.26. For any (classical) knot K, A(K) is equal to the normalized Alexander
polynomial

Rolfsen:KnotsAndLinks
[Rol] of K.

The overall shape of the definition of A(K), a determinant of a matrix constructed by
reading out the crossings of K in a certain manner, is very similar to several of the known
definitions of the Alexander polynomial. The Mathematica notebook

Bar-Natan:WKO
[BN0, “wA”] verifies
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that Conjecture
conj:Alexanderconj:Alexander
3.26 for all prime knots with up to 11 crossings. Hence I have no doubt that

Conjecture
conj:Alexanderconj:Alexander
3.26 is true. Yet I am embarrassed to acknowledge that so far I was not able to

prove it by finding an appropriate Seifert surface for K and using the linking matrix formula
for the Alexander polynomial, or by finding an appropriate presentation for the fundamental
group of the complement of K and using the free differential (Fox) calculus formula for the
Alexander polynomial21.

The following theorem asserts that Z(K) can be computed from A(K) (
eq:AtoZeq:AtoZ
23) and that

modulo a certain additional relation and with the appropriate identifications in place, Z(K)
is A(K) (

eq:ZisAeq:ZisA
24).

thm:Alexander Theorem 3.27. (Proof in Section
subsec:AlexanderProofsubsec:AlexanderProof
3.8). Let x be an indeterminate, let sl be as in Exer-

cise
ex:slex:sl
3.6, let DL, DR and wk be as in Figure

fig:AwGeneratorsfig:AwGenerators
13, and let w : QJxK → Aw be the linear map

defined by xk 7→ wk. Then for a w-knot K,

Z(K) = expAw (slL(K)DL) · expAw (slR(K)DR)︸ ︷︷ ︸
minor part: self linking coded in arrows

· expAw

(
−w

(
logQJxKA(K)(ex)

))
︸ ︷︷ ︸

main part: Alexander coded in wheels

, (23) eq:AtoZ

where the logarithm and inner exponentiation are computed by formal power series in QJxK
and the outer exponentiations are likewise computed in Aw.

=

=w2 · w3 w5figs/wkl

Let Areduced be Aw modulo the additional relations DL = DR =
w1 = 0 and wkwl = wk+l for k, l 6= 1. The quotient Areduced can
be identified with vector space of (infinite) linear combinations of
wk’s (with k 6= 1). Identifying the k-wheel wk with xk, we see that Areduced is the space of
power series in x having no linear terms. Note by inspecting (

eq:AKDefeq:AKDef
22) that A(K)(ex) never has

a term linear in x, and that modulo wkwl = wk+l, the exponential and the logarithm in (
eq:AtoZeq:AtoZ
23)

cancel each other out. Hence within Areduced,

Z(K) = A−1(K)(ex). (24) eq:ZisA

Remark 3.28. In
HabiroKanenobuShima:R2K
[HKS] K. Habiro, T. Kanenobu, and A. Shima show that all coefficients of

the Alexander polynomial are finite type invariants of w-knots, and in
HabiroShima:R2KII
[HS] K. Habiro and

A. Shima show that all finite type invariants of w-knots are polynomials in the coefficients of
the Alexander polynomial. Thus Theorem

thm:Alexanderthm:Alexander
3.27 is merely an “explicit form” of these earlier

results.

21In fact, Conjecture
conj:Alexanderconj:Alexander
3.26 probably follows from the work below relating A(K) and Z(K), from the known

fact that the weight system of the Alexander polynomial is supported on wheels
Vaintrob:Primitive, Chmutov:MelvinM
[Vai, Ch], and from some

minor further work to fix the normalizations. But this proof would be so indirect and ugly I would rather
disown it.
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subsec:AlexanderProof

3.8. Proof of Theorem
thm:Alexanderthm:Alexander
3.27. We start with a sketch. The proof of Theorem

thm:Alexanderthm:Alexander
3.27 can be

divided in three parts: differentiation, bulk management, and computation.
Differentiation. Both sides of our goal, Equation (

eq:AtoZeq:AtoZ
23), are exponential in nature. When

seeking to show an equality of exponentials it is often beneficial to compare their derivatives22.
In our case the useful “derivatives” to use are the “Euler operator” E (“multiply every term
by its degree”, an analogue of f 7→ xf ′, defined in Section

subsubsec:Eulersubsubsec:Euler
3.8.1), and the “normalized

Euler operator” Z 7→ ẼZ := Z−1EZ, which is a variant of the logarithmic derivative f 7→
x(log f)′ = xf ′/f . Since Ẽ is one to one (Section

subsubsec:Eulersubsubsec:Euler
3.8.1) and since we know how to apply

Ẽ to the right hand side of Equation (
eq:AtoZeq:AtoZ
23) (Section

subsubsec:Eulersubsubsec:Euler
3.8.1), it is enough to show that with

B := T (exp(−xS)− I) and suppressing the fixed w-knot K from the notation,

EZ = Z ·
(
slLDL + slRDR − w

[
x tr

(
(I − B)−1TS exp(−xS)

)])
in Aw. (25) eq:EofAtoZ

Bulk Management. Next we seek to understand the left hand side of (
eq:EofAtoZeq:EofAtoZ
25). Z is made up

of “quantities in bulk”: arrows that come in exponential “reservoirs”. As it turns out, EZ is
made up of the same bulk quantities, but also allowing for a single non-bulk “red excitation”
(compare with Eex = x · ex; the “bulk” ex remains, and single “excited red” x gets created).
We wish manipulate and simplify that red excitation. This is best done by introducing a
certain module, IAMK , the “Infinitesimal Alexander Module” of K (see Section

sec:IAMsec:IAM
3.8.2). The

elements of IAMK can be thought of as names for “bulk objects with a red excitation”, and
hence there is an “interpretation map” ι : IAMK → A

w, which maps every “name” into the
object it represents. There are four special elements in IAMK : an element λ, which is the
name of EZ (that is, ι(λ) = EZ), two elements δL and δR which are the names of DL · Z
and DR · Z (so ι(δL,R) = DL,R · Z), and an element ω1 which is the name of a “detached”
1-wheel that is appended to Z. The latter can take a coefficient which is a power of x, with
ι(xkω1) = w(xk+1) ·Z = (Z times a (k+1)-wheel). Thus it is enough to show that in IAMK ,

λ = slLδL + slRδR − tr
(
(I − B)−1TSX−S

)
ω1, with X = ex. (26) eq:GoalInIAM

Indeed, applying ι to both sides of the above equation, we get Equation (
eq:EofAtoZeq:EofAtoZ
25) back again.

Computation. Last, we show in Section
sec:ComputeLambdasec:ComputeLambda
3.8.3 that (

eq:GoalInIAMeq:GoalInIAM
26) holds true. This is a computation

that happens entirely in IAMK and does not mention finite type invariants, expansions or
arrow diagrams in any way.

subsubsec:Euler
3.8.1. The Euler Operator. Let A be a completed graded algebra with unit, in which all
degrees are ≥ 0. Define a continuous linear operator E : A → A by setting Ea = (deg a)a
for homogeneous a ∈ A. In the case A = QJxK, we have Ef = xf ′, the standard “Euler
operator”, and hence we adopt this name for E in general.

We say that Z ∈ A is a “perturbation of the identity” if its degree 0 piece is 1. Such a Z
is always invertible. For such a Z, set ẼZ := Z−1 ·EZ, and call the thus (partially) defined
operator Ẽ : A → A the “normalized Euler operator”. From this point on when we write
ẼZ for some Z ∈ A, we automatically assume that Z is a perturbation of the identity or
that it is trivial to show that Z is a perturbation of the identity. Note that for f ∈ QJxK,
we have Ẽf = x(log f)′, so Ẽ is a variant of the logarithmic derivative.

Claim 3.29. Ẽ is one to one.

22Thanks, Dylan.
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Proof. Assume Z1 6= Z2 and let d be the smallest degree in which they differ. Then
d > 0 and in degree d the difference ẼZ1− ẼZ2 is d times the difference Z1−Z2, and hence
ẼZ1 6= ẼZ2. �

Thus in order to prove our goal, Equation (
eq:AtoZeq:AtoZ
23), it is enough to compute Ẽ of both sides

and to show the equality then. We start with the right hand side of (
eq:AtoZeq:AtoZ
23); but first, we need

some simple properties of E and Ẽ. The proofs of these properties are routine and hence
they are omitted.

Proposition 3.30. The following hold true:

(1) E is a derivation: E(fg) = (Ef)g + f(Eg).
(2) If Z1 commutes with Z2, then Ẽ(Z1Z2) = ẼZ1 + ẼZ2.

(3) If z commutes with Ez, then Eez = ez(Ez) and Ẽez = Ez.

(4) If w : A→ A is a morphism of graded algebras, then it commutes with E and Ẽ. �

Let us denote the right hand side of (
eq:AtoZeq:AtoZ
23) by Z1(K). Then by the above proposition,

remembering (Theorem
thm:Awthm:Aw
3.16) that Aw is commutative and that degDL = degDR = 1, we

have

ẼZ1(K) = slLDL + slRDR − w(E logA(K)(ex)) = SL− w

(
x
d

dx
logA(K)(ex)

)
,

with SL := slLDL + slRDR. The rest is an exercise in matrices and differentiation. A(K) is
a determinant (

eq:AKDefeq:AKDef
22), and in general, d

dx
log det(M) = tr

(
M−1 d

dx
M
)
. So with B = T (e−xS−I)

(so M = I −B), we have

ẼZ1(K) = SL+ w

(
x tr

(
(I − B)−1 d

dx
B

))
= SL− w

(
x tr

(
(I −B)−1TSe−xS

))
,

as promised in Equation (
eq:EofAtoZeq:EofAtoZ
25).

sec:IAM
3.8.2. The Infinitesimal Alexander Module. Let K be a w-knot diagram. The Infinitesimal
Alexander Module IAMK of K is a certain module made from a certain space IAM 0

K of
pictures “annotating” K with “red excitations” modulo some pictorial relations that indicate
how the red excitations can be moved around. The space IAM 0

K in itself is made of three
pieces, or “sectors”. The “A sector” in which the excitations are red arrows, the “Y sector”
in which the excitations are “red hairy Y-diagrams”, and a rank 1 “W sector” for “red hairy
wheels”. There is an “interpretation map” ι : IAM 0

K → A
w which descends to a well defined

(and homonymous) ι : IAMK → A
w. Finally, there are some special elements λ, δL, and δR

that live in the A sector of IAM 0
K and ω1 that lives in the W sector.

