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FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS: FROM

ALEXANDER TO KASHIWARA AND VERGNE

DROR BAR-NATAN

Abstract. W-knots, and more generally, w-knotted objects (w-braids, w-tangles, etc.)
make a class of knotted objects which is wider but weaker than their “ordinary” counter-
parts. To get (say) w-knots from ordinary knots, one has to allow non-planar “virtual”
knot diagrams, hence enlarging the the base set of knots. But then one imposes a new
relation, the “overcrossings commute” relation, further beyond the ordinary collection of
Reidemeister moves, making w-knotted objects a bit weaker once again.

The group of w-braids was studied (under the name “welded braids”) by Fenn, Rimanyi
and Rourke [FRR] and was shown to be isomorphic to the McCool group [Mc] of “basis-
conjugating” automorphisms of a free group Fn — the smallest subgroup of Aut(Fn) that
contains both braids and permutations. Brendle and Hatcher [BH], in work that traces back
to Goldsmith [Gol], have shown this group to be a group of movies of flying rings in R3.
Satoh [Sa] studied several classes of w-knotted objects (under the name “weakly-virtual”)
and has shown them to be closely related to certain classes of knotted surfaces in R4. So
w-knotted objects are topologically and algebraically interesting.

In this article we study finite type invariants of several classes of w-knotted objects.
Following Berceanu and Papadima [BP], we construct a homomorphic universal finite type
invariant of w-braids, and hence show that the McCool group of automorphisms is “1-
formal”. We also construct a homomorphic universal finite type invariant of w-tangles.
We find that the universal finite type invariant of w-knots is more or less the Alexander
polynomial (details inside).

Much as the spaces A of chord diagrams for ordinary knotted objects are related to

metrized Lie algebras, we find that the spaces ~Aw of “arrow diagrams” for w-knotted objects
are related to not-necessarily-metrized Lie algebras. Many questions concerning w-knotted
objects turn out to be equivalent to questions about Lie algebras. Most notably we find that
a homomorphic universal finite type invariant of w-knotted trivalent graphs is essentially
the same as a solution of the Kashiwara-Vergne [KV] conjecture and much of the Alekseev-
Torrosian [AT] work on Drinfel’d associators and Kashiwara-Vergne can be re-intepreted as
a study of w-knotted trivalent graphs.
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To Do.

• Move the skeleton outside of D.
• Finish the paper.
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1. Introduction

1.1. Dreams. I have a dream1, at least partially founded on reality, that many of the
difficult algebraic equations in mathematics, especially those that are written in graded
spaces, more especially those that are related in one way or another to quantum groups [Dr1],
and even more especially those related to the work of Etingof and Kazhdan [EK], can be
understood, and indeed, would appear more natural, in terms of finite type invariants of
various topological objects.

I believe this is the case for Drinfel’d’s theory of associators [Dr2], which can be interpreted
as a theory of well-behaved universal finite type invariants of paranthesized tangles2 [LM2,
BN3], and even more elegantly, as a theory of universal finite type invariants of knotted
trivalent graphs [BN8].

I believe this is the case for Drinfel’d’s “Grothendieck-Teichmuller group” [Dr3] which is
better understood as a group of automorphisms of a certain algebraic structure, also related
to universal finite type invariants of paranthesized tangles [BN5].

And I’m optimistic, indeed I believe, that sooner or later the work of Etingof and Kazh-
dan [EK] on quantization of Lie bialgebras will be re-interpreted as a construction of a

1Understanding an author’s history and psychology ought never be necessary to understand his/her papers,
but it may be useful. Nothing material in the rest of this paper relies on Section 1.1.

2“q-tangles” in [LM2], “non-associative tangles” in [BN3].
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well-behaved universal finite type invariant of virtual knots [Ka2] or of some other class of
virtually knotted objects. Some preliminary steps in that direction were taken by Haviv [Ha].

I have another dream, to construct a useful “Algebraic Knot Theory”. As at least a
partial writeup exists [BN7], I’ll only state that an important ingredient necessary to fulfil
that dream would be a “closed form”3 formula for an associator, at least in some reduced
sense. Formulas for associators or reduced associators were in themselves the goal of several
studies undertaken for various other reasons [LM1, Li1, Ku, Lee].

