
IMPLEMENTING THE QUANTUM sl2 PORTFOLIO OF OPERATIONS

DROR BAR-NATAN AND ROLAND VAN DER VEEN

Abstract. Building up from some new or lightly used theoretical tools, especially “solv-
able approximation” and “Gaussian differential operators”, we give a clean and efficient
computer implementation of the quantum sl2 portfolio of operations. Beyond the theo-
retical interest and the satisfaction that one obtains when complicated formulas come to
life, become specific, and check, we explain (and implement and prove) why our results are
valuable in knot theory.

We mean business! Page ?? displays a program which is a complete implementation
of the quantum sl2 portfolio of operations. Page ?? displays a variant of that program
tailored to efficiently compute the “Rozansky-Overbay” invariants. Appendix A contains
a tabulation of some of these invariants on knots with up to 10 crossings. Much more is
at web/:“http://drorbn.net/SL2PO/.
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1. Introduction

In Section 1.1 of the introduction we briefly and schematically recall how certain algebras
lead to knot invariants, only so as to explain what exactly it is that we aim to implement
and why. Section 1.2 of the introduction is the abstract of this paper, expanded from one
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paragraph to a few pages. Section 1.3 of the introduction is an introduction to the rest of
the paper — a summary of what happens in it, and in what order.

1.1. A Quick Reminder of Algebras and R-matrices. A “Hopf Algebra” is a vector
space pU,`, ¨q (over Q, for simplicity) along with a number of further operations: a “product”
m : UbU Ñ U , a “coproduct” ∆: U Ñ UbU , an “antipode” S : U Ñ U , a “unit” η : Q Ñ U
and a “counit” ε : U Ñ Q (which of course are required to satisfy some axioms). If U is also
equipped with a “braiding” R P U b U and a “cuap element” C P U and these satify a few
further axioms, then U is a “ribbon Hopf algebra”. It is sometimes (but not always) useful
to add to the mix a “pairing element” P P U˚ b U˚, which is dual to the element R.

Ribbon Hopf algebras are immensely useful in low dimensional topology, as they lead
to knot and tangle invariants which are well-behaved under “strand stitching”, “strand
doubling”, “strand reversal”, and a few lesser operations. See e.g. [Oh, Section 4.2] and our
quick summary in Aside 1.1 and in Aside ??.

Yet from the perspective of topology, the algebras U that one uses seem like great waste-
lands with a few pearls hidden within. From the perspective of Aside 1.1 and Aside ??
the vector space structure of U is completely irrelevant as the operations of addition (`)
and multiplication by a scalar (¨) are never used. All that matters are those elements (the

1It does not matter whther or not ∆, S, η, and ε are used for the generation of the “pearls”, as the axioms of
a ribbon Hopf algebra imply that anything that can be generated with them can also be generated without
them.
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ÿ
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Draw K as a long knot in the plane so that at each
crossing the two crossing strands are flowing up, and
so that the two ends of K are flowing up.
Put a copy of R “

ř

aib bi on every positive crossing
of K with the “a” side on the over-strand and the “b”
side on the under-strand, labeling these a’s and b’s
with distinct indices i, j, k, . . . (similarly put copies of
R´1 “

ř

a1i b b1i on the negative crossings; these are
absent in our example). Put a copy of C˘1 on every
cuap where the tangent to the knot is pointing to the
right (meaning, a C on every such cup and a C´1 on
every such cap).
Form an expression zpKq in U by multiplying all the
a, b, C letters as they are seen when traveling along
K and then summing over all the indices, as shown.
If R and C satisfy some conditions dictated by the standard Reidemeister moves
of knot theory, the resulting zpKq is a knot invariant.
Abstractly, zpKq is obtained by tensoring together several copies of R˘1 P Ub2 and
C˘1 P U to get an intermediate result z0 P U

bS, where S is a finite set with two
elements for each crossing of K and one element for each right-pointing cuap. We
then multiply the different tensor factors in z0 in an order dictated by K to get an
output in a single copy of U .

Aside 1.1. The standard methodology on an example knot.
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“pearls”) within tensor powers UbS of U that can be written using the “generators” R and C,
using tensor products UbS1 ˆ UbS2 Ñ UbpS1\S2q, and using the multiplication m (extended
to tensor powers) yet without using ` and ¨1.

MORE.

1.2. An Expansion of the Abstract. MORE.

1.3. Plan of the paper. MORE.

1.4. Acknowledgement. MORE.

2. Rotational Virtual Tangles

Sections 2–5 of this paper can be regarded as independet paperlets which can be read in
any order.

MORE.

3. Meta-Hopf Algebras and the Drinfel’d Double Construction

Sections 2–5 of this paper can be regarded as independet paperlets which can be read in
any order.