In principle, the description of IAM 0
K and of IAMK can be given independently of the

interpretation map ι, and there are some good questions to ask about IAMK (and the
special elements in it) that are completely independent of the interpretation of the elements
of IAMK as “perturbed bulk quantities” within Aw. Yet IAMK is a complicated object and
I fear its definition will appear completely artificial without its interpretation. Hence below
the two definitions will be woven together.

IAMK and ι may equally well be described in terms of K or in terms of the Gauss diagram
of K (Remark

rem:GDrem:GD
3.4). For pictorial simplicity, we choose to use the latter; so let G = G(K) be

the Gauss diagram of K. It is best to read the following definition while at the same time
studying Figure

fig:IAM0Deffig:IAM0Def
15.
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− + − + − + − +
red red

K G in A in Y in W

red

figs/IAM0Def

Figure 15. A sample w-knot K, it’s Gauss diagram G, and one generator from each of the

A, Y, and W sectors of IAM 0
K . Red parts are marked with the word “red”. fig:IAM0Def

Definition 3.31. Let R be the ring Z[X,X−1] of Laurent polynomials in X , and let R1 be
the subring of polynomials that vanish at X = 1 (i.e., whose sum of coefficients is 0)23. Let
IAM 0

K be the direct sum of the following three modules (which for the purpose of taking the
direct sum, are all regarded as Z-modules):

(1) The “A sector” is the free Z-module generated by all diagrams made from G by the
addition of a single unmarked “red excitation” arrow, whose endpoints are on the
skeleton of G and are distinct from each other and from all other endpoints of arrows
in G. Such diagrams are considered combinatorially — so two are equivalent iff they
differ only by an orientation preserving diffeomorphism of the skeleton. Let us count:
if K has n crossings, then G has n arrows and the skeleton of G get subdivided into
m := 2n+1 arcs. An A sector diagram is specified by the choice of an arc for the tail
of the red arrow and an arc for the head (m2 choices), except if the head and the tail
fall within the same arc, their relative ordering has to be specified as well (m further
choices). So the rank of the A sector over Z is m(m+ 1).

(2) The “Y sector” is the free R1-module generated by all diagrams made from G by
the addition of a single “red excitation” Y -shape single-vertex graph, with two in-
coming edges (“tails”) and one outgoing (“head”), modulo anti-symmetry for the
two incoming edges (again, considered combinatorially). Counting is more elaborate:
when the three edges of the Y end in distinct arcs in the skeleton of G, we have
1
2
m(m− 1)(m− 2) possibilities (1

2
for the antisymmetry). When the two tails of the

Y lie on the same arc, we get 0 by anti-symmetry. The remaining possibility is to
have the head and one tail on one arc (order matters!) and the other tail on another,
at 2m(m− 1) possibilities. So the rank of the Y sector over R1 is m(m− 1)(1

2
m+1).

(3) The “W sector” is the rank 1 free R-module with a single generator w1. It is not
necessary for w1 to have a pictorial representation, yet one, involving a single “red”
1-wheel, is shown in Figure

fig:IAM0Deffig:IAM0Def
15.

def:InterpretationMap Definition 3.32. The “interpretation map” ι : IAM 0
K → A

w is defined by sending the
arrows (marked + or −) of a diagram in IAM 0

K to e±a-exponential reservoirs of arrows, as in
the definition of Z (see Remark

rem:ZwForGDrem:ZwForGD
3.12). In addition, the red excitations of diagrams in IAM 0

K

are interpreted as follows:

(1) In the A sector, the red arrow is simply mapped to itself, with the colour red sup-
pressed.

(2) In the Y sector diagrams have red Y ’s and coefficients f ∈ R1. Substitute X = ex

in f , expand in powers of x, and interpret xkY as a “hairy Y with k − 1 hairs” as in

23R1 is only very lightly needed, and only within Definition
def:InterpretationMapdef:InterpretationMap
3.32. In particluar, all that we say about

IAMK that does not concern the interpretation map ι is equally valid with R replacing R1.
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figs/IAMRelations

Figure 16. The relations R making IAMK . fig:IAMRelations

Exercise
ex:Hairex:Hair
3.21. Note that f(1) = 0, so only positive powers of x occur, so we never

need to worry about “Y ’s with −1 hairs”. This is the only point where the condition
f ∈ R1 (as opposed to f ∈ R) is needed.

(3) In the W sector treat the coefficients as above, but interpret xkw1 as a detached
wk+1. I.e., as a detached wheel with k + 1 spokes, as in Exercise

ex:Hairex:Hair
3.21.

As stated above, IAM 0
K is the quotient of IAMK by some set of relations. The best way

to think of this set of relations is as “everything that’s obviously annihilated by ι”. Here’s
the same thing, in a more formal language:

Definition 3.33. Let IAMK := IAM 0
K/R, where R is the set of relations depicted in

Figure
fig:IAMRelationsfig:IAMRelations
16. The top 8 relations are about moving a leg of the red excitation across an arrow

head or an arrow tail in G. Since the red excitation may be either an arrow (A) or a Y ,
its leg in motion may be either a tail or a head, and it may be moving either past a tail or
past a head, there are 8 relations of that type. The last two relations indicate the “price”
(always a red w1), of commuting a red head across a red tail. As per custom, in each case
only the changing part of the diagrams involved is shown. Further, the red excitations are
marked with the letter “r” and the sign of an arrow in G is marked s; so always s ∈ {±1}.

Proposition 3.34. The interpretation map ι indeed annihilates all the relations in R.

Proof. ιAtt and ιYtt follow immediately from “Tails Commute”. The formal identity
ead b(a) = ebae−b implies ead b(a)eb = eba and hence aeb − eba = (1 − ead b)(a)eb. With a
interpreted as “red head”, b as “black head”, and ad b as “hair” (justified by the ι-meaning

of hair and by the
−−−→
STU1 relation, Figure

fig:aSTUfig:aSTU
11), the last equality becomes a proof of ιYhh.

Further pushing that same equality, we get aeb − eba = 1−ead b

ad b
([b, a]), where 1−ead b

ad b
is first

interpreted as a power series 1−ey

y
involving only non-negative powers of y, and then the

substitution y = ad b is made. But that’s ιAhh, when one remembers that ι on the Y
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+ + − + + − + + −
λ = + −

+ + − r
δL =

+ + − r
δR =ω1 =

+ + − r

r r r figs/SpecialElements

Figure 17. The special elements ω1, δL, δR, and λ in IAMG, for a sample 3-arrow Gauss

diagram G. fig:SpecialElements

sector automatically contains a single “ 1
hair

” factor. Similar arguments, though using
−−−→
STU 2

instead of
−−−→
STU1, prove that Yht, Yth, Aht, and Ath are all in ker ι. Finally, ιAw and ιYw

are direct consequences of
−−−→
STU2. In fact, ιAw was encountered once before, as the relation

DL −DR = w1 of Theorem
thm:Awthm:Aw
3.16. �

Finally, we come to the special elements λ, δL, δR and ω1.

Definition 3.35. Within IAMG, let ω1 be, as before, the generator of the W sector. Let δL
and δR be “short” red arrows, as on the left hand side of the Aw relation (exercise: modulo
R, this is independent of the placement of these short arrows within G). Finally, let λ be
the signed sum of exciting each of the (black) arrows in G in turn. The picture says all, and
it is Figure

fig:SpecialElementsfig:SpecialElements
17.

Proposition 3.36. In Aw(↑), the special elements of IAMG are interpreted as follows:
ι(ω1) = Zw1, ι(δL,R) = ZDL,R, and most interesting, ι(λ) = EZ. Therefore, Equation (

eq:GoalInIAMeq:GoalInIAM
26)

(if true) implies Equation (
eq:EofAtoZeq:EofAtoZ
25) and hence it implies our goal, Theorem

thm:Alexanderthm:Alexander
3.27.

Proof. For the proof of this proposition, the only thing that isn’t done yet and isn’t trivial
is the assertion ι(λ) = EZ. But this assertion is a conseqeuence of Ee±a = ±ae±a and of
a Leibnitz law for the derivation E, appropiately generalized to a context where Z can be
thought of as a “product” of “arrow reservoirs”. The details are left to the reader. �

sec:ComputeLambda
3.8.3. The Computation of λ. Naturally, our next task is to prove Equation (

eq:GoalInIAMeq:GoalInIAM
26). This is

done entirely algebraically within the finite rank module IAMG. To read this section one
need not know about Aw(↑), or ι, or Z, but we do need to lay out some notation. Start by
marking the arrows of G with a1 through an in some order.

Let ǫ stand for the informal yet useful quantity “a little”. Let λij denote the difference
λ′ij − λ

′′
ij of red excitations in the A sector of IAMG, where λ

′
ij is the diagram with a red

arrow whose tail is ǫ to the right of the left end of ai and whose head is 1
2
ǫ away from head of

aj in the direction of the tail of aj , and where λ′′ij has a red arrow whose tail is ǫ to the left of

the right end of ai and whose head is as before, 1
2
ǫ away from head of aj in the direction of

the tail of aj. Let Λ = (λij) be the matrix whose entries are the λij ’s, as shown in Figure
fig:LambdaAndYfig:LambdaAndY
18.

Similarly, let yij denote the element in the Y sector of IAMG whose red Y has its head 1
2
ǫ

away from head of aj in the direction of the tail of aj, its right tail (as seen from the head)
ǫ to the left of the right end of ai and its left tail ǫ to the right of the left end of ai. Let
Y = (yij) be the matrix whose entries are the yij’s, as shown in Figure

fig:LambdaAndYfig:LambdaAndY
18.

prop:IAMStructure Proposition 3.37. With S and T as in Definition
def:STAdef:STA
3.24, and with B = T (X−S − I) and

λ and SL as above, the following identities between elements of IAMG and matrices with
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1
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figs/LambdaAndY

Figure 18. The matrices Λ and Y for a sample 2-arrow Gauss diagram (the signs on a1 and

a2 are suppressed, and so are the r marks). The twists in y11 and y22 may be replaced by

minus signs. fig:LambdaAndY

entries in IAMG hold true:

λ− SL = trSΛ (27)

Λ = −BY − TX−Sw1 (28)

Y = BY + TX−Sw1 (29)

Proof of Equation (
eq:GoalInIAMeq:GoalInIAM
26) given Proposition

prop:IAMStructureprop:IAMStructure
3.37. The last of the equalities above implies that

Y = (I − B)−1TX−Sw1. Thus

λ− SL = trSΛ = − trS(BY + TX−Sw1) = − trS(B(I − B)−1TX−S + TX−S)w1

= − tr
(
(I − B)−1TSX−S

)
w1.