1.2. Stories. Thus I was absolutely delighted when in January 2008 Anton Alekseev de-
scribed to me his joint work [AT] with Charles Torossian — he told me they found a rela-
tionship between the Kashiwara-Vergne conjecture [KV], a cousin of the Duflo isomorphism
(which I already knew to be knot-theoretic [BLT]), and associators taking values in a space
called sder, which I could identify as “tree-level Jacobi diagrams”, also a knot-theoretic space
related to the Milnor invariants [BN2, HM]. What’s more, Anton told me that in certain
quotient spaces the Kashiwara-Vergne conjecture can be solved explicitly; this should lead
to some explicit associators!

So I spent the following several months trying to understand [AT], and this paper is a
summary of my efforts. The main thing I learned is that the Alekseev-Torossian paper, and
with it the Kashiwara-Vergne conjecture, fit very nicely with my first dream recalled above,
about interpreting algebra in terms of knot theory. Indeed much of [AT] can be reformulated
as a construction and a discussion of a well-behaved universal finite type invariant Z of a
certain class of knotted objects (which I will call here w-knotted), a certain natural quotient of
the space of virtual knots (more precisely, virtual trivalent tangles). And my hopes remain
high that later I (or somebody else) will be able to exploit this relationship in directions
compatible with my second dream recalled above, on the construction of an “algebraic knot
theory”.

The story, in fact, is pretier than I was hoping for, for it has the following additional
qualities:

• W-knotted objects are quite interesting in themselves: as stated in the abstract, they
are related to combinatorial group theory via “basis-conjugating” automorphisms of a
free group Fn, to groups of movies of flying rings in R3, and more generaly, to certain
classes of knotted surfaces in R4. The references include [BH, FRR, Gol, Mc, Sa].

• The “chord diagrams” for w-knotted objects (really, these are “arrow diagrams”) de-
scribe formulas for invariant tensors in spaces pertaining to not-necessarily-metrized
Lie algebras in much of the same way as ordinary chord diagrams for ordinary knot-
ted objects describe formulas for invariant tensors in spaces pertaining to metrized
Lie algebras. This observation is bound to have further implications.

• Arrow diagrams also describe the Feynmann diagrams of topological BF theory
[CCM, CCFM] and of a certain class of Chern-Simons theories [Na]. Thus it is
likely that our story is directly related to quantum field theory4.

• When composed with the map from knots to w-knots, Z becomes the Alexander poly-
nomial. For links, it becomes an invariant stronger than the multi-variable Alexander

3The phrase “closed form” in itself requires an explanation. See Section 4.1.
4Some non-perturbative relations between BF theory and w-knots was discussed by Baez, Wise and

Crans [BWC].
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polynomial whice contains the multi-variable Alexander polynomial as an easily iden-
tifiable reduction. On other w-knotted objects Z has easily identifiable reductions
that can be considered as “Alexander polynomials” with good behaviour relative to
various knot-theoretic operations — cablings, compositions of tangles, etc. There
is also a certain specific reduction of Z that can be considered as the “ultimate
Alexander polynomial” — in the appropriate sense, it is the minimal extension of the
Alexander polynomial to other knotted objects which is well behaved under a whole
slew of knot theoretic operations, including the ones named above.

1.3. Plans. Our order of proceedings is: w-braids, w-knots, w-tangles, w-tangled graphs,
and then some odds and ends. For more detailed information consult the “Section Summary”
paragraph at the beginning of each of the sections.

1.4. Acknowledgement. I wish to thank Anton Alekseev, Scott Carter, Joel Kamnitzer,
Lou Kauffman and Dylan Thurston for comments and suggestions.

2. W-Braids

Section Summary. This section is largely a compilation of existing literature,
though we also introduce the language of arrow diagrams that we use thoughout
the rest of the paper. We define w-braids and survey their relationship with basis-
conjugating automorphisms of free groups and with “the group of flying rings in
R3” (really, a group of knotted tubes in R4). We then play the usual game of
introducing finite type invariants, weight systems, chord diagrams (arrow diagrams,
for this case), and 4T-like relations. Finally we define and construct a universal
finite type invariant for w-braids. It turns out that the only algebraic tool we need
to use is the formal exponential function exp(a) :=

∑

an/n!.