A Hopf algebra is a vector space U with some operations which satisfy some axioms (see
Aside 3.1). These axioms, labeled (1)–(9) in the aside, never directly mention the vector
space structure of U ; that structure is only used for the formation of the spaces Ubn on
which the operations are defined and in which the axioms are stated. But this calls for a
generalization — why not replace Ubn with sets Un that do not need to be vector spaces,
and replace operations such as Idb ¨ ¨ ¨ bmb ¨ ¨ ¨ b Id : Ubn Ñ Ubpn´1q with arbitrary maps
mn : Un Ñ Un´1 in such a manner that the axioms (1)–(9) would still make sense?

If U is a vector space over Q (or another field) we form Ubn “ U b ¨ ¨ ¨ b U
(n times), and in particular Ub0 “ Q, Ub1 “ U , Ub2 “ U b U , etc. We identify
Ub1 – Ub1bUb0 – Ub0bUb1. With these conventions, a Hopf Algebra is a vector
space U endowed with maps m : Ub2 Ñ Ub1, ∆: Ub1 Ñ Ub2, η : Ub0 Ñ Ub1,
ε : Ub1 Ñ Ub0, and an invertible S : Ub1 Ñ Ub1 such that:

(1) pmb Idq�m “ pIdbmq�m.
(2) pη b Idq�m “ pIdb ηq�m “ Id.
(3) ∆�p∆b Idq “ ∆�pIdb∆q.
(4) ∆�pεb Idq “ ∆�pIdb εq “ Id.
(5) m�∆ “ p∆bδq�pIdbσbIdq�pmbmq,

where σ : U2 Ñ U2 is the transposi-
tion.

(6) η “ pη b ηq�m.
(7) ε “ ∆�pεb εq.
(8) ∆�pS b Idq�m “ ∆�pId b Sq�m “

ε�η.

Note that we are not assuming m “ σ�m (“commutativity”) or ∆ “ ∆�σ (“co-
commutativity”).

Aside 3.1. Ordinary Hopf Algebras.
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A bit of further reflection2 leads one to realize that m should be replaced with a family
of operations mij

k which generalize “multiply the content of the ith tensor factor with the
content of the jth tensor factor putting the result as a kth tensor factor”, and that in fact,
the restriction that the labels of the tensor factors would be natural numbers is a (minor)
handicap. Hence we come to the following convention and definition:

Convention 3.1. If S, A, and B are finite sets, A Ă S, and pSzAqXB “ H we write SzAYB
for pSzAq \ B. In fact, whenever we write SzAY B we automatically add the assumptions
that A Ă S and pSzAq X B “ H, even if this is not explicitly stated. In this context we
often suppress braces and commas when referring to sets with a small number of elements,
and automatically assume that these elements are distinct. Hence for example Szij Y kl “
pSzti, juq\tk, lu, and the assumptions i ‰ j, k ‰ l, ti, ju Ă S, and pSzti, juqXtk, lu “ H are
silently made. Finally, if A or B are omitted from the notation, the omitted set is assumed
to be the empty set and all further conventions still apply.

Definition 3.2. A meta-Hopf algebra (in the category of sets) is an assignment U : S ÞÑ US

that assigns a (possibly big) set US to every finite set S (we ignore the easily-resolved issues
that come with the likes of “the set of all finite sets”), along with the following families of
operations and axioms:

Most Interesting. For any finite S, operationsmij
k : US Ñ USzijYk called “meta-multiplications”

or “stitchings”, ∆i
jk : US Ñ USziYjk “meta-comultiplications” or “doublings”, ηi : US Ñ USYi

“meta-units”, εi : US Ñ USzi “meta-counits”, and Si : US Ñ US “meta-antipodes”, satisfying
the following axioms (compare with Aside 3.1):

(1) mij
i �mik

i “ mjk
j �mij

i .

(2) ηi�mij
j “ ηj�mij

i “ Id.

(3) ∆i
ik�∆i

ij “ ∆i
ij�∆j

jk.

(4) ∆j
ij�εi “ ∆i

ij�εj “ Id.

(5) mij
k�∆k

ij “ ∆i
kl�∆j

mn�mkm
i �mln

j .

(6) ηk “ ηi�ηj�mij
k .

(7) εk “ ∆k
ij�εi�εj.

(8) ∆i
jk�Sj�mjk

i “ ∆i
jk�Sk�mjk

i “ εi�ηi.

Note that we are not assuming mij
k “ mji

k (“commutativity”) or ∆i
jk “ ∆i

kj (“cocommu-
tativity”).

MORE.

3.1. Meta-monoids vs. monoid objectss in a monoidal category. MORE.

4. The Category of Perturbed Gaussian Differential Operators

Sections 2–5 of this paper can be regarded as independet paperlets which can be read in
any order.

MORE.

2A fuller but longer explanation is at [BN, Section 10.3].
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5. Solavble Approximations of Semi-Simple Lie Algebras

Sections 2–5 of this paper can be regarded as independet paperlets which can be read in
any order.

MORE.

6. Odds and Ends

MORE.

Appendix A. Tables

MORE.
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