This is exactly Equation (
eq:GoalInIAMeq:GoalInIAM
26). �

Proof of Proposition
prop:IAMStructureprop:IAMStructure
3.37. Equation (

eq:lambdaeq:lambda
27) is trivial. The proofs of Equations (

eq:Lambdaeq:Lambda
28) and (

eq:Yeq:Y
29)

both have the same simple cores, that have to be supplamented by highly unpleasant tracking
of signs and conventions and powers of X . Let us start from the cores.

To prove Equation (
eq:Lambdaeq:Lambda
28) we wish to “compute” λik = λ′ik − λ

′′
ik. As λ

′
ik and λ′′ik have their

heads in the same place, we can compute their difference by gradually sliding the tail of λ′ik
from its original position near the left end of ai towards the right end of ai, where it would
be cancelled by λ′′ik. As the tail slides we pick up a yjk term each time it crosses a head of an
aj (relation Ath), we pick up a vanishing term each time it crosses a tail (relation Att), and
we pick up a w1 term if the tail needs to cross over its own head (relation Aw). Ignoring signs
and (X±1 − 1) factors, the sum of the yjk-terms should be proportional to TY , for indeed,
the matrix T has non-zero entries precisely when the head of an aj falls within the span of
an ai. Unignoring these signs and factors, we get −BY (recall that B = T (X−S − I) is just
T with added (X±1 − 1) factors). Similarly, a w1 term arises in this process when a tail has
to cross over its own head, that is, when the head of ak is within the span of ai. Thus the
w1 term should be proportional to Tw1, and we claim it is −TX−Sw1.

The core of the proof of Equation (
eq:Yeq:Y
29) is more or less the same. We wish to “compute”

yik by sliding its left leg, starting near the left end of ai, towards its right leg, which is
stationary near the right end of ai. When the two legs come together, we get 0 because of
the anti-symmetry of Y excitations. Along the way we pick up further Y terms from the

46



D
R
A
F
T

Yth relations, and sometimes a w1 term from the Yw relation. When all signs and (X±1 − 1)
factors are accounted for, we get Equation (

eq:Yeq:Y
29).

I leave it to the reader to complete the details in the above proofs. It is a major headache,
and I would not have trusted myself had I not written a computer program to manipulate
quantities in IAMG by a brute force application of the relations in R. Everything checks;
see

Bar-Natan:WKO
[BN0, “The Infinitesimal Alexander Module”]. �

This concludes the proof of Theorem
thm:Alexanderthm:Alexander
3.27. �

Remark 3.38. I chose the name “Infinitesimal Alexander Module” as in my mind there is
some similarity between IAMK and the “Alexander Module” of K. Yet beyond the above,
I did not embark on any serious study of IAMK . In particular, I do not know if IAMK in
itself is an invariant of K (though I suspect it wouldn’t be hard to show that it is), I do not
know if IAMK contains any further information beyond SL and the Alexander polynomial,
and I do not know if there is any formal relationship between IAMK and the Alexander
module of K.

Remark 3.39. The logarithmic derivative of the Alexander polynomial also appears in Le-
scop’s

Lescop:EquivariantLinking, Lescop:Cube
[Les1, Les2]. I don’t know if its appearances there are related to its appearance here.
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3.9. Some Further Comments.

3.9.1. Round w-Knots.

Exercise 3.40. Go over Sections
subsec:VirtualKnotssubsec:VirtualKnots
3.1–

subsec:Alexandersubsec:Alexander
3.7 and figure out how everything gets modified in the

case of round w-knots. The key points are: there is only one self-linking number, DL = DR

so w1 = 0 but otherwise Aw is unchanged, finite type invariants make sense just the same and
an expansion can be given using the same formula, there is a “Jacobi diagram” picture with a
round skeleton, the target space of T w

g becomes the co-invariants U(Ig)/(uv = vu) of U(Ig),
and it remains injective in general, and the relationship with the Alexander polynomial holds
with minor modifications.

3.9.2. The Relationship with u-Knots. MORE.
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Figure 19. An algebraic struc-

ture O with 4 kinds of objects

and one binary, 3 unary and two

0-nary operations (the constants

1 and σ). fig:AlgebraicStructure

{
objects
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}
=

O =
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4. Algebraic Structures, Projectivizations, Expansions, Circuit Algebras
sec:generalities

Section Summary. In this section we define the “projectivization” (see
subsec:Projectivizationsubsec:Projectivization
4.2)

of an arbitrary algebraic structure (
subsec:AlgebraicStructuressubsec:AlgebraicStructures
4.1) and introduce the notions of “expansions”

and “homomorphic expansions” (
subsec:Expansionssubsec:Expansions
4.3) for such projectivizations. Everything is so

general that practically anything is an example. The baby-example of quandles is
built in into the section; the braid groups and w-braid groups appeared already in
Section

sec:w-braidssec:w-braids
2, yet our main goal is to set the language for the examples of w-tangles

and w-tangled graphs, which appear later in this paper. Both of these examples are
types of “circuit algebras”, and hence we end this section with a general discussion
of circuit algebras (see

subsec:CircuitAlgebrassubsec:CircuitAlgebras
4.4).

subsec:AlgebraicStructures
4.1. Algebraic Structures. An “algebraic structure” O is some collection (Oα) of sets of
objects of different kinds, where the subscript α denotes the “kind” of the objects in Oα,
along with some collection of “operations” ψβ , where each ψβ is an arbitrary map with
domain some product Oα1

× · · · × Oαk
of sets of objects, and range a single set Oα0

(so
operations may be unary or binary or multinary, but they always return a value of some
fixed kind). We also allow some named “constants” within some Oα’s (or equivalently, allow
some 0-nary operations).24 The operations may or may not be subject to axioms — an
“axiom” is an identity asserting that some composition of operations is equal to some other
composition of operations.

Figure
fig:AlgebraicStructurefig:AlgebraicStructure
19 illustrates the general notion of an algebraic structure. Here are a few specific

examples:

• Groups: one kind of objects, one binary “multiplication”, one unary “inverse”, one
constant “the identity”, and some axioms.
• Group homomorphisms: Two kinds of objects, one for each group. 7 operations —
3 for each of the two groups and the homomorphism itself, going between the two
groups. Many axioms.
• A group acting on a set, a group extension, a split group extension and many other
examples from group theory.
• A quandle. It is worthwhile to quote the abstract of the paper that introduced the
definition (Joyce,

Joyce:TheKnotQuandle
[Joy]):

The two operations of conjugation in a group, x⊲ y = y−1xy and x⊲−1 y =
yxy−1 satisfy certain identities. A set with two operations satisfying these
identities is called a quandle. The Wirtinger presentation of the knot group

24One may alternatively define “algebraic structures” using the theory of “multicategories”
Leinster:Higher
[Lei]. Using

this language, an algebraic structure is simply a functor from some “structure” multicategory C into the
multicategory Set (or intoVect, if all Oi are vector spaces and all operations are multilinear). A “morphism”
between two algebraic structures over the same multicategory C is a natural transformation between the two
functors representing those structures.
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involves only relations of the form y−1xy = z and so may be construed as
presenting a quandle rather than a group. This quandle, called the knot
quandle, is not only an invariant of the knot, but in fact a classifying in-
variant of the knot.

Also see Definition
def:quandledef:quandle
4.2.

• Planar algebras as in
Jones:PlanarAlgebrasI
[Jon] and circuit algebras as in Section

subsec:CircuitAlgebrassubsec:CircuitAlgebras
4.4.

• The algebra of knotted trivalent graphs as in
Bar-Natan:AKT-CFA, Dancso:KIforKTG
[BN8, Da].

• Let ς : B → S be an arbitrary homomorphism of groups (though our notation
suggests what we have in mind — B may well be braids, and S may well be permu-
tations). We can consider an algebraic structure O whose kinds are the elements of
S, for which the objects of kind s ∈ S are the elements of Os := ς−1(s), and with the
product in B defining operations Os1 ×Os2 → Os1s2.
• Clearly, many more examples appear throughout mathematics.
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subsec:Projectivization
4.2. Projectivization. Any algebraic structure O has a projectivization. First extend O
to allow formal linear combinations of objects of the same kind (extending the operations in
a linear or multi-linear manner), then let I, the “augmentation ideal”, be the sub-structure
made out of all such combinations in which the sum of coefficients is 0, then let Im be the
set of all outputs of algebraic expressions (that is, arbitrary compositions of the operations
in O) that have at least m inputs in I (and possibly, further inputs in O), and finally, set

projO :=
⊕

m≥0

Im/Im+1. (30) eq:projO

Clearly, with the operation inherited from O, the projectivization projO is again algebraic
structure with the same multi-graph of spaces and operations, but with new objects and
with new operations that may or may not satisfy the axioms satisfied by the operations of
O. The main new feature in projO is that it is a “graded” structure; we denote the degree
m piece Im/Im+1 of projO by projmO.

I believe that many of the most interesting graded structures that appear in mathematics
are the result of this construction, and that many of the interesting graded equations that
appear in mathematics arise when one tries to find “expansions”, or “universal finite type
invariants”, which are also morphisms25 Z : O → projO (see Section

subsec:Expansionssubsec:Expansions
4.3) or when one

studies “automorphisms” of such expansions26 Indeed, the paper you are reading now is really
the study of the projectivizations of various algebraic structures associated with w-knotted
objects. I would like to believe that much of the theory of quantum groups (at “generic” ~)
will eventually be shown to be a study of the projectivizations of various algebraic structures
associated with v-knotted objects.

Thus I believe that the operation described in Equation (
eq:projOeq:projO
30) is truly fundamental and

therefore worthy of a catchy name. So why “projectivization”? Well, it reminds me of graded
spaces, but really, that’s all. I simply found no better name. I’m open to suggestions.

MORE: Q&A - So why not gr ?
Let us end this section with two examples.

Proposition 4.1. If G is a group, projG is a graded associative algebra with unit. �

def:quandle Definition 4.2. A quandle is a set Q with a binary operation ↑ : Q×Q→ Q satisfying the
following axioms:

(1) ∀x ∈ Q, x↑x = x.
(2) For any fixed y ∈ Q, the map x 7→ x↑y is invertible27.
(3) Self-distributivity: ∀x, y, x ∈ Q, (x↑y)↑z = (x↑z)↑(y↑z).

We say that a quandle Q has a unit, or is unital, if there is a distiguished element 1 ∈ Q
satisfying the further axiom:

25Indeed, if O is finitely presented then finding such a morphism Z : O → projO amounts to finding its
values on the generators of O, subject to the relations of O. Thus it is equivalent to solving a system of
equations written in some graded spaces.

26The Drinfel’d graded Grothendieck-Teichmuller group GRT is an example of such an automorphism
group. See

Drinfeld:GalQQ, Bar-Natan:Associators
[Dr3, BN6].