2.1. What are w-braids? It is simplest to define w-braids in terms of generators and
relations, either algebraically or picturially. Algebraically, for a natural number n we set
wBn to be the group generated by symbols σi (1 ≤ i ≤ n − 1), called “crossings” and
graphically represented by an overcrossing ! “between strand i and strand i + 1” (with
inverse ")5, and si, called “virtual crossings” and graphically represented by a non-crossing,P, also “between strand i and strand i+ 1”, subject to the following relations:

• The subgroup of wBn generated by the virtual crossings si is the symmetric group
Sn, and the si’s correspond to the transpositions (i, i+ 1). That is, we have

s2
i = 1, sisi+1si = si+1sisi+1, and if |i− j| > 1 then sisj = sjsi.

In pictures, this is

... ...

i i+2i+1 i i+2i+1

i i+1 i i+1 i i+1 i i+1 j j+1j j+1

= = =

Note that we read our braids from bottom to top.

5We sometimes refer to ! as a “positive crossing” and to " as a “negative crossing”.
4
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• The subgroup of wBn generated by the crossings σi’s is the usual braid group Bn,
and σi corresponds to the braiding of strand i over strand i+ 1. That is, we have

(1) σiσ
±1
i+1σi = σi+1σ

±1
i σi+1, and if |i− j| > 1 then σiσj = σjσi.

In pictures, showing only the positive-powers case and dropping the indices, this is

... ...and ==

• Some “mixed relations”,

(2) siσ
±1
i+1si = si+1σ

±1
i si+1, and if |i− j| > 1 then siσj = σjsi.

In pictures, this is

... ...= , = =and

• Finally, we break the symmetry between over crossings and under crossings by im-
posing one of the “forbidden moves” virtual knot theory, but not the other:

(3) σiσi+1si = si+1σiσi+1, yet σ−1
i σ−1

i+1si 6= si+1σ
−1
i σ−1

i+1.

In pictures, this is

yet 6==

The relation we have just imposed may be called the “unforbidden relation”, or,
perhaps more appropriately, the “overcrossings commute” relation (OC). Ignoring
the non-crossings6 P, the OC relation says that it is the same if strand i first crosses
over strand i+1 and then over strand i+2, or if it first crosses over strand i+2 and
then over strand i + 1. The “undercrossings commute” relation UC, the one we do
not impose in (3), would say the same, except with “under” replacing “over”.

Exercise 2.1. Show that the OC relation is equivalent to the relation

σ−1
i si+1σi = σi+1siσ

−1
i+1 or =

Remark 2.2. The group we get without imposing the OC relation (3) is the virtual braid
group vBn (sometimes called “the group of v-braids” below). Thus wBn = vBn/OC.

Remark 2.3. The “skeleton” of a v-braid or a w-braid B is the set of strands appearing in
it, retaining the association between their beginning and ends but ignoring all the crossing
information. More precisely, it is the permutation induced by tracing along B, and even more
precisely it is the image of B via the “skeleton morphism” ς : vBn → Sn (or ς : wBn → Sn)

6Why this is fully appropriate will be explained in Section 3.1.
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defined by ς(σi) = ς(si) = si (or picturially, by ς(!) = ς(P) = P). Thus the symmetric
group Sn is both a subgroup and a quotient group of vBn (and/or wBn).

While mostly in this paper the picturial / algebraic definition of w-braids (and other w-
knotted objects) will suffice, we ought describe at least briefly 2-3 further interpretations of
wBn:

2.1.1. The group of flying rings. Let Xn be the space of all placements of n numbered disjoint
geometric circles in R3, such that all circles are parallel to the xy plane. Such placements
will be called horizontal. A horizontal placement is determined by the centers in R3 of the
n circles and by n radii, so dimXn = 3n + n = 4n. The permutation group Sn acts on Xn

by permuting the circles, and one may think of the quotient X̃n := Xn/Sn as the space of
all horizontal placements of n anonymous circles in R3. The fundamental group π1(X̃n) is
a group of paths traced by n disjoint horizontal circles (modulo homotopy), so it is fair to
think of it as “the group of flying rings”.

Theorem 1. The group of w-braids wBn is isomorphic to the group of flying rings π1(X̃n).

