AN UNEXPECTED CYCLIC SYMMETRY OF sl_{n+1}^{ϵ}

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. We introduce sl_{n+}^{ϵ} , a one-parameter family of Lie algebras that encodes an approximation of the semi-simple Lie algebra sl_n by solvable algebras (this is useful elsewhere; see [?]). We find that sl_{n+}^{ϵ} has an unanticipated order n automorphism Ψ . Why is it there?

Contents

1.	Statement	1
2.	Wherefore gl_{n+}^{ϵ} ?	2
Ref	erences	3

1. Statement

We start with some conventions, then define our main stars the Lie algebras gl_{n+}^{ϵ} and sl_{n+}^{ϵ} in completely explicit terms, then exhibit the completely obvious automorphism Ψ of gl_{n+}^{ϵ} and of sl_{n+}^{ϵ} , and then go back to the abstract origins of gl_{n+}^{ϵ} and sl_{n+}^{ϵ} , where the presence of Ψ becomes surprising and unexplained.

Convention 1.1. Let *n* be a fixed positive integer and let ϵ be a formal parameter. For the formal symbol x_{ij} where $1 \leq i \neq j \leq n$ define its "length" $\lambda(x_{ij}) := \begin{cases} j-i & i < j \\ n-(i-j) & i > j \end{cases}$ Let χ_{ϵ} be the function that assigns ϵ to **True** and 1 to **False**. For example, $\chi(5 < 7) = \epsilon$ while $\chi(7 < 5) = 1$. Let δ_{ij} be the Kronecker δ -function.

Definition 1.2. Let gl_{n+}^{ϵ} be the Lie algebra with generators $\{x_{ij}\}_{1 \leq i \neq j \leq n} \cup \{a_i, b_i\}_{1 \leq i \leq n}$ and with commutation relations

$$[x_{ij}, x_{kl}] = \chi_{\epsilon}(\lambda(x_{ij}) + \lambda(x_{kl}) > n)(\delta_{jk}x_{il} - \delta_{li}x_{kj}) \text{ unless both } j = k \text{ and } l = i,$$

$$[x_{ij}, x_{ji}] = \frac{1}{2}(b_i - b_j + \epsilon(a_i - a_j)),$$

$$[a_i, x_{jk}] = (\delta_{ij} - \delta_{ik})x_{jk},$$

$$[b_i, x_{jk}] = \epsilon(\delta_{ij} - \delta_{ik})x_{jk}.$$
(1)

Let sl_{n+}^{ϵ} be the subalgebra of gl_{n+}^{ϵ} generated by the x_{ij} 's and by the differences $\{a_i - a_j\}$ and $\{b_i - b_j\}$.

2010 Mathematics Subject Classification. 57M25.

Date: First edition Not Yet, 2020, this edition January 23, 2020.

Key words and phrases. Lie algebras, Lie bi-algebras, solvable approximation .

This work was partially supported by NSERC grant RGPIN-2018-04350.

It is easy to verify that the commutation relations in (1) respect the Jacobi identity and hence gl_{n+}^{ϵ} and sl_{n+}^{ϵ} are indeed Lie algebras.

It is easy to verify that if $\epsilon = 1$ then $t_i := b_i - a_i$ is central in gl_{n+}^{ϵ} , that $gl_{n+}^1 \cong \langle x_{ij}, h_i = (b_i + a_i)/2 \rangle \oplus \langle t_i \rangle$, and that the first summand, $\langle x_{ij}, h_i \rangle$, is isomorphic to the general linear Lie algebra gl_n by mapping x_{ij} to the matrix that has 1 in position (ij) and 0 everywhere else and h_i to the diagonal matrix that has 1 in position (ii) and 0 everywhere else. Hence gl_{n+}^{ϵ} is an ϵ -dependent variant of gl_n plus an Abelian summand, explaining its name gl_{n+}^{ϵ} . Nearly identical observations hold for sl_{n+}^{ϵ} : at $\epsilon = 1$ it is a sum of n and an Abelian summand.

It is also easy to verify that the map $\Phi_{\epsilon} \colon gl_{n+}^{\epsilon} \to gl_{n+}^{1}$ defined by $a_{i} \mapsto a_{i}, b_{i} \mapsto \epsilon b_{i}$, and $x_{ij} \mapsto \chi_{\epsilon}(i > j)x_{ij}$ is a morphism of Lie algebras, and it is clearly invertible if ϵ is invertible. Hence for invertible ϵ our gl_{n+}^{ϵ} is always a sum of gl_{n} with an Abelian factor, and so gl_{n+}^{ϵ} is most interesting at $\epsilon = 0$ or in a formal neighborhood of $\epsilon = 0$ (namely, over a ring like $\mathbb{Q}[\epsilon]/(\epsilon^{k+1} = 0)$). Similarly for sl_{n+}^{ϵ} .

