AN UNEXPECTED CYCLIC SYMMETRY OF $s l_{n+}^{\epsilon}$

DROR BAR-NATAN AND ROLAND VAN DER VEEN

Abstract. We introduce $s l_{n+}^{\epsilon}$, a one-parameter family of Lie algebras that encodes an approximation of the semi-simple Lie algebra $s l_{n}$ by solvable algebras (this is useful elsewhere; see [?]). We find that $s l_{n+}^{\epsilon}$ has an unticipated order n automorphism Ψ. Why is it there?

Contents

1. Statement 1
2. Wherefore $g l_{n+}^{\epsilon}$? 2
References 3

1. Statement

We start with some conventions, then define our main stars the Lie algebras $g l_{n+}^{\epsilon}$ and $s l_{n+}^{\epsilon}$ in completely explicit terms, then exhibit the completely obvious automorphism Ψ of $g l_{n+}^{\epsilon}$ and of $s l_{n+}^{\epsilon}$, and then go back to the abstract origins of $g l_{n+}^{\epsilon}$ and $s l_{n+}^{\epsilon}$, where the presence of Ψ becomes surprising and unexplained.

Convention 1.1. Let n be a fixed positive integer and let ϵ be a formal parameter. For the formal symbol $x_{i j}$ where $1 \leqslant i \neq j \leqslant n$ define its "length" $\lambda\left(x_{i j}\right):=\left\{\begin{array}{ll}j-i & i<j \\ n-(i-j) & i>j\end{array}\right.$. Let χ_{ϵ} be the function that assigns ϵ to True and 1 to False. For example, $\chi(5<7)=\epsilon$ while $\chi(7<5)=1$. Let $\delta_{i j}$ be the Kronecker δ-function.
Definition 1.2. Let $g l_{n+}^{\epsilon}$ be the Lie algebra with generators $\left\{x_{i j}\right\}_{1 \leqslant i \neq j \leqslant n} \cup\left\{a_{i}, b_{i}\right\}_{1 \leqslant i \leqslant n}$ and with commutation relations

$$
\begin{align*}
{\left[x_{i j}, x_{k l}\right] } & =\chi_{\epsilon}\left(\lambda\left(x_{i j}\right)+\lambda\left(x_{k l}\right)>n\right)\left(\delta_{j k} x_{i l}-\delta_{l i} x_{k j}\right) \quad \text { unless both } j=k \text { and } l=i, \\
{\left[x_{i j}, x_{j i}\right] } & =\frac{1}{2}\left(b_{i}-b_{j}+\epsilon\left(a_{i}-a_{j}\right)\right), \tag{1}\\
{\left[a_{i}, x_{j k}\right] } & =\left(\delta_{i j}-\delta_{i k}\right) x_{j k} \\
{\left[b_{i}, x_{j k}\right] } & =\epsilon\left(\delta_{i j}-\delta_{i k}\right) x_{j k} .
\end{align*}
$$

Let $s l_{n+}^{\epsilon}$ be the subalgebra of $g l_{n+}^{\epsilon}$ generated by the $x_{i j}$'s and by the differences $\left\{a_{i}-a_{j}\right\}$ and $\left\{b_{i}-b_{j}\right\}$.

Date: First edition Not Yet, 2020, this edition January 23, 2020.
2010 Mathematics Subject Classification. 57M25.
Key words and phrases. Lie algebras, Lie bi-algberas, solvable approximation .
This work was partially supported by NSERC grant RGPIN-2018-04350.

It is easy to verify that the commutation relations in (1) respect the Jacobi identity and hence $g l_{n+}^{\epsilon}$ and $s l_{n+}^{\epsilon}$ are indeed Lie algebras.

