Task. Define $\operatorname{Exp}_{m, i, k}[P]$ to compute $e^{\mathbb{O}(P)}$ to ϵ^{k} in the using the $m_{i, i \rightarrow i}$ multiplication, where P is an ϵ-dependent near-docile element, giving the answer in \mathbb{E}-form.
Methodology. If $P_{0}:=P_{\epsilon=0}$ and $\mathbb{e}^{\lambda \mathbb{O}(P)}=\mathbb{O}\left(e^{\lambda P_{0}} F(\lambda)\right)$, then
$F(\lambda=0)=1$ and we have:
$\mathscr{O}\left(e^{\lambda P_{0}}\left(P_{0} F(\lambda)+\partial_{\lambda} F\right)\right)=\mathbb{O}\left(\partial_{\lambda} e^{\lambda P_{0}} F(\lambda)\right)=$

$$
\partial_{\lambda} \mathbb{O}\left(e^{\lambda P_{0}} F(\lambda)\right)=\partial_{\lambda} e^{\lambda \mathbb{O}(P)}=e^{\lambda \mathbb{O}(P)} \mathbb{O}(P)=\mathbb{O}\left(e^{\lambda P_{0}} F(\lambda)\right) \mathbb{O}(P)
$$

This is a linear ODE for F. Setting inductively $F_{k}=F_{k-1}+\epsilon^{k} \varphi$ we find that $F_{0}=1$ and solve for φ.