27This can alternatively be stated as “there exists a second binary operation ↑−1 so that ∀x, x =foot:upinv
(x↑y)↑−1y = (x↑−1y)↑y”, so this axiom can still be phrased within the language of “algebraic structures”.
Yet note that below we do not use this axiom at all.
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(4) ∀x ∈ Q, x↑1 = x and 1↑x = 1.

If G is a group, it is also a (unital) quandle by setting x↑y := y−1xy, yet there are many
quandles that do not arise from groups in this way.

prop:ProjQ Proposition 4.3. If Q is a unital quandle, proj0Q is one-dimensional and proj>0Q is a
graded Lie algebra generated by proj1Q.

Proof. For any algebraic structure A with just one kind of objects, proj0A is one-
dimensional, generated by the equivalence class [x] of any single object x. In particular,
proj0Q is one-dimensional and generated by [1]. Let I ⊂ QQ be the augmentation ideal
of Q. For any x ∈ Q set x̄ := x − 1 ∈ I. Then I is generated by the x̄’s, and therefore
Im is generated by expressions involving the operation ↑ applied to some m elements of
Q̄ := {x̄ : x ∈ Q} and possibly some further elements yi ∈ Q. When regarded in Im/Im+1,
any yi is such a generating expression can be replaced by 1, for the difference would be the
same expression with yi replaced by ȳi, and this is now a member of Im+1. But for any
element z ∈ I we have z↑1 = z and 1↑z = 0, so all the 1’s can be eliminated from the
expressions generating Im. Thus proj>0Q is generated by Q̄ and hence by proj1Q.

Let ∆ : QQ → QQ ⊗ QQ be the linear extension of the operation x 7→ x ⊗ x defined on
x ∈ Q, and extend ↑ to a binary operator ↑2 : (QQ ⊗ QQ) ⊗ (QQ ⊗ QQ) → QQ ⊗ QQ by
using ↑ twice, to pair the first and third tensor factors and then to pair the second and the
fourth tensor factors. With this language in place, the self-distributivity axiom becomes the
following linear statement, which holds for every x, y, z ∈ QQ:

(x↑y)↑z = ↑ ◦ ↑2(x⊗ y ⊗∆z). (31) eq:LinSelfDist

Clearly, we need to understand ∆ better. By direct computation, if x ∈ Q then ∆x̄ =
x̄⊗ 1 + 1⊗ x̄+ x̄⊗ x̄. We claim that in general, if z is a generating expression of Im (that
is, a formula made of m elements of Q̄ and m− 1 applications of ↑), then

∆z = z ⊗ 1 + 1⊗ z +
∑

z′i ⊗ z
′′
i , with

∑
z′i ⊗ z

′′
i ∈

∑

m′+m′′=m+1,

m′,m′′>0

Im
′

⊗ Im
′′

. (32) eq:QuandleDelta

Indeed, for the generators of I1 this had just been shown, and if z = z1↑z2 is a generator
of Im, with z1 and z2 generators of Im1 and Im2 with 1 ≤ m1, m2 < m and m1 +m2 = m,
then (using w↑1 = w and 1↑w = 0 for w ∈ I),

∆z = ∆(z1↑z2) = (∆z1)↑2(∆z2)

= (z1 ⊗ 1 + 1⊗ z1 +
∑

z′1j ⊗ z
′′
1j)↑2(z2 ⊗ 1 + 1⊗ z2 +

∑
z′2k ⊗ z

′′
2k)

= (z1↑z2)⊗ 1 + 1⊗ (z1↑z2)

+
∑

j

(
(z′1j↑z2)⊗ z

′′
1j + z′1j ⊗ (z′′1j↑z2) +

∑

k

(z′1j↑z
′
2k)⊗ (z′′1j↑z

′′
2k)

)
,

and it is easy to see that the last line agrees with (
eq:QuandleDeltaeq:QuandleDelta
32).

We can now combine Equations (
eq:LinSelfDisteq:LinSelfDist
31) and (

eq:QuandleDeltaeq:QuandleDelta
32) to get that for any x, y, z ∈ QQ,

(x↑y)↑z = (x↑z)↑y + x↑(y↑z) +
∑

(x↑z′i)↑(y↑z
′′
i ).
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If x ∈ Im1 , y ∈ Im2 , and z ∈ Im3 , then by (
eq:QuandleDeltaeq:QuandleDelta
32) the last term above is in Im1+m2+m3+1,

and so the above identity becomes the Jacobi identity (x↑y)↑z = (x↑z)↑y + x↑(y↑z) in
projm1+m2+m3

Q.
MORE. It remains to show that within proj>0Q, the operation ↑ is anti-symmetric.

Exercise 4.4. Verify that in the above proof axiom (2) of Definition
def:quandledef:quandle
4.2 was not used. Verify

also that if this axiom is introduced as in footnote
foot:upinvfoot:upinv
27 using a second operation ↑−1 (thus en-

larging the set of algebraic expressions that we need to consider as in MORE), Proposition
prop:ProjQprop:ProjQ
4.3

remains true.
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subsec:Expansions

4.3. Expansions and Homomorphic Expansions. We start with the definition. Given
an algebraic structure O let fil O denote the filtered structure of linear combinations of
objects in O (respecting kinds), filtered by the powers (Im) of the augmentation ideal I.
Recall also that any graded space G =

⊕
mGm is automatically filtered, by

(⊕
n≥mGn

)∞
m=0

.

Definition 4.5. An “expansion” Z for O is a map Z : O → projO that preserves the kinds
of objects and whose linear extention (also called Z) to fil O respects the filtration of both
sides, and for which (gr Z) : (gr fil O = projO)→ (gr projO = projO) is the identity map
of projO.

In practical terms, this is equivalent to saying that Z is a map O → projO whose re-
striction to Im vanishes in degrees less than m (in projO) and whose degree m piece is the
projection Im → Im/Im+1.

We come now to what is perhaps the most crucial definition in this paper.

Definition 4.6. A “homomorphic expansion” is an expansion which also commutes with all
the algebraic operations defined on the algebraic structure O.

Why Bother with Homomorphic Expansions? Primarily, for two reasons:

• Often times projO is simpler to work with thanO; for one, it is graded and so it allows
for finite “degree by degree” computations, whereas often times, such as in many
topological examples, anything in O is inherently infinite. Thus it can be beneficial
to translate questions about O to questions about projO. A simplistic example
would be, “is some element a ∈ O the square (relative to some fixed operation) of an
element b ∈ O?”. Well, if Z is a homomorphic expansion and by a finite computation
it can be shown that Z(a) is not a square already in degree 7 in projO, then we’ve
given a conclusive negative answer to the example question. Some less simplistic and
more relevant examples appear in

Bar-Natan:AKT-CFA
[BN8].

• Often times projO is “finitely presented”, meaning that it is generated by some
finitely many elements g1, . . . , gk ∈ O, subject to some relations R1 . . . Rn that can
be written in terms of g1, . . . , gk and the operations of O. In this case, finding a
homomorphic expansion Z is essentially equivalent to guessing the values of Z on
g1, . . . , gk, in such a manner that these values Z(g1), . . . , Z(gk) would satisfy the
projO versions of the relations R1 . . . Rn. So finding Z amounts to solving equations
in graded spaces. It is often the case (as will be demonstrated in this paper; see
also

Bar-Natan:NAT, Bar-Natan:Associators
[BN3, BN6]) that these equations are very interesting for their own algebraic

sake, and that viewing such equations as arising from an attempt to solve a problem
about O sheds further light on their meaning.

In practice, often times the first difficulty in searching for an expansion (or a homomorphic
expansion) Z : O → projO is that its would-be target space projO is hard to identify. It
is typically easy to make a suggestion A for what projO could be. It is typically easy to
come up with a reasonable generating set Dm for Im (keep some knot theoretic examples in
mind, or the case of quandles as in Proposition

prop:ProjQprop:ProjQ
4.3). It is a bit harder but not exceedingly

difficult to discover some relations R satisfied by the elements of the image of D in Im/Im+1

(4T,
−→
4T , and more in knot theory, the Jacobi relation in Proposition

prop:ProjQprop:ProjQ
4.3). Thus we set

A := D/R; but it is often very hard to be sure that we found everything that ought to go in
54



D
R
A
F
T

K

J

CP
Q

Q’

figs/FlipFlop

Figure 20. The J-K flip flop, a very basic memory cell, is an electronic

circuit that can be realized using 9 components — two triple-input “and”

gates, two standard “nor” gates, and 5 “junctions” in which 3 wires

connect (many engineers would not consider the junctions to be real

components, but we do). Note that the “crossing” in the middle of the

figure is merely a projection artifact and does not indicate an electrical

connection, and that electronically speaking, we need not specify how this crossing may be

implemented in R3. The J-K flip flop has 5 external connections (labeled J, K, CP, Q, and

Q’) and hence in the circuit algebra of computer parts, it lives in C5. In the directed circuit

algebra of computer parts it would be in C3,2 as it has 3 incoming wires (J, CP, and K) and

two outgoing wires (Q and Q’). fig:FlipFlop

R; so perhaps our suggestion A is still too big? Finding 4T, or Jacobi in Proposition
prop:ProjQprop:ProjQ
4.3 was

actually not that easy. Perhaps we missed some further relations that are hiding in projQ,
for example?

The notion of an A-expansion, defined below, solves two problems are once. Once we find
an A-expansion we know that we’ve identified projO correctly, and we automatically get
what we really wanted, a (projO)-valued expansion.

A

π

��
O

ZA

;;
x

x
x

x
x

x
x

x
x

x

Z
// projO

gr ZA

OO

def:CanProj Definition 4.7. A “candidate projectivization” for an algebraic struc-
ture O is a graded structure A with the same operations as O along
with a homomorphic surjective graded map π : A → projO. An “A-
expansion” is a kind and filtration respecting map ZA : O → A for
which (gr ZA) ◦ π : A → A is the identity. There’s no need to define
“homomorphic A-expansions”.

prop:CanProj Proposition 4.8. If A is a candidate projectivization of O and ZA : O → A is a homomor-
phic A-expansion, then π : A → projO is an isomorphism and Z := π◦ZA is a homomorphic
expansion. (Often in this case, A is identified with projO and ZA is identified with Z).

Proof. π is surjective by birth. Since (gr ZA) ◦ π is the identity, π it is also injective and
hence it is an isomorphism. The rest is immediate. �

MORE: A bit on the general theory of expansions and their indeterminacy, expansions for
free groups and free quandles.

subsec:CircuitAlgebras
4.4. Circuit Algebras. “Circuit algebras” are so common and everyday, and they make
such a useful language (definitely for the purposes of this paper, but also elsewhere), I
find it hard to believe they haven’t made it into the standard mathematical vocabulary28.
People familiar with planar algebras

Jones:PlanarAlgebrasI
[Jon] may note that circuit algebras are just the same

as planar algebras, except with the planarity requirement dropped from the “connection
diagrams” (and all colourings dropped as well). For the rest, I’ll start with an image and
then move on to the dry definition.