Theorem 1.3. The map $\Psi: gl_{n+}^{\epsilon} \to gl_{n+}^{\epsilon}$ which increments all indices modulo n is a Liealgebra automorphism of gl_{n+}^{ϵ} and/or sl_{n+}^{ϵ} . (Precisely, if ψ is the single-cycle permutation $\psi = (123...n)$ then Ψ is defined by $\Psi(x_{ij}) = x_{\psi(i)\psi(j)}, \Psi(a_i) = a_{\psi(i)}, \text{ and } \Psi(b_i) = b_{\psi(i)})$.

Proof. By case checking the length $\lambda(x_{ij})$ is Ψ -invariant, and hence everything in (1) is Ψ -equivariant.

Thus our main theorem is a complete triviality. More precisely, Definition 1.2 was set up so that Theorem 1.3 would be a complete triviality. But gl_{n+}^{ϵ} also has an abstract origin which we describe in the next section. From the abstract perspective the existence of Ψ remains mysterious to us.

Note that at $\epsilon = 1$ the automorphism Ψ induces an inner automorphism of gl_n — namely, it is conjugation $C(P_{\psi})$ by a permutation matrix P_{ψ} . But at other values of ϵ the automorphism Ψ does not restrict to conjugation by P_{ψ} , and at/near our point of interest $\epsilon = 0$ the phrase "conjugation by P_{ψ} " stops making sense — namely, $\lim_{\epsilon \to 0} \Phi_{1/\epsilon} \circ C(P_{\psi}) \circ \Phi_{\epsilon}$ does not exist.

Finally, for any permutation σ one may define a map $A_{\sigma}: gl_{n+}^{\epsilon} \to gl_{n+}^{\epsilon}$ by permuting the indices: $A_{\sigma}(x_{ij}) = x_{\sigma(i)\sigma(j)}, A_{\sigma}(a_i) = a_{\sigma(i)}, \text{ and } A_{\sigma}(b_i) = b_{\sigma(i)})$. At $\epsilon = 1$ the map A_{σ} always respects the Lie bracket. Yet it is easy to verify that at $\epsilon \neq 1$ the only permutations σ for which A_{σ} is a morphism of Lie algebras are the powers of ψ , and obviously, $A_{\psi^p} = \Psi^p$.

2. Wherefore gl_{n+}^{ϵ} ?

Let \mathbb{F} be some ground field. A semi-simple Lie algebra over \mathbb{F} (say, gl_n or sl_n) can be reconstructed from its half: if \mathfrak{g} is a semi-simple Lie algebra (say, gl_n or sl_n) and \mathfrak{b}^+ is an upper Borel subalgebra (the upper triangular matrices if \mathfrak{g} is gl_n or sl_n), then \mathfrak{g} can be recovered from \mathfrak{b}^+ , which has roughly half the dimension of \mathfrak{g} .

Let us go through the process in some detail. The "half" \mathfrak{b}^+ has its own Lie bracket $B^+: \mathfrak{b}^+ \otimes \mathfrak{b}^+ \to \mathfrak{b}^+$. In addition, \mathfrak{b}^+ is dual to a lower Borel subalgebra \mathfrak{b}^- (lower triangular matrices for gl_n or sl_n , with the duality pairing $P: \mathfrak{b}^- \otimes \mathfrak{b}^+ \to \mathbb{F}$ given by $P(L, U) = \operatorname{tr}(LU)$). Now \mathfrak{b}^- also has a bracket $B^-: \mathfrak{b}^- \otimes \mathfrak{b}^- \to \mathfrak{b}^-$ and its adjoint relative to the duality P is a "cobracket" map $\delta: \mathfrak{b}^+ \to \mathfrak{b}^+ \otimes \mathfrak{b}^+$ which satisfies three conditions:

- δ is anti-symmetric: $\delta + \sigma \circ \delta = 0$, where $\sigma \colon \mathfrak{b}^+ \otimes \mathfrak{b}^+ \to \mathfrak{b}^+ \otimes \mathfrak{b}^+$ swaps the two tensor factors.
- δ satisfies a co-Jacobi identity: $(1 + \tau + \tau^2) \circ (1 \otimes \delta) \circ \delta = 0$, where $\tau : \mathfrak{b}^+ \otimes \mathfrak{b}^+ \to \mathfrak{b}^+ \otimes \mathfrak{b}^+ \otimes \mathfrak{b}^+$ is the cyclic permutation of the tensor factors.