For the proof of this theorem, see [Gol, Sa] and especially [BH]. Here we will contend
ourselves with pictures describing the images of the generators of wBn in π1(X̃n) and a few
comments:

σi =si =

i i+ 1 i i+ 1

Thus we map the permutation si to the movie clip in which ring number i trades its
place with ring number i + 1 by having the two flying around each other. This acrobatic
feat is performed in R3 and it does not matter if ring number i goes “above” or “below” or
“left” or “right” of ring number i+ 1 when they trade places, as all of these possibilities are
homotopic. More interestingly, we map the braiding σi to the movie clip in which ring i+ 1
shrinks a bit and flies through7 ring i. It is a worthwhile exercise for the reader to verify that
the relations in the definition of wBn become homotopies of movie clips. Of these relations
it is most interesting to see why the “overcrossings commute” relation σiσi+1si = si+1σiσi+1

holds, yet the “undercrossings commute” relation σ−1
i σ−1

i+1si = si+1σ
−1
i σ−1

i+1 doesn’t.

2.1.2. Certain ribbon tubes in R4. With time as the added dimension, a flying ring in R3

traces a tube (an annulus) in R4, as shown in the picture below:

i i+ 1 i i+ 1

si = σi =

7To be perfectly precise, we have to specify the fly-through direction. Our convention can be inferred
from the pictures. Yet, since it will not be used, we make no effort to make it more explicit.

6
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Note that we adopt here the drawing conventions of Carter and Saito [CS] — we draw
surfaces as if they were projected from R4 to R3, and we cut them open whenever they are
“hidden” by something with a higher t coordinate.

Note also that the tubes we get in R4 always bound natural 3D “solids” — their “insides”,
in the pictures above. These solids are disjoint in the case of si and have a very specific kind
of intersection in the case of σi — these are transverse intersections with no triple points,
and their inverse images are a meridianal disk on the “thin” solid tube and an interior disk
on the “thick” one. By analogy with the case of ribbon knots and ribbon singularities in R3

(e.g. [Ka1, Chapter V]) and following Satoh [Sa], we call this kind if intersections of solids
in R4 “ribbon singularities” and thus our tubes in R4 are always “ribbon tubes”.

2.1.3. Basis conjugating automorphisms of Fn. Let Fn be the free (non-Abelian) group with
generators x1, . . . , xn. Artin’s theorem (Theorems 15 and 16 of [Ar]) says that that the
(ordinary) braid group Bn (equivalently, the subgroup of wBn generated by the σi’s) is
isomorphic to the group of automorphisms B : Fn → Fn of Fn that satisfy the following two
conditions:

(1) B maps any generator xi to a conjugate of a generator (possibly different). That is,
there is a permutation β ∈ Sn and elements ai ∈ Fn so that for every i,

B(xi) = a−1
i xβiai.

(2) B fixes the ordered product of the generators of Fn,

B(x1x2 · · ·xn) = x1x2 · · ·xn.

McCool’s theorem [Mc] says that the same hold true if one replaces the braid group Bn

with the bigger group wBn and drops the second condition above. So wBn is precisely
the group of “basis-conjugating” automorphisms of the free group Fn, the group of those
automorphisms which map any “basis element” in {x1 . . . xn} to a conjugate of a (possibly
different) basis element.

We contend ourselves with a quick description of the relevant map Ψ : wBn → Aut(Fn):

Ψ(si) =











xi 7→ xi+1

xi+1 7→ xi

xj 7→ xj j 6= i, i+ 1

Ψ(σi) =











xi 7→ xi+1

xi+1 7→ x−1
i+1xixi+1

xj 7→ xj j 6= i, i+ 1

It is a worthwhile exercise for the reader to verify that Ψ respects the relations in the
definition of wBn.

2.2. Finite Type Invariants of v-Braids and w-Braids. In the standard theory of finite
type invariants of knots (also known as Vassiliev or Goussarov-Vassiliev invariants) [Gou,
Va, BN1, BN6] one progresses from the definition of finite type via iterated differences to
chord diagrams and weight systems, to 4T (and other) relations, to the definition of univer-
sal finite type invariants, and beyond. The exact same progression (with different objects
playing similar roles) is also seen in the theories of finite type invariants of braids [BN4],
3-manifolds [Oh, LMO, Le], virtual knots [GPV, Po] and of several other classes of objects.
We thus assume that the reader has familiarity with these basic ideas, and we only indicate
briefly how they are implemented in the case of v-braids and w-braids. Some further details
are in Section 4.2.

7
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=+ + + +

Figure 2. The 6T relation. Standard knot theoretic conventions apply — only the relevant

parts of each diagram is shown; and reality each diagram may have further vertical strands

and horizontal arrows, provided the extras are the same in all 6 diagrams. Also, the vertical

strands are in no particular order — other valid 6T relations are obtained when those strands

are permuted in other ways.

=+= +

Figure 3. The TC and the 4~T relations.