Image 4.9. Electronic circuits are made of “components” that can be wired together in many
ways. On a logical level, we only care to know which pin of which component is connected

28Or have they, and I’ve been looking the wrong way?
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Figure 21. The circuit algebra product of 4 big black

components and 1 small black component carried out using

a green wiring diagram, is an even bigger component that

has many golden connections (at bottom). When plugged

into a yet bigger circuit, the CPU board of a laptop, our

circuit functions as 4,294,967,296 binary memory cells. fig:Circuit

with which other pin of the same or other component. On a logical level, we don’t really need
to know how the wires between those pins are embedded in space (see Figures

fig:FlipFlopfig:FlipFlop
20 and

fig:Circuitfig:Circuit
21).

“Printed Circuit Boards” (PCBs) are operators that make smaller components (“chips”) into
bigger ones (“circuits”) — logically speaking, a PCB is simply a set of “wiring instructions”,
telling us which pins on which components are made to connect (and again, we never care
precisely how the wires are routed provided they reach their intended destinations, and ever
since the invention of multi-layered PCBs, all conceivable topologies for wiring are actually
realizable). PCBs can be composed (think “plugging a graphics card onto a motherboard”);
the result of a composition of PCBs, logically speaking, is simply a larger PCB which takes
a larger number of components as inputs and outputs a larger circuit. Finally, it doesn’t
matter if several PCB are connected together and then the chips are placed on them, or
if the chips are placed first and the PCBs are connected later; the resulting overall circuit
remains the same.

We start process of drying (formalizing) this image by defining “wiring diagrams”, the
abstract analogs of printed circuit boards. Let N denote the set of natural numbers including
0, and for n ∈ N let n denote some fixed set with n elements, say {1, 2, . . . , n}.

Definition 4.10. Let k, n, n1, . . . , nk ∈ N be natural numbers. A “wiring diagram” D
with inputs n1, . . . nk and outputs n is an unoriented compact 1-manifold whose boundary
is n ∐ n1 ∐ · · · ∐ nk, regarded up to homeomorphism. In strictly combinatorial terms,
it is a pairing of the elements of the set n ∐ n1 ∐ · · · ∐ nk along with a single further
natural number that counts closed circles. If D1; . . . ;Dm are wiring diagrams with inputs
n11, . . . , n1k1; . . . ;nm1, . . . , nmkm and outputs n1; . . . ;nm and D is a wiring diagram with

inputs n1; . . . ;nm and outputs n, there is an obvious “composition”D(D1, . . . , Dm) (obtained
by gluing the corresponding 1-manifolds, and also describable in completely combinatorial
terms) which is a wiring diagram with inputs (nij)1≤i≤kj ,1≤j≤m and outputs n (note that

closed circles may be created in D(D1, . . . , Dm) even if none existed in D and in D1; . . . ;Dm).

A circuit algebra is an algebraic structure (in the sense of Section
subsec:Projectivizationsubsec:Projectivization
4.2) whose operations

are parametrized by wiring diagrams. Here’s a formal definition:

Definition 4.11. A circuit algebra consists of the following data:

• For every natural number n ≥ 0 a set (or a Z-module) Cn “of circuits with n legs”.
• For any wiring diagramD with inputs n1, . . . nk and outputs n, an operation (denoted
by the same letter) D : Cn1

× · · · ×Cnk
→ Cn (or linear D : Cn1

⊗ · · · ⊗Cnk
→ Cn if

we work with Z-modules).

We insist that the obvious “identity” wiring diagrams with n inputs and n outputs act as
the identity of Cn, and that the actions of wiring diagrams be compatible in the obvious
sense with the composition operation on wiring diagrams.
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A silly but useful example of a circuit algebra is the circuit algebra S of empty circuits,
or in our context, of “skeletons”. The circuits with n legs for S are wiring diagrams with n
outputs and no inputs; namely, they are 1-manifolds with boundary n (so n must be even).

More generally one may pick some collection of “basic components” (perhaps some logic
gates and junctions for electronic circuits as in Figure

fig:FlipFlopfig:FlipFlop
20) and speak of the “free circuit

algebra” generated by these components. Even more generally we can speak of circuit
algebras given in terms of “generators and relations”; in the case of electronics, our relations
may include the likes of De Morgan’s law ¬(p∨ q) = (¬p)∧ (¬q) and the laws governing the
placement of resistors in parallel or in series. We feel there is no need to present the details
here, yet many examples of circuit algebras given in terms of generators and relations appear
in this paper, starting with the next section.

People familiar with electric circuits know very well that connectors sometimes come in
“male” and “female” versions, and that you can’t plug a USB cable into a headphone jack
and expect your system to cooperate. Thus one may define “directed circuit algebras”
in which the wiring diagrams are oriented, the circuit sets Cn get replaced by Cn1n2

for
“circuits with n1 incoming wires and n2 outgoing wires” and only orientation preserving
connections are ever allowed. Likewise there is a “coloured” version of everything, in which
the wires may be coloured by the elements of some given set X which may include among its
members the elements “USB” and “audio” and in which connections are allowed only if the
colour coding is respected. We will not give formal definitions of directed and/or coloured
circuit algebras here, yet we will allow ourselves to freely use these notions. Likewise for the
obvious analogues of the skeletons algebra S and for algebras given in terms of generators
and relations.

Note that there is an obvious notion of “a morphism between two circuit algebras” and
that circuit algebras (directed or not, coloured or not) form a category. We feel that a precise
definition is not needed. Yet a lovely example is the “implementation morphism” of logic
circuits in the style of Figure

fig:FlipFlopfig:FlipFlop
20 into more basic circuits made of transistors and resistors.

Perhaps the prime mathematical example of a circuit algebra is tensor algebra. If t1 is
an element (a “circuit”) in some tensor product of vector spaces and their duals, and t2 is
the same except in a possibly different tensor product of vector spaces and their duals, then
once an appropriate pairing D (a “wiring diagram”) of the relevant vector spaces is chosen,
t1 and t2 can be contracted (“wired together”) to make a new tensor D(t1, t2). The pairing
D must pair a vector space with its own dual, and so this circuit algebra is coloured by the
set of vector spaces involved, and directed, by declaring (say) that some vector spaces are of
one gender and their duals are of the other. We have in fact encountered this circuit algebra
already, in Section

subsec:LieAlgebrassubsec:LieAlgebras
3.6.

Let G be a group. A G-graded algebra A is a collection {Ag : g ∈ G} of vector spaces,
along with products Ag ⊗ Ah → Agh that induce an overall structure of an algebra on
A :=

⊕
g∈GAg. In a similar vein, we define the notion of an S-graded circuit algebra:

Definition 4.12. An S-graded circuit algebra, or a “circuit algebra with skeletons”, is an
algebraic structure C with spaces Cβ, one for each element β of the circuit algebra of skeletons
S, along with composition operations Dβ1,...,βk

: Cβ1
×· · ·×Cβk

→ Cβ, defined whenever D is
a wiring diagram and β = D(β1, . . . , βk), so that with the obvious induced structure,

∐
β Cβ

is a circuit algebra. A similar definition can be made if/when the skeletons are taken to be
directed or coloured.
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Loosely speaking, a circuit algebra with skeletons is a circuit algebra in which every element
T has a well-defined skeleton ς(T ) ∈ S. Yet note that as an algebraic structure a circuit
algebra with skeletons has more “spaces” than an ordinary circuit algebra, for its spaces are
enumerated by skeleta and not merely by integers. The prime examples for circuit algebras
with skeletons appear in the next section.
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5. w-Tangles
sec:w-tangles

Section Summary. In
subsec:vw-tanglessubsec:vw-tangles
5.1 we introduce v-tangles and w-tangles, the obvious

v- and w- counterparts of the standard knot-theoretic notion of “tangles”, and
briefly discuss their finite type invariants and their associated spaces of “arrow
diagrams”, Av(↑n) and A

w(↑n). We then construct a homomorphic expansion, or
a “well-behaved” universal finite type invariant for w-tangles. Once again, the only
algebraic tool we need to use is exp(a) :=

∑
an/n!, and indeed, Section

subsec:vw-tanglessubsec:vw-tangles
5.1 is but

a routine extension of parts of Section
sec:w-knotssec:w-knots
3. We break away in

subsec:ATSpacessubsec:ATSpaces
5.2 and show that

Aw(↑n) ∼= U(an ⊕ tdern ⋉ trn), where an is an Abelian algebra of rank n and where
tdern and trn, two of the primary spaces used by Alekseev and Torossian

AlekseevTorossian:KashiwaraVergne
[AT], have

simple descriptions in terms of words and free Lie algebras. In
subsec:sdersubsec:sder
5.3 we discuss a

subclass of w-tangles called “special” w-tangles, and relate them by similar means
to Alekseev and Torossian’s sdern and to “tree level” ordinary Vassiliev theory.

subsec:vw-tangles
5.1. v-Tangles and w-Tangles. With the (surprisingly pleasant) task of defining circuit
algebras completed in Section

subsec:CircuitAlgebrassubsec:CircuitAlgebras
4.4, the definition of v-tangles and w-tangles is simple.

Definition 5.1. The (S-graded) circuit algebra vT of v-tangles is the S-graded directed
circuit algebra generated by two generators in C2,2 called the “positive crossing” and the
“negative crossing”, modulo the usual R2 and R3 moves as depicted in Figure

fig:VKnotRelsfig:VKnotRels
6 (these

relations clearly make sense as circuit algebra relations between our two generators), with
the obvious meaning for their skeleta. The circuit algebra wT of w-tangles is the same, except
we also mod out by the OC relation of Figure

fig:VKnotRelsfig:VKnotRels
6 (note that each side in that relation involves

only two generators, with the apparent third crossing being merely a projection artifact).

Remark 5.2. One may also define v-tangles and w-tangles using the language of planar
algebras, except then another generator is required (the “virtual crossing”) and also a few
further relations (VR1–VR3, M), and some of the operations (non-planar wirings) become
less elegant to define.

Our next task is to study the projectivizations proj vT and projwT of vT and wT . Again,
the language of circuit algebras makes it exceedingly simple.