It is easy to verify that if $\epsilon=1$ then $t_{i}:=b_{i}-a_{i}$ is central in $g l_{n+}^{\epsilon}$, that $g l_{n+}^{1} \cong\left\langle x_{i j}, h_{i}=\right.$ $\left.\left(b_{i}+a_{i}\right) / 2\right\rangle \oplus\left\langle t_{i}\right\rangle$, and that the first summand, $\left\langle x_{i j}, h_{i}\right\rangle$, is isomorphic to the general linear Lie algebra $g l_{n}$ by mapping $x_{i j}$ to the matrix that has 1 in position ($i j$) and 0 everywhere else and h_{i} to the diagonal matrix that has 1 in position ($i i$) and 0 everywhere else. Hence $g l_{n+}^{\epsilon}$ is an ϵ-dependent variant of $g l_{n}$ plus an Abelian summand, explaining its name $g l_{n+}^{\epsilon}$. Nearly identical observations hold for $s l_{n+}^{\epsilon}$: at $\epsilon=1$ it is a sum of ${ }_{n}$ and an Abelian summand.

It is also easy to verify that the map $\Phi_{\epsilon}: g l_{n+}^{\epsilon} \rightarrow g l_{n+}^{1}$ defined by $a_{i} \mapsto a_{i}, b_{i} \mapsto \epsilon b_{i}$, and $x_{i j} \mapsto \chi_{\epsilon}(i>j) x_{i j}$ is a morphism of Lie algebras, and it is clearly invertible if ϵ is invertible. Hence for invertible ϵ our $g l_{n+}^{\epsilon}$ is always a sum of $g l_{n}$ with an Abelian factor, and so $g l_{n+}^{\epsilon}$ is most interesting at $\epsilon=0$ or in a formal neighborhood of $\epsilon=0$ (namely, over a ring like $\left.\mathbb{Q}[\epsilon] /\left(\epsilon^{k+1}=0\right)\right)$. Similarly for $s l_{n+}^{\epsilon}$.

Theorem 1.3. The map $\Psi: g l_{n+}^{\epsilon} \rightarrow g l_{n+}^{\epsilon}$ which increments all indices modulo n is a Liealgebra automorphism of $g l_{n+}^{\epsilon}$ and/or sl l_{n+}^{ϵ}. (Precisely, if ψ is the single-cycle permutation $\psi=(123 \ldots n)$ then Ψ is defined by $\Psi\left(x_{i j}\right)=x_{\psi(i) \psi(j)}, \Psi\left(a_{i}\right)=a_{\psi(i)}$, and $\left.\Psi\left(b_{i}\right)=b_{\psi(i)}\right)$.
Proof. By case checking the length $\lambda\left(x_{i j}\right)$ is Ψ-invariant, and hence everything in (1) is Ψ-equivariant.

Thus our main theorem is a complete triviality. More precisely, Definition 1.2 was set up so that Theorem 1.3 would be a complete triviality. But $g l_{n+}^{\epsilon}$ also has an abstract origin which we describe in the next section. From the abstract perspective the existence of Ψ remains mysterious to us.

Note that at $\epsilon=1$ the automorphism Ψ induces an inner automorphism of $g l_{n}$ — namely, it is conjugation $C\left(P_{\psi}\right)$ by a permutation matrix P_{ψ}. But at other values of ϵ the automorphism Ψ does not restrict to conjugation by P_{ψ}, and at/near our point of interest $\epsilon=0$ the phrase "conjugation by P_{ψ} " stops making sense - namely, $\lim _{\epsilon \rightarrow 0} \Phi_{1 / \epsilon} \circ C\left(P_{\psi}\right) \circ \Phi_{\epsilon}$ does not exist.