β

D

Figure 1. A 3-singular v-braid

and its corresponding 3-arrow

diagram.

Much like the formula = !−" of the Vassiliev-
Goussarov fame, given a v-braid invariant V : vBn →
A valued in some Abelian group A, we extend it
to “singular” v-braids, braids that contain “semi-
virtual crossings” like Q and R using the formulas
V (Q) := V (!)− V (P) and V (R) := V (P)− V (")
(see [GPV, Po]). We say that “V is of type m”
if its exention vanishes on singular v-braids having
more than m semi-virtual crossings. Up to invari-
ants of lower type, an invariant of type m is deter-
mined by its “weight system”, which is a functional
W = Wm(V ) defined on “m-singular v-braids mod-
ulo ! = P = "”. Let us denote the set of all such equivalence classes by GmD

v
n. Much

as m-singular knots modulo ! = " can be identified with chord diagrams, the elements of
GmD

v
n can be identified with pairs (D, β), where D is a horizontal arrow diagram and β is a

“skeleton permutation”. See the figure on the right.
We assmble the spaces GmD

v
n together to form a single graded space, Dv

m := ⊕∞
m=0GmD

v
n.

Note that throughout this paper, whenever we write an infinite direct sum, we automatically
complete it. Thus in Dv

n we allow infinite sums with one term in each homogeneous piece
GmD

v
n.

In the standard finite-type theory for knots, weight systems always satisfy the 4T relation,
and are therefore functionals on A := D/4T . Likewise, in the case of v-braids, weight systems
satisfy the “6T relation” of [GPV, Po], shown in Figure 2, and are therefore functionals on
Av

n := Dv
n/6T . In the case of w-braids, the “overcrossings commute” relation (3) implies the

“tails commute” (TC) relation on the level of arrow diagrams, and in the presence of the

TC relation, two of the terms in the 6T relation drop out, and what remains is the “4~T”
relation. These relations are shown in Figure 3. Thus weight systems of finite type invariants
of w-braids are linear functionals on Aw

n := Dv
n/TC, 4

~T .
8
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The next question that arises is whether we have already found all the relations that weight
systems always satisfy. More precisely, given a degree m linear functional on Av

n = Dv
n/6T

(or on Aw
n = Dv

n/TC, 4
~T ), is it always the weight system of some type m invariant V of

v-braids (or w-braids)? As in every other theory of finite type invariants, the answer to this
question is affirmative if and only if there exists a “Universal Finite Type Invariant” (UFTI)
of v-braids (w-braids):

Definition 2.4. A universal finite type invariant of v-braids (w-braids) is an invariant Z :
vBn → Av

n (or Z : wBn → Aw
n ) satisfying the following “universality condition”:

• IfB is anm-singular v-braid (w-braid) andD ∈ GmD
v
n is its underlying arrow diagram

as in Figure 1, then

Z(B) = D + (terms of degree > m).

Indeed if Z is a UFTI and W ∈ GmA
⋆,8 the universality condition implies that W ◦Z is a

finite type invariant whose weight system is W . To go the other way, if (Di) is a basis of A
consisting of homogeneous elements, if (Wi) is the dual basis of A⋆ and (Vi) are finite type
invariants whose weight systems are the Wi’s, then Z(B) :=

∑

iDiVi(B) defines a universal
finite type invariant.

In general, constructing a universal finite type invariant is a hard task. For knots, one uses
either the Kontsevich integral or perturbative Chern-Simons theory (also known as “config-
uration space integrals” [BoTa] or “tinkertoy towers” [Th]) or the rather fancy algebraic
theory of “Drinfel’d associators” (a summary of all those approaches is at [BS]. For homol-
ogy spheres, this is the “LMO invariant” [LMO, Le] (also the “Århus integral” [BGRT]).
For v-braids, we still don’t know if a UFTI exists. As we shall see below, the construction
of a UFTI for w-braids is quite easy.

2.3. A Universal Finite Type Invariant of w-Braids. MORE.

3. w-Tangles

MORE, but first more on Section 4.2.

3.1. Circuit Algebras. MORE.

4. Odds and Ends

4.1. What means “closed form”? As stated earlier, one of my hopes for this paper is that
it will lead to closed-form formulas for tree-level associators. The notion “closed-form” in
itself requires an explanation (see footnote 3). Is ex a closed form expression for

∑∞

n=0

xn

n!
, or

is it just an artificial name given for a trancendental expression we cannot otherwise reduce?
Likewise, why not call some tree-level associator Φtree and now it is “in closed form”?