π −

figs/arrows

Definition 5.3. The (S-graded) circuit algebra Dv = Dw of
arrow diagrams is the graded and S-graded directed circuit
algebra generated by a single degree 1 generator a in C2,2

called “the arrow” as shown on the right, with the obvious
meaning for its skeleton. There are morphisms π : Dv → vT and π : Dw → wT defined
by mapping the arrow to an overcrossing minus a no-crossing. (On the right some virtual
crossings were added to make the skeleta match). Let Av be Dv/6T and let Aw := Av/TC =

Dw/
−→
4T , TC, with 6T ,

−→
4T , and TC being the same relation as in Figures

fig:ADand6Tfig:ADand6T
8 and

fig:TCand4TForKnotsfig:TCand4TForKnots
9 (allowing

skeleta parts that are not explcitly connected to really lie on separate skeleton components).

Proposition 5.4. The maps π above induce surjections π : Av → proj vT and π : Aw →
projwT . Hence in the language of Definition

def:CanProjdef:CanProj
4.7, Av and Aw are candidate projectivizations

of vT and wT .

Proof. MORE
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We do not know if Av is indeed the projectivizations of vT (also see
Bar-NatanHalachevaLeungRoukema:v-Di
[BHLR]). Yet in the

w case, the picture is simple:

Theorem 5.5. The assignment ! 7→ ea (with an obvious interpretation for ea) extends to
a well defined Z : wT → Aw. The resulting map Z is a homomorphic Aw-expansion, and in
particular, Aw ∼= projwT and Z is a homomorphic expansion.

Proof. There is nothing new here. Z is satisfies the Reidemeister moves for the same
reasons as in Theorem

thm:RInvariancethm:RInvariance
2.15 and Theorem

thm:ExpansionForKnotsthm:ExpansionForKnots
3.11 and as there it also satisfies the universallity

property. The rest follows from Proposition
prop:CanProjprop:CanProj
4.8. �

In a similar spirit to Definition
def:wJacdef:wJac
3.13, one may define a “w-Jacobi diagram” (often shorts

to “arrow diagram”) on an arbitrary skeleton. Denote the circuit algebra of formal linear
combinations of arrow diagrams by Awt. We have the following bracket-rise theorem:

Theorem 5.6. The obvious inclusion of diagrams induces a circuit algebra isomorphism

Aw ∼= Awt. Furthermore, the
−→
AS and

−−−→
IHX relations of Figure

fig:aIHXfig:aIHX
12 hold in Awt.

Proof. The proof of Theorem
thm:BracketRisethm:BracketRise
3.15 can be repeated verbatim. Note that that proof does

not make use of the connectivity of the skeleton.
Given the above theorem, we no longer keep the distinction between Aw and Awt.

subsec:ATSpaces
5.2. Aw(↑n) and the Alekseev-Torossian Spaces.

Definition 5.7. Let vT (↑n) (likewise wT (↑n)) be the set of v-tangles (w-tangles) whose
skeleton is the disjoint union of n directed lines. Likewise let Av(↑n) and Aw(↑n) be the
parts of Av and Aw in which the skeleton is the disjoint union of n directed lines.

x1

x1

x2

x1

x1

x3

apply
−−−→
IHX here first

figs/WheelOfTrees

In the same manner as in the case of knots (Theorem
thm:Awthm:Aw
3.16),

Aw(↑n) is a bi-algebra isomorphic (via a diagrammatic PBW
theorem, applied independently on each component of the skele-
ton) to a space Bw(⋆n) of unitravelent diagrams with symmetrized
ends coloured with colours in some n-element set (say {x1, . . . , xn}),

modulo
−→
AS and

−−−→
IHX. The primitives Pn of Bw(⋆n) are the con-

nected diagrams (and hence the primitives ofAw(↑n) are the diagrams that remain connected
even when the skeleton is removed). Given the “two in one out” rule for internal vertices,
the diagrams in Pn can only be trees or wheels (“wheels of trees” can be reduced to simple

wheels by repeatedly using
−−−→
IHX, as on the right).

Thus Pn is easy to identify. It is a direct sum Pn = 〈trees〉 ⊕ 〈wheels〉. The wheels part is
simply the vector space generated by all cyclic words in the letters x1, . . . , xn. Alekseev and
Torossian

AlekseevTorossian:KashiwaraVergne
[AT] denote this space trn, and so shall we. The trees in Pn have leafs coloured

x1, . . . , xn. Modulo
−→
AS and

−−−→
IHX, they correspond to elements of the free Lie algebra lien on

the generators x1, . . . , xn. But the root of each such tree also carries a label in {x1, . . . , xn},
hence there are n types of such trees as separated by their roots, and so Pn is isomorphic to
the direct sum trn⊕

⊕n
i=1 lien of trn and n copies of lien.

By the Milnor-Moore theorem
MilnorMoore:Hopf
[MM], Aw(↑n) is isomrphic to the universal enveloping

algebra U(Pn), with Pn identified as a subspace of Aw(↑n) using the PBW symmetrization
map χ : B(⋆n)→ A

w(↑n). Thus in order to understand Aw(↑n) as an associative algebra, it
is enough to understand the Lie algebra structure induced on Pn via the commutator bracket
of Aw(↑n).
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We now wish to identify P(↑n) as the Lie algebra trn⋊(an ⊕ tdern), which in itself is a
combination of the Lie algebras an, tdern and trn studied by Alekseev and Torossian

AlekseevTorossian:Ka
[AT].

Here are the relevant definitions:

Definition 5.8. Let an denote the vector space with basis x1, . . . , xn, also regarded as an
Abelian Lie algebra of dimension n. As before, let lien = lie(an) denote the free Lie algebra
on n generators, now identified as the basis elements of an. Let dern = der(lien) be the Lie
algebra of derivations acting on lien, and let

tdern = {D ∈ dern : ∀i ∃ai s.t. D(xi) = [xi, ai]}

denote the subalgebra of “tangential derivations”. A tangential derivation D is determined
by the ai’s for whichD(xi) = [xi, ai], and determines them up to the ambiguity ai 7→ ai+αixi,
where the αi’s are scalars. Thus as vector spaces, an ⊕ tdern ∼=

⊕n

i=1 lien.

Definition 5.9. Let Assn = U(lien) be the free associative algebra “of words”, and let Ass+n
be the degree > 0 part of Assn. As before, we let trn = Ass+n /(xi1xi2 · · ·xim = xi2 · · ·ximxi1)
denote “cyclic words” or “(coloured) wheels”. Assn, Ass

+
n , and trn are tdern-modules and

there is an obvious equivariant “trace” tr : Ass+n → trn.

NEW

Pnses Proposition 5.10. There is a short exact sequence of Lie algebras

0 −→ trn −→ P(↑n) −→ an ⊕ tdern −→ 0.

Proof. Call the inclusion map above ι and the quotient map π. ι is defined the natural
way: trn is spanned by coloured “floating” wheels, and such a wheel is mapped into Pn by
attaching its legs to their assigned strands in arbitrary order. Note that this is well-defined:
wheels have only tails, and tails commute.

As vector spaces, the statement is already proven: P(↑n) is generated by trees and wheels
(with the legs fixed on n strands). When factoring out by the wheels, only trees remain.
Trees have one head and many tails. All the tails commute with each other, and commuting

a tail with a head on a strands costs a wheel (by
−−−→
STU), thus in the quotient the head also

commutes with the tails. Therefore, the quotient is the space of floating (coloured) trees,
which we have previously identified with

⊕n
i=1 lien

∼= an ⊕ tdern.
It remains to show that the maps are Lie algebra maps as well. For ι this is easy: the Lie

algebra trn is commutative, and is mapped to the commutative (due to TC) subalgebra of
P(↑n) generated by wheels.

To show that π is a map of Lie algebras, we give two proofs, first a “hands-on” one, then
a “conceptual” one.

Hands-on argument. an is the image of single arrows on one strand. These commute
with everything in P(↑n), and so does an in the direct sum.

It remains to show that the bracket of tdern works the same way as commuting trees in
P(↑n). Let D and D′ be elements of tdern represented by (a1, ..., an) and (a′1, ..., a

′
n), meaning

that D(xi) = [xi, ai] and D
′(xi) = [xi, a

′
i] for i = 1, ..., n. Let us compute the commutator of

these elements:

[D,D′](xi) = (DD′ −D′D)(xi) = D[xi, a
′
i]−D

′[xi, ai] =

= [[xi, ai], a
′
i] + [xi, Da

′
i]− [[xi, a

′
i], ai]− [xi, D

′ai] =
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= [xi, Da
′
i]− [xi, D

′ai] + [xi, [ai, a
′
i]] = [xi, Da

′
i −D

′ai + [ai, a
′
i]].

Here the third equality is due to the Leibnitz rule of drivations, while the fourth is a Jacobi
identity.

Now let T and T ′ be two trees in P(↑n)/ trn, their heads on strands i and j, respectively
(i may or may not equal j). Let us call the element in lien given by forming the appropriate
commutator of the colors of T ’s leaves ai, and similarly a′j for T ′. In tdern, let D = π(T )
and D′ = π(T ′). D and D′ are determined by (0, ..., ai, ..., 0), and (0, ..., a′j, ...0), respectively.
(In each case, the i − th or the j − th is the only non-zero component. The commutator
of these elements is given by [D,D′](xi) = [Da′i − D′ai + [ai, a

′
i], xi], and [D,D′](xj) =

[Da′j −D
′aj + [aj , a

′
j], xj ]. Note that unless i = j, aj = a′i = 0.

In P(↑n)/ trn, all tails commute, as well as a head of a tree with its own tails. Therefore,
commuting two trees only incurs a cost when commuting a head of one tree over the tails
of the other on the same strand, and the two heads over each other, if they are on the same
strand.

If i 6= j, then commuting the head of T over the tails of T ′ by
−−−→
STU costs a sum of trees

given by Da′j, with heads on strand j, while moving the head of T ′ over the tails of T costs
exactly −D′ai, with heads on strand i, as needed.

If i = j, then everything happens on starnd i, and the cost is (Da′i−D
′ai+[ai, a

′
i]), where

the last term is what happens when the two heads cross each other.
Conceptual argument. There is an action of P(↑n) on lien, the following way: introduce

and extra strand on the right. An element of lien corresponds to a tree with its head on the
extra strand. The commutator of an element of P(↑n) (considered as an element of P(↑n+1)
by the obvious inclusion) is again a tree with head on strand (n+1), defined to be the result
of the action.

The tree we are acting on has only tails on the first n strands, so elements of trn, which
also only have tails, act trivially. So do single (local) arrows on one strand (an). It remains
to show that trees act as tdern, and it’s enough to check this on the generators of lien (as
the Leibnitz rule is obviously satisfied). Generators of lien are arrows pointing from one of
the first n strands, say strand i, to strand (n+1). A tree with head on strand i acts on this

element, according
−−−→
STU , by forming the commutator, which is exactly the action of tdern.