Finally, for any permutation σ one may define a map $A_{\sigma}: g l_{n+}^{\epsilon} \rightarrow g l_{n+}^{\epsilon}$ by permuting the indices: $A_{\sigma}\left(x_{i j}\right)=x_{\sigma(i) \sigma(j)}, A_{\sigma}\left(a_{i}\right)=a_{\sigma(i)}$, and $\left.A_{\sigma}\left(b_{i}\right)=b_{\sigma(i)}\right)$. At $\epsilon=1$ the map A_{σ} always respects the Lie bracket. Yet it is easy to verify that at $\epsilon \neq 1$ the only permutations σ for which A_{σ} is a morphism of Lie algebras are the powers of ψ, and obviously, $A_{\psi^{p}}=\Psi^{p}$.

2. Wherefore $g l_{n+}^{\epsilon}$?

Let \mathbb{F} be some ground field. A semi-simple Lie algebra over \mathbb{F} (say, $g l_{n}$ or $s l_{n}$) can be reconstructed from its half: if \mathfrak{g} is a semi-simple Lie algebra (say, $g l_{n}$ or $s l_{n}$) and \mathfrak{b}^{+}is an upper Borel subalgebra (the upper triangular matrices if \mathfrak{g} is $g l_{n}$ or $s l_{n}$), then \mathfrak{g} can be recovered from \mathfrak{b}^{+}, which has roughly half the dimension of \mathfrak{g}.

Let us go through the process in some detail. The "half" \mathfrak{b}^{+}has its own Lie bracket $B^{+}: \mathfrak{b}^{+} \otimes \mathfrak{b}^{+} \rightarrow \mathfrak{b}^{+}$. In addition, \mathfrak{b}^{+}is dual to a lower Borel subalgebra \mathfrak{b}^{-}(lower triangular matrices for $g l_{n}$ or $s l_{n}$, with the duality pairing $P: \mathfrak{b}^{-} \otimes \mathfrak{b}^{+} \rightarrow \mathbb{F}$ given by $\left.P(L, U)=\operatorname{tr}(L U)\right)$. Now \mathfrak{b}^{-}also has a bracket $B^{-}: \mathfrak{b}^{-} \otimes \mathfrak{b}^{-} \rightarrow \mathfrak{b}^{-}$and its adjoint relative to the duality P is a "cobracket" map $\delta: \mathfrak{b}^{+} \rightarrow \mathfrak{b}^{+} \otimes \mathfrak{b}^{+}$which satisfies three conditions:

- δ is anti-symmetric: $\delta+\sigma \circ \delta=0$, where $\sigma: \mathfrak{b}^{+} \otimes \mathfrak{b}^{+} \rightarrow \mathfrak{b}^{+} \otimes \mathfrak{b}^{+}$swaps the two tensor factors.
- δ satisfies a co-Jacobi identity: $\left(1+\tau+\tau^{2}\right) \circ(1 \otimes \delta) \circ \delta=0$, where $\tau: \mathfrak{b}^{+} \otimes \mathfrak{b}^{+} \otimes \mathfrak{b}^{+} \rightarrow$ $\mathfrak{b}^{+} \otimes \mathfrak{b}^{+} \otimes \mathfrak{b}^{+}$is the cyclic permutation of the tensor factors.
- Along with the bracket $[\cdot, \cdot]=B^{+}, \delta$ satisfies a cocycle identity:
$\forall x_{1}, x_{2} \in \mathfrak{b}^{+}, \quad \delta\left(\left[x_{1}, x_{2}\right]\right)=\left(\operatorname{ad}_{x_{1}} \otimes 1+1 \otimes \operatorname{ad}_{x_{1}}\right)\left(\delta\left(x_{2}\right)\right)-\left(\operatorname{ad}_{x_{2}} \otimes 1+1 \otimes \operatorname{ad}_{x_{2}}\right)\left(\delta\left(x_{1}\right)\right)$.
One may show that given any finite dimensional Lie algebra \mathfrak{b} and a co-bracket $\delta: \mathfrak{b} \rightarrow \mathfrak{b} \otimes \mathfrak{b}$ satisfying the above conditions, then the adjoint $\delta^{*}: \mathfrak{b}^{*} \otimes \mathfrak{b}^{*} \rightarrow \mathfrak{b}^{*}$ of the cobracket defines a bracket on \mathfrak{b}, and then the "double" $\mathcal{D}(\mathfrak{b}, \delta)=\mathfrak{b} \oplus \mathfrak{b}^{*}$ is also a Lie algebra, with bracket