For us, “closed-form” should mean “useful for computations”. More precisely, it means
that the quantity in question is an element of some space Acf of “useful closed-form thingies”
whose elements have finite descriptions (hopefully, finite and short) and on which some oper-
ations are defined by algorithms which terminate in finite time (hopefully, finite and short).
Furthermore, there should be a finite-time algorithm to decide whether two descriptions of
elements of Acf describe the same element. (In our context, if it is hard to decide within the

8A here denotes either Av

n
or Aw

n
, or in fact, any of many similar spaces that we will discuss later on.

9
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target space of an invariant whether two elements are equal or not, the invariant is not too
useful in deciding whether two knotted objects are equal or not).

Thus for example, polynomials in a variable x are always of closed form, for they are
simply described by finite sequences of integers (which in themselves are finite sequences
of digits), the standard operations on polynomials (+, ×, and, say, d

dx
) are algorithmically

computable, and it is easy to write the “polynomial equality” computer program. Likewise
for rational functions and even for rational functions of x and ex.

On the other hand, general elements Φ of the space Atree(↑3) of potential tree-level asso-
ciators are not closed-form, for they are determined by infinitely many coefficients. Thus
iterative constructions of asosciators, such as the one in [BN3] are computationally useful
only within bounded-degree quotients of Atree(↑3) and not as all-degree closed-form formulas.
Likewise, “explicit” formulas for an associator Φ in terms of multiple ζ-values (e.g. [LM1])
are not useful for computations as it is not clear how to apply tangle-theoretic operations
to Φ (such as Φ 7→ Φ1342 or Φ 7→ (1⊗∆ ⊗ 1)Φ) while staying within some space of “objects
with finite description in terms of multiple ζ-values”. And even if a reasonable space of such
objects could be defined, it remains an open problem to decide whether a given rational
linear combination of multiple ζ-values is equal to 0.

4.2. Finite Type Invariants of v-Braids and w-Braids, in some Detail. As mentioned
in Remark 2.2, w-braids are v-braids modulo an additional relation. So we start with a
discussion of finite type invariants of v-braids. For simplicity we take our base ring to be Q;
everywhere we could replace it by an arbitrary field of characteristic 09, and many definitions
make sense also over Z or even with Q replaced by an arbitrary Abelian group.

4.2.1. Basic Definitions. Let QvBn denote group ring of vBn, the algebra of formal linear
combinations of elements of vBn, and let QSn be the group ring of Sn. The skeleton homo-
morphism of Remark 2.3 extends to a homomorphism ς : QvBn → QSn. Let I (or In when
we need to be more precise) denote the kernel of the skeleton homomorphism; it is the ideal in
QvBn generated by formal differences of v-braids having the same skeleton. One may easily
check that I is generated by differences of the form !−P and P−". Following [GPV] we
call such differences “semi-virtual crossings” and denote them by Q and R, respectively10.
In a similar manner, for any natural number m the mth power Im of I is generated by
“m-fold iterated differences” of v-braids, or equally well, by “m-singular v-braids”, which
are v-braids that are also have exactly m semi-virtual crossings (subject to relations which
we don’t need to specify).

Let V : vBn → A be an invariant of v-braids with values in some vector space A. We say
that V is “of type m” (for some m ∈ Z≥0) if its linear extention to QvBn vanishes on Im+1

(alternatively, on all m+1-singular v-braids, in clear analogy with the standard definition of
finite type invariants). If V is of type m for some unspecified m, we say that V is “of finite
type”. Given a type m invariant V , we can restrict it to Im and as it vanishes on Im+1, this
restriction can be regarded as an element of (Im/Im+1)

⋆
. If two type m invariants define the

same element of (Im/Im+1)
⋆

then their difference vanishes on Im, and so it is an invariant

9Or using the variation of constants method, we can simply declare that Q is an arbitrary field of char-
acteristic 0.

10The signs in Q ↔ ! − P and R ↔ P − " are “crossings come with their sign and their virtual
counterparts come with the opposite sign”.

10
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of type m − 1. Thus it is clear that an understanding of Im/Im+1 will be instrumental to
an inductive understanding of finite type invariants. Hence the following definition.

Definition 4.1. The projectivization11 proj vBn is the direct sum

proj vBn :=
⊕

m≥0

Im/Im+1.