�

To identify P(↑n) as the semidirect product trn ⋊(an ⊕ tdern), it remains to show that
the short exact sequence above splits. This is indeed the case, although not canonically.
Two —of the many— splitting maps u, l : tdern⊕an → P(↑n) are described as follows:
tdern ⊕ an is identified with

⊕n

i=1 lien, which in turn is identified with floating (coloured)
trees (including arrows). A map to P(↑n) can be given by specifying how to place the legs
on thir specified strands. A tree may have many tails but has only one head, and due to
TC, only the positioning of the head matters. Let u (for upper) be the map placing the head
of each tree above all its tails on the same strand, while l (for lower) places the head below
all the tails. It is obvious that these are both Lie algebra maps and that π ◦ u and π ◦ l are
both the identity of tdern⊕an. This makes P(↑n) a semidirect product. �

div Definition 5.11. For any D ∈ tdern, (l−u)D is in the kernel of π, therefore is in the image
of ι, so ι−1(l − u)D makes sense. We call this element divD.
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AlekseevTorossian:KashiwaraVergne
[AT] define div the following way: div(a1, ..., an) :=

∑n
k=1 tr((∂kak)xk), where ∂k picks out

the words of a sum which end in xk and deletes their last letter xk, and deletes all other
words (the ones which do not end in xk).

Proposition 5.13. The div of Definition
divdiv
5.11 the div of

AlekseevTorossian:KashiwaraVergne
[AT] are the same.

...

xi2

xi1

xik

xik−1

Proof. It is enough to verify the claim for the linear generators of tdern,
namely, elements of the form (0, ..., aj, ..., 0), where aj ∈ lien or equivalently,
single (floating, colored) trees, where the color of the head is j. By the Jacobi
identity, each aj can be written in a form aj = [xi1 , [xi2 , [..., xik ]...]. Equivalently,

by
−−−→
IHX, each tree has a standard “comb” form, as shown on the picture on the

right.
For an associative word Y = y1y2...yl ∈ Ass+n , we introduce the notation

[Y ] := [y1, [y2, [..., yl]...]. The div of
AlekseevTorossian:KashiwaraVergne
[AT] picks out the words that end in xj , forgets the

rest, and considers these as cyclic words. Therefore, by interpreting the Lie brackets as
commutators, one can easily check that for aj written as above,

div((0, ..., aj, ..., 0)) =
∑

α:iα=xj

−xi1 ...xiα−1
[xiα+1

...xik ]xj . (33) divformula

In Definition
divdiv
5.11, div of a tree is the difference between attaching its head on the appropriate

strand (here, strand j) below all of its tails and above. Moving the head across each of the

tails on strand j requires an
−−−→
IHX relation, which “costs” a wheel (of trees, which is equivalent

to a sum of honest wheels), namely, the head gets connected to the tail in question, as shown
in the figure below. So div of the tree represented by aj is∑

α:xiα=j“connect the head to the α leaf”.

This obviously gets mapped to the formula above via the correspondence be-
tween wheels and cyclic words.

j

− =

jj

�

MORE NOW. END NEW
MORE.

subsec:sder

5.3. The Relationship with u-Tangles. MORE.
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6. w-Tangled Graphs
sec:w-graphs

MORE.
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7. Odds and Ends
sec:OddsAndEndssubsec:ClosedForm

7.1. What means “closed form”? As stated earlier, one of my hopes for this paper is that
it will lead to closed-form formulas for tree-level associators. The notion “closed-form” in
itself requires an explanation (see footnote

foot:ClosedFormfoot:ClosedForm
3). Is ex a closed form expression for

∑∞

n=0
xn

n!
, or

is it just an artificial name given for a transcendental function we cannot otherwise reduce?
Likewise, why not call some tree-level associator Φtree and now it is “in closed form”?

For us, “closed-form” should mean “useful for computations”. More precisely, it means
that the quantity in question is an element of some space Acf of “useful closed-form thingies”
whose elements have finite descriptions (hopefully, finite and short) and on which some oper-
ations are defined by algorithms which terminate in finite time (hopefully, finite and short).
Furthermore, there should be a finite-time algorithm to decide whether two descriptions of
elements of Acf describe the same element29. It is even better if the said decision algorithm
takes the form “bring each of the two elements in question to a canonical form by means of
some finite (and hopefully short) procedure, and then compare the canonical forms verba-
tim”; if this is the case, many algorithms that involve managing a large number of elements
become simpler and faster.

Thus for example, polynomials in a variable x are always of closed form, for they are
simply described by finite sequences of integers (which in themselves are finite sequences
of digits), the standard operations on polynomials (+, ×, and, say, d

dx
) are algorithmically

computable, and it is easy to write the “polynomial equality” computer program. Likewise
for rational functions and even for rational functions of x and ex.

On the other hand, general elements Φ of the space Atree(↑3) of potential tree-level asso-
ciators are not closed-form, for they are determined by infinitely many coefficients. Thus
iterative constructions of associators, such as the one in

Bar-Natan:NAT
[BN3] are computationally useful

only within bounded-degree quotients of Atree(↑3) and not as all-degree closed-form formulas.
Likewise, “explicit” formulas for an associator Φ in terms of multiple ζ-values (e.g.

LeMurakami:HOMFLY
[LM1])

are not useful for computations as it is not clear how to apply tangle-theoretic operations
to Φ (such as Φ 7→ Φ1342 or Φ 7→ (1⊗∆⊗ 1)Φ) while staying within some space of “objects
with finite description in terms of multiple ζ-values”. And even if a reasonable space of such
objects could be defined, it remains an open problem to decide whether a given rational
linear combination of multiple ζ-values is equal to 0.

29In our context, if it is hard to decide within the target space of an invariant whether two elements are
equal or not, the invariant is not too useful in deciding whether two knotted objects are equal or not.
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subsec:FreeInW
7.2. The Injectivity of iu : Fn → wBn+1. Just for completeness, we sketch here an alge-
braic proof of the injectivity of the map iu : Fn → wBn+1 discussed in Section

subsubsec:McCoolsubsubsec:McCool
2.2.3. There’s

some circularity in our argument — we need this injectivity in order to motivate the defini-
tion of the map Ψ : wBn → Aut(Fn), and in the proof below we use Ψ to prove the injectivity
of iu. But Ψ exists regardless of how its definition is motivated, and it can be shown to be
well defined by explicitly verifying that it respects the relations defining wBn. So our proof
is logically valid.

Claim 7.1. The map iu : Fn → wBn+1 is injective.

Proof. (sketch). Let H be the subgroup of wBn+1 MORE
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subsec:FTDetails
7.3. Finite Type Invariants of v-Braids and w-Braids, in some Detail. As mentioned
in Section

subsec:wBraidssubsec:wBraids
2.2, w-braids are v-braids modulo an additional relation. So we start with a

discussion of finite type invariants of v-braids. For simplicity we take our base ring to be Q;
everywhere we could replace it by an arbitrary field of characteristic 030, and many definitions
make sense also over Z or even with Q replaced by an arbitrary Abelian group.

7.3.1. Basic Definitions. Let QvBn denote group ring of vBn, the algebra of formal linear
combinations of elements of vBn, and let QSn be the group ring of Sn. The skeleton homo-
morphism of Remark

rem:Skeletonrem:Skeleton
2.1 extends to a homomorphism ς : QvBn → QSn. Let I (or In when

we need to be more precise) denote the kernel of the skeleton homomorphism; it is the ideal in
QvBn generated by formal differences of v-braids having the same skeleton. One may easily
check that I is generated by differences of the form !−P and P−". Following GoussarovPolyakViro:Virtua

[GPV] we
call such differences “semi-virtual crossings” and denote them by Q and R, respectively31.
In a similar manner, for any natural number m the mth power Im of I is generated by
“m-fold iterated differences” of v-braids, or equally well, by “m-singular v-braids”, which
are v-braids that are also have exactly m semi-virtual crossings (subject to relations which
we don’t need to specify).

Let V : vBn → A be an invariant of v-braids with values in some vector space A. We say
that V is “of type m” (for some m ∈ Z≥0) if its linear extension to QvBn vanishes on Im+1

(alternatively, on all m+1-singular v-braids, in clear analogy with the standard definition of
finite type invariants). If V is of type m for some unspecified m, we say that V is “of finite
type”. Given a type m invariant V , we can restrict it to Im and as it vanishes on Im+1, this
restriction can be regarded as an element of (Im/Im+1)

⋆
. If two type m invariants define the

same element of (Im/Im+1)
⋆
then their difference vanishes on Im, and so it is an invariant

of type m − 1. Thus it is clear that an understanding of Im/Im+1 will be instrumental to
an inductive understanding of finite type invariants. Hence the following definition.

Definition 7.2. The projectivization32 proj vBn is the direct sum

proj vBn :=
⊕

m≥0

Im/Im+1.

Note that throughout this paper, whenever we write an infinite direct sum, we automatically
complete it. Therefore an element in proj vBn is an infinite sequence D = (D0, D1, . . . ), where
Dm ∈ I

m/Im+1. The projectivization proj vBn is a graded space, with the degree m piece
being Im/Im+1.

We proceed with the study of proj vBn (and thus of finite type invariants of v-braids) in
three steps. In Section

subsubsec:ArrowDiagramssubsubsec:ArrowDiagrams
7.3.2 we introduce a space Dv

n and a surjection ρ0 : Dv
n → proj vBn.

In Section
subsubsec:6Tsubsubsec:6T
7.3.3 we find some relations in ker ρ0, most notably the 6T relation, and introduce

the quotient Av
n := Dv

n/6T . And then in Section
subsubsec:UFTIsubsubsec:UFTI
7.3.4 we introduce the notion of a “universal

finite type invariant” and explain how the existence of such a gadget proves that proj vBn

30Or using the variation of constants method, we can simply declare that Q is an arbitrary field of
characteristic 0.

31The signs in Q ↔ ! − P and R ↔ P − " are “crossings come with their sign and their virtual
counterparts come with the opposite sign”.

32Why “projectivization”? See Section
subsec:Projectivizationsubsec:Projectivization
4.2.
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2 41 3

2 41 3

−

+

+

2 41 3

2 41 3

ρ0

figs/Dvh

Figure 22. The horizontal 3-arrow diagram (D,β) =

(a+12a
−
41a

+
23, 3421) and its image via ρ0. The first arrow,

a+12 starts at strand 1, ends at strand 2 and carries a +

sign, so it is mapped to a positive semi-virtual crossing

of strand 1 over strand 2. Likewise the second arrow

a−41 maps to a negative semi-virtual crossing of strand 4

over strand 1, and a+23 to a positive semi-virtual crossing

of strand 2 over strand 3. We also show one possible

choice for a representative of the image of ρ0(D,β) in

Im/Im+1: it is a v-braid with semi-virtual crossings as

specified by D and whose overall skeleton is 3421. fig:Dvh

is isomorphic to Av
n (in a more traditional language this is the statement that every weight

system integrates to an invariant).
Unfortunately, we do not know if there is a universal finite type invariant of v-braids.