• Along with the bracket $[\cdot, \cdot] = B^+$, δ satisfies a cocycle identity:

 $\forall x_1, x_2 \in \mathfrak{b}^+, \quad \delta([x_1, x_2]) = (\mathrm{ad}_{x_1} \otimes 1 + 1 \otimes \mathrm{ad}_{x_1})(\delta(x_2)) - (\mathrm{ad}_{x_2} \otimes 1 + 1 \otimes \mathrm{ad}_{x_2})(\delta(x_1)).$

One may show that given any finite dimensional Lie algebra \mathfrak{b} and a co-bracket $\delta \colon \mathfrak{b} \to \mathfrak{b} \otimes \mathfrak{b}$ satisfying the above conditions, then the adjoint $\delta^* \colon \mathfrak{b}^* \otimes \mathfrak{b}^* \to \mathfrak{b}^*$ of the cobracket defines a bracket on \mathfrak{b} , and then the "double" $\mathcal{D}(\mathfrak{b}, \delta) = \mathfrak{b} \oplus \mathfrak{b}^*$ is also a Lie algebra, with bracket

 $[x_1 \oplus y_1, x_2 \oplus y_2] := ([x_1, x_2] - \operatorname{ad}_{y_1}(x_2) + \operatorname{ad}_{y_2}(x_1)) \oplus ([y_1, y_2] + \operatorname{ad}_{x_1}(y_2) - \operatorname{ad}_{x_2}(y_1)),$

where we have used $\operatorname{ad}_x(y)$ to denote the coadjoint action of \mathfrak{b} on \mathfrak{b}^* (whose definition depends only on the bracket of \mathfrak{b}) and $\operatorname{ad}_y(x)$ to denote the coadjoint action of \mathfrak{b}^* on $\mathfrak{b}^{**} = \mathfrak{b}$ (whose definition depends only on the bracket of \mathfrak{b}^* or the cobracket of \mathfrak{b}).

With all this in mind, $\mathfrak{g}_+ := \mathcal{D}(\mathfrak{b}^+) \cong \mathfrak{g} \oplus \mathfrak{h}$, where \mathfrak{h} is an "extra" copy of the Cartan subalgebra of \mathfrak{g} . In the case of gl_n (and similarly for sl_n), this becomes the statement that the upper triangular matrices direct sum the lower triangular matrices make all matrices, but with the diagonal matrices repeated twice.

Clearly, if δ satisfies the three conditions above, then so does $\epsilon\delta$, where ϵ is any scalar. Hence we can define $\mathfrak{g}^{\epsilon}_{+} := \mathcal{D}(\mathfrak{b}^{+}, \epsilon\delta)$. At $\epsilon = 1$ this is $\mathfrak{g} \oplus \mathfrak{h}$, and by scaling the $(\mathfrak{b}^{+})^{*} = \mathfrak{b}^{-}$ component of $\mathcal{D}(\mathfrak{b}^{+}, \epsilon\delta)$ by a factor of ϵ , the same is true whenever ϵ is invertible. Yet the one-parameter family $\mathfrak{g}^{\epsilon}_{+}$ is not constant: at $\epsilon = 0$ the double construction degenerates to the semi-direct product $\mathfrak{b}^{+} \ltimes (\mathfrak{b}^{+})^{*}$, where $(\mathfrak{b}^{+})^{*}$ is taken as an Abelian Lie algebra and \mathfrak{b}^{+} acts on $(\mathfrak{b}^{+})^{*}$ using the coadjoint action. A Borel subalgebra is solvable, and its semi-direct product with an Abelian factor remains solvable. Hence \mathfrak{g}^{0}_{+} cannot be isomorphic to $\mathfrak{g} \oplus \mathfrak{h}$.

It is an elementary exercise to verify that if $\mathfrak{g} = gl_n$ or $\mathfrak{g} = sl_n$ then the resulting $\mathfrak{g}_+^{\epsilon}$ is indeed gl_{n+}^{ϵ} or sl_{n+}^{ϵ} of the previous section.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO ONTARIO M5S 2E4, CANADA Email address: drorbn@math.toronto.edu URL: http://www.math.toronto.edu/drorbn

MATHEMATISCH INSTITUUT, UNIVERSITEIT LEIDEN, NIELS BOHRWEG 1, 2333 CA LEIDEN, THE NETHERLANDS

Email address: roland.mathematics@gmail.com *URL*: http://www.rolandvdv.nl/