Note that throughout this paper, whenever we write an infinite direct sum, we automatically
complete it. Therefore an element in proj vBn is an infinite sequence D = (D0, D1, . . . ), where
Dm ∈ Im/Im+1. The projectivization proj vBn is a graded space, with the degree m piece
being Im/Im+1.

We proceed with the study of proj vBn (and thus of finite type invariants of v-braids) in
three steps. In Section 4.2.2 we introduce a space Dv

n and a surjection ρ0 : Dv
n → proj vBn.

In Section 4.2.3 we find some relations in ker ρ0, most notably the 6T relation, and introduce
the quotient Av

n := Dv
n/6T . And then in Section 4.2.4 we introduce the notion of a “universal

finite type invariant” and explain how the existance of such a gadget proves that proj vBn

is isomorphic to Av
n (in a more traditional language this is the statement that every weight

system integrates to an invariant).
Unfortunately, we do not know if there is a universal finite type invarint of v-braids. Thus

in Section 4.3 we return to the subject of w-braids and prove the weaker statement that
there exists a universal finite type invariant of w-braids.

4.2.2. Arrow Diagrams. We are looking for a space that will surject on Im/Im+1. In other
words, we are looking for a set of generators for Im, and we are willing to call two such
generators the same if their difference is in Im+1. But that’s easy. Left and right multiples
of the formal differences Q = !−P and R = P−" generate I, so products of the schematic
form

(4) B0(Q|R)B1(Q|R)B2 · · ·Bm−1(Q|R)Bm

=

=

generate Im (here (Q|R) means “either a Q or a R”, and there are
exactly m of those in any product). Furtheremore, inside such a
product any Bk can be replaced by any other v-braid B′

k having the
same skeleton (e.g., with ς(Bk)), for then Bk −B′

k ∈ I and the whole
product changes by something in Im+1. Also, the relations in (1)
and in (2) imply the relations shown on the right for Q, and similar
relations for R. With this freedom, a product as in (4) is determined
by the strand-placements of the Q’s and the R’s. That is, for each semi-virtual crossing
in such a product, we only need to know which strand number is the “over” strand, which
strand number is the “under” strand, and a sign that determines whether it is the positive
semi-virtual Q or the negative semi-virtual R. This motivates the following definition.

Definition 4.2. A “horizontal m-arrow diagrams” (analogues to the “chord diagrams” of,
say, [BN1]) is an ordered pair (D, β) in which D is a word of length m in the alphabet
{a+

ij , a
−
ij : i, j ∈ {1, . . . , n}, i 6= j} and β is a permutation in Sn. Let Dvh

m be the space
of formal linear combinations of horizontal m-arrow diagrams. We usually use a picturial
notation for horizontal arrow diagram, as demonstrated in Figure 4.

11Why “projectivization”? See Section 4.4.
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2 41 3 2 41 3

2 41 3 2 41 3

ρ0

−

+

+

Figure 4. The horizontal 3-arrow diagram (D,β) = (a+
12a

−
41a

+
23, 3421) and its image via

ρ0: The first arrow, a+
12 starts at strand 1, ends at strand 2 and carries a + sign, so it is

mapped to a positive semi-virtual crossing of strand 1 over strand 2. Likewise the second

arrow a−41 maps to a negative semi-virtual crossing of strand 4 over strand 1, and a+
23 to a

positive semi-virtual crossing of strand 2 over strand 3. We also show one possible choice

for a representative of the image of ρ0(D,β) in Im/Im+1: it is a v-braid with semi-virtual

crossings as specified by D and whose overall skeleton is 3421.

There is a surjection ρ0 : Dvh
m → Im/Im+1. The definition of ρ0 is suggested by the first

paragraph of this section and an example is shown in Figure 4; we will skip the formal
definition here. We also skip the formal proof of the surjectivity of ρ0.

Finally, consider the product Q ·R and use the second Reidemeister move for both virtual
and non-virtual crossings:QR = (!−P)(P−") = !P +P" −!" −PP = (!P− 1) + (P") = QP−PR.
If a total of m− 1 further semi-virtual crossings are multiplied into this equality on the left
and on the right, along with arbitrary further crossings and virtual crossings, the left hand
side of the equality becomes a member of Im+1, and therefore, as a member of Im/Im+1, it
is 0. Thus with “. . .” standing for extras added on the left and on the right, we have that in
Im/Im+1,

0 = . . . (QP −PR) . . . = ρ0(. . .?? . . .)