$$
\left[x_{1} \oplus y_{1}, x_{2} \oplus y_{2}\right]:=\left(\left[x_{1}, x_{2}\right]-\operatorname{ad}_{y_{1}}\left(x_{2}\right)+\operatorname{ad}_{y_{2}}\left(x_{1}\right)\right) \oplus\left(\left[y_{1}, y_{2}\right]+\operatorname{ad}_{x_{1}}\left(y_{2}\right)-\operatorname{ad}_{x_{2}}\left(y_{1}\right)\right),
$$

where we have used $\operatorname{ad}_{x}(y)$ to denote the coadjoint action of \mathfrak{b} on \mathfrak{b}^{*} (whose definition depends only on the bracket $\mathfrak{f} \mathfrak{b}$) and $\operatorname{ad}_{y}(x)$ to denote the coadjoint action of \mathfrak{b}^{*} on $\mathfrak{b}^{* *}=\mathfrak{b}$ (whose definition depends only on the bracket of \mathfrak{b}^{*} or the cobracket of \mathfrak{b}).

With all this in mind, $\mathfrak{g}_{+}:=\mathcal{D}\left(\mathfrak{b}^{+}\right) \cong \mathfrak{g} \oplus \mathfrak{h}$, where \mathfrak{h} is an "extra" copy of the Cartan subalgebra of \mathfrak{g}. In the case of $g l_{n}$ (and similarly for $s l_{n}$), this becomes the statement that the upper triangular matrices direct sum the lower triangular matrices make all matrices, but with the diagonal matrices repeated twice.

Clearly, if δ satisfies the three conditions above, then so does $\epsilon \delta$, where ϵ is any scalar. Hence we can define $\mathfrak{g}_{+}^{\epsilon}:=\mathcal{D}\left(\mathfrak{b}^{+}, \epsilon \delta\right)$. At $\epsilon=1$ this is $\mathfrak{g} \oplus \mathfrak{h}$, and by scaling the $\left(\mathfrak{b}^{+}\right)^{*}=\mathfrak{b}^{-}$ component of $\mathcal{D}\left(\mathfrak{b}^{+}, \epsilon \delta\right)$ by a factor of ϵ, the same is true whenever ϵ is invertible. Yet the one-parameter family $\mathfrak{g}_{+}^{\epsilon}$ is not constant: at $\epsilon=0$ the double construction degenerates to the semi-direct product $\mathfrak{b}^{+} \ltimes\left(\mathfrak{b}^{+}\right)^{*}$, where $\left(\mathfrak{b}^{+}\right)^{*}$ is taken as an Abelian Lie algebra and \mathfrak{b}^{+} acts on $\left(\mathfrak{b}^{+}\right)^{*}$ using the coadjoint action. A Borel subalgebra is solvable, and its semi-direct product with an Abelian factor remains solvable. Hence \mathfrak{g}_{+}^{0} cannot be isomorphic to $\mathfrak{g} \oplus \mathfrak{h}$.

It is an elementary exercise to verify that if $\mathfrak{g}=g l_{n}$ or $\mathfrak{g}=s l_{n}$ then the resulting $\mathfrak{g}_{+}^{\epsilon}$ is indeed $g l_{n+}^{\epsilon}$ or $s l_{n+}^{\epsilon}$ of the previous section.

References

Department of Mathematics, University of Toronto, Toronto Ontario M5S 2E4, Canada
Email address: drorbn@math.toronto.edu
URL: http://www.math.toronto.edu/drorbn
Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Email address: roland.mathematics@gmail.com
URL: http://www.rolandvdv.nl/