Thus in Section
subsec:wbraidssubsec:wbraids
7.4 we return to the subject of w-braids and prove the weaker statement

that there exists a universal finite type invariant of w-braids.
subsubsec:ArrowDiagrams

7.3.2. Arrow Diagrams. We are looking for a space that will surject on Im/Im+1. In other
words, we are looking for a set of generators for Im, and we are willing to call two such
generators the same if their difference is in Im+1. But that’s easy. Left and right multiples
of the formal differences Q = !−P and R = P−" generate I, so products of the schematic
form

B0(Q|R)B1(Q|R)B2 · · ·Bm−1(Q|R)Bm (34) eq:GeneratingProduct

=

=

generate Im (here (Q|R) means “either a Q or a R”, and there are
exactly m of those in any product). Furthermore, inside such a prod-
uct any Bk can be replaced by any other v-braid B′

k having the same
skeleton (e.g., with ς(Bk)), for then Bk−B

′
k ∈ I and the whole prod-

uct changes by something in Im+1. Also, the relations in (
eq:R3eq:R3
3) and

in (
eq:MixedRelationseq:MixedRelations
5) imply the relations shown on the right for Q, and similar re-

lations for R. With this freedom, a product as in (
eq:GeneratingProducteq:GeneratingProduct
34) is determined

by the strand-placements of the Q’s and the R’s. That is, for each semi-virtual crossing
in such a product, we only need to know which strand number is the “over” strand, which
strand number is the “under” strand, and a sign that determines whether it is the positive
semi-virtual Q or the negative semi-virtual R. This motivates the following definition.

Definition 7.3. A “horizontal m-arrow diagrams” (analogues to the “chord diagrams” of,
say,

Bar-Natan:OnVassiliev
[BN1]) is an ordered pair (D, β) in which D is a word of length m in the alphabet

{a+ij , a
−
ij : i, j ∈ {1, . . . , n}, i 6= j} and β is a permutation in Sn. Let Dvh

m be the space
of formal linear combinations of horizontal m-arrow diagrams. We usually use a pictorial
notation for horizontal arrow diagram, as demonstrated in Figure

fig:Dvhfig:Dvh
22.

There is a surjection ρ0 : Dvh
m → I

m/Im+1. The definition of ρ0 is suggested by the first
paragraph of this section and an example is shown in Figure

fig:Dvhfig:Dvh
22; we will skip the formal

definition here. We also skip the formal proof of the surjectivity of ρ0.
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Finally, consider the product Q ·R and use the second Reidemeister move for both virtual
and non-virtual crossings:QR = (!−P)(P−") = !P +P" −!" −PP = (!P− 1) + (P") = QP−PR.
If a total of m− 1 further semi-virtual crossings are multiplied into this equality on the left
and on the right, along with arbitrary further crossings and virtual crossings, the left hand
side of the equality becomes a member of Im+1, and therefore, as a member of Im/Im+1, it
is 0. Thus with “. . .” standing for extras added on the left and on the right, we have that in
Im/Im+1,

0 = . . . (QP −PR) . . . = ρ0(. . .?? . . .)

MORE.
subsubsec:6T

7.3.3. The 6T Relations. MORE.
subsubsec:UFTI

7.3.4. The Notion of a Universal Finite Type Invariant. MORE.
subsec:wbraids

7.4. Finite type invariants of w-braids. MORE.

69



D
R
A
F
T

D0 =

DR =

DL =

D1 =

D2 =

D3 =

D4 =

D5 =

D6 =

D7 =

D8 =

D9 =

D10 =

D11 =

D12 =figs/Deg0-2Diagrams

Figure 23. The 15 arrow diagrams of degree at most 2. fig:Deg0-2Diagrams

subsec:ToTwo
7.5. Arrow Diagrams to Degree 2. Just as an example, in this section we study the
spaces A−(↑), Ar−(↑), P−(↑), A−(©) and Ar−(©) in degrees m ≤ 2 in detail, both in the
“v” case and in the “w” case (the “u” case has been known since long).

7.5.1. Arrow Diagrams in Degree 0. There is only one degree 0 arrow diagram, the empty
diagram D0 (see Figure

fig:Deg0-2Diagramsfig:Deg0-2Diagrams
23). There are no relations, and thus {D0} is the basis of G0A

−(↑)
and of G0A

r−(↑) and its obvious closure, the empty circle, is the basis of G0A
−(©) and of

G0A
r−(©). D0 is the unit 1, yet ∆D0 = D0 ⊗D0 = 1 ⊗ 1 6= D0 ⊗ 1 + 1 ⊗D0, so D0 is not

primitive and dimG0P
−(↑) = 0.

subsubsec:DegreeOne
7.5.2. Arrow Diagrams in Degree 1. There is only two degree 1 arrow diagrams, the “right
arrow” diagram DR and the “left arrow” diagram DL (see Figure

fig:Deg0-2Diagramsfig:Deg0-2Diagrams
23). There are no 6T

relations, and thus {DR, DL} is the basis of G1A
−(↑). Both DR and DL vanish modulo FI,

so dimG1A
r−(↑) = dimG1A

r−(©) = 0. Both DR and DL are primitive, so dimG1P
−(↑) = 2.

Finally, the closures of DR and DL are equal, so G0A
−(©) = 〈DR〉 = 〈DL〉.

7.5.3. Arrow Diagrams in Degree 2. There are 12 degree 2 arrow diagrams, which we denote
D1, . . . , D12 (see Figure

fig:Deg0-2Diagramsfig:Deg0-2Diagrams
23). There are six 6T relations, corresponding to the 6 ways of

ordering the 3 vertical strands that appear in a 6T relation (see Figure
fig:6Tfig:6T
3) along a long

line. The ordering (ijk) becomes the relation D3 + D9 + D3 = D6 + D3 + D6. Likewise,
(ikj) 7→ D6 + D1 + D11 = D3 + D5 + D1, (jik) 7→ D10 + D2 + D6 = D2 + D5 + D3,
(jki) 7→ D4 + D7 + D1 = D8 + D1 + D11, (kij) 7→ D2 + D7 + D4 = D10 + D2 + D8,
and (kji) 7→ D8 + D4 + D8 = D4 + D12 + D4. After some linear algebra, we find that
{D1, D2, D6, D8, D9, D11, D12} form a basis of G2A

v(↑), and that the remaining diagrams
reduce to the basis as follows: D3 = 2D6 − D9, D4 = 2D8 − D12, D5 = D9 + D11 − D6,
D7 = D11 +D12 −D8, and D10 = D11. In G2A

rv(↑) we have that D5−12 = 0, and in view of
the above relations, we also get that D3 = D4 = 0. Thus {D1, D2} is a basis of G2A

rv(↑).
There are 3 OC relations to write for G2A

w(↑): D2 = D10, D3 = D6, and D4 = D8. Along
with the 6T relations, we find that {D1, D3 = D6 = D9, D2 = D5 = D7 = D10 = D11, D4 =
D8 = D12} is a basis of G2A

w(↑) When also mod out by FI, only one diagram remains
non-zero in G2A

rw(↑) and it is D1. We leave the determination of the primitives and the
spaces with a circle skeleton as an exercise to the reader.
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8. Glossary of notation
sec:glossary

∆ Cloning, co-product,
par:Deltapar:Delta
2.5.1.2.

Ψ the map Ψ : wBn → Aut(Fn),
subsubsec:McCoolsubsubsec:McCool
2.2.3.

σi a crossing between adjacent strands,
subsubsec:Planarsubsubsec:Planar
2.1.1.

σij strand i crosses over strand j,
subsubsec:Abstractsubsubsec:Abstract
2.1.2.

ς the skeleton morphism,
subsubsec:Planarsubsubsec:Planar
2.1.1.

θ inversion, antipode,
par:thetapar:theta
2.5.1.1.

ξi the generators of Fn,
subsubsec:McCoolsubsubsec:McCool
2.2.3.

Bn the braid group,
subsubsec:Planarsubsubsec:Planar
2.1.1.

Fn the free group,
subsubsec:McCoolsubsubsec:McCool
2.2.3.

FAn the free associative algebra,
par:actionpar:action
2.5.1.5.

OC the Overcrossings Commute relation,
subsec:wBraidssubsec:wBraids
2.2.

PvBn the group of pure v-braids,
subsubsec:Planarsubsubsec:Planar
2.1.1.

PwBn the group of pure w-braids,
subsec:wBraidssubsec:wBraids
2.2.

Sn the symmetric group,
subsubsec:Planarsubsubsec:Planar
2.1.1.

si a virtual crossing between adjacent
strands,

subsubsec:Planarsubsubsec:Planar
2.1.1.

UC the Undercrossings Commute relation,
subsec:wBraidssubsec:wBraids
2.2.

vBn the virtual braid group,
subsubsec:Planarsubsubsec:Planar
2.1.1.

wBn the group of w-braids,
subsec:wBraidssubsec:wBraids
2.2.

xi the generators of FAn,
par:actionpar:action
2.5.1.5.

Z expansions throughout.
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Everything below is to be blanked out before the completion of this paper.

To Do

Unsorted.

• Verify conventions in the definition of Ψ.
• Add something about ribbon surfaces.
• Clarify the relationship between UTFI and expansions.
• Clarify the 4D conventions for FlyingRings and RibbonTubes.
• Pageref and name non-local refs.

Sorted.

• Do the w-knots section.
• Finish the “FT in detail” section.
• Start with w-tangles.
• Write the “more on expansions” section.
• Finish the paper.
• Freeze Mathematica notebooks.

Recycling

Exercise 8.1. Do the same for the obviously-defined “w-links”, excluding the material about
the Alexander polynomial. Note that the wheels that are obtained in the case of w-links
have legs coloured by the components of the w-link in question. Hence if there is more
than one component, the number of such wheels grows exponentially in the degree and thus
Z contains more information than can be coded in a polynomial of even a multi-variable
polynomial.

= 0

figs/CC

Conjecture 8.2. In the case of ordinary links seen as w-links, if we mod
out the target space of Z by the “Commutators Commute” relation shown on
the right, what remains of the wheels part of Z is precisely the multi-variable
Alexander polynomial.
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