MORE.

4.2.3. The 6T Relations. MORE.

4.2.4. The Notion of a Universal Finite Type Invariant. MORE.

4.3. Finite type invariants of w-braids. MORE.

4.4. Why “Projectivization”? The operation we call “projectivization” is exceedingly
general and makes sense for an arbitrary “algebraic structures” O. That is, O is some
collection (Oα) of sets of objects of different kinds, where the subscript α denotes the “kind”
of the objects in Oα, along with some collection of “operations” ψβ , where each ψβ is an
arbitrary map with domain some product Oα1

× · · · × Oαk
of sets of objects, and range a

single set Oα0
(so operations may be unary or binary or multinary, but they always return a

value of some fixed kind). We also allow some named “constants” within some calOα’s (or
equivalently, allow some 0-nary operations). The operations may or may not be subject to

12
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Figure 5. An algebraic structure

O with 4 kinds of objects and one

binary, 3 unary and two 0-nary

operations (the constants 1 and

σ).

{

objects
of kind

3

}

=

O =

O3 O4

O1

•1

O2

•σ
ψ1

ψ3

ψ4

ψ2

axioms — an “axiom” is an identity asserting that some composition of operations is equal
to some other composition of operations.

Figure 5 illustrates the general notion of an algebraic structure. Here are a few specific
examples:

• Groups: one kind of objects, one binary “multiplication”, one unary “inverse”, one
constant “the identity”, and some axioms.

• Group homomorphisms: Two kinds of objects, one for each group. 7 operations —
3 for each of the two groups and the homomorphism itself, going between the two
groups. Many axioms.

• A group acting on a set, a group extension, a split group extension and many other
examples from group theory.

• A quandle. It is worthwhile to quote the abstract of the paper that introduced the
definition (Joyce, [Joy]):

The two operations of conjugation in a group, x⊲ y = y−1xy and x⊲
−1 y =

yxy−1 satisfy certain identities. A set with two operations satisfying these

identities is called a quandle. The Wirtinger presentation of the knot group

involves only relations of the form y−1xy = z and so may be construed as

presenting a quandle rather than a group. This quandle, called the knot

quandle, is not only an invariant of the knot, but in fact a classifying in-

variant of the knot.

• Planar algebras as in [Jon] and circuit algebras as in Section 3.1.
• The algebra of knotted trivalent graphs as in [BN7, Da].
• Let ς : B → S be an arbitrary homomorphism of groups (though our notation

suggests what we have in mind — B may well be braids, and S may well be permu-
tations). We can consider an algebraic structure O whose kinds are the elements of
S, for which the objects of kind s ∈ S are the elements of Os := ς−1(s), and with the
product in B definning operations Os1

×Os2
→ Os1s2

.
• Clearly, many more examples appear throughout mathematics.

Any algebraic structure O has a projectivization. First extend O to allow formal linear
combinations of objects of the same kind (extending the operations in a linear or multi-linear
manner), then let I be the sub-structure made out of all such combinations in which the
sum of coefficients is 0, then let Im be the set of all outputs of algebraic expressions (that is,
arbitrary compositions of the operations in O) that have at least m inputs in I, and finally,
set

(5) projO :=
⊕

m≥0

Im/Im+1.

13
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Clearly, projO is again algebraic structure, with the same multi-graph of spaces and opera-
tions as O, but with new objects and with new operations that may or may not satisfy the
axioms satisfied by the operations of O. The main new feature in projO is that it is quite
clearly a “graded” structure.

I believe that many of the most interesting graded structures that appear in mathemat-
ics are the result of this construction, and that many of the interesting graded equations
that appear in mathematics arise when one tries to find “expansions”, or “universal finite
type invariants”, which are also morphisms12 Z : O → projO or when one studies “automor-
phisms” of such expansions13 Indeed, the paper you are reading now is really the study of the
projectivizations of various algebraic structures associated with w-knotted objects. I would
like to believe that much of the theory of quantum groups (at “generic” ~) will eventually be
shown to be a study of the projectivizations of various algebraic structures associated with
v-knotted objects.

Thus I believe that the operation described in Equation (5) is truly fundamental and
therefore worthy of a catchy name. So why “projectivization”? Well, it reminds me of graded
spaces, but really, that’s all. I simply found no better name. I’m open to suggestions.
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