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of reality

ILet i be an algebra over a field F with char® = 0, and let]
I © K be an “augmentation ideal”; meaning K/ = F.

[Definition. Say that K& is quadratic if its associated gradec
or K = @;‘;‘ “I“,/II"” is a quadratic algebra. Alternatively,
let A = Q(K) = (V = I/1*)/{ker(jis : V&V — I?/I")) he
the “quadratic approximation” to K (Q is a lovely functor),
Then K is quadratic iff the obvious p : A — gr A is an
fisomorphism.

ad \\{i{@} (35" pcons

Just for fun.

KKy = KKz = KK = KK —

Crop N N
Rotate i 'F i &,
Adjoin . i L2

An expansion Z is a choice of a

sive scan” algorithm,

Yy Cpro
KK @K KB K K@ K (e K (K@ K [Ks - o

crop
rotate

Metrized TR
/;1 algebras [BN1] Lie bialgebras [Hav] algebras [BN3]

/‘,\N,J,/ 47.0

Eiingol-Kazhdan
fquantization
EK, BN2|

KasIiwara-Vergne-
Alekseev-Torrosian

[KV, AT]

Associators
[Dri, BND]

N

o3, is the group

If (7 is a group, we say it is quadratic if ity adjon I L
eroup ring is, with its augmentation ideal. B ker(K/Ka—K/K3)
, S - — - - Fxample.
[Why Care? e In abstract generality, gr K is a simplified ver- (] <
kion of K and if it is quadratic it is as simple as it may be S/ .
without peing silly. e ln some concrete (somewhat gener- K= ! I= = AN
lized ) Anot theoretic cases, A is a space of “universal Lic A o N
algehyaic formulas™ and the “primary approach”™ for proving ) :;_1
(strgng) quadraticity, constructing an appropriate homomor- (/1 = (invariants of type p) =V},
phfm Z 0 K — A, becomes wonderful mathematics: (17 /1r+ 1}* =V,/V = “;J'| i ity —
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of “pure virtual braids™ (“braids when you look™,
“blunder braids™ ):
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J-Locality, The pair (K, T) is “2-local” if the sequence

Ry:=@' i (I5 1 Ry ity 2y pp o, o)

P-Tujectivity. A (one-sided infinite) sequence

Ky W p—] — — Ky = K [Proof. Staring at the l-reduced sequence
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“injective”™ if M@/ 1‘6‘,6'(, 0. It is=Finjective” if its “I-reduction”” 1 Ir:p; ker 1, e
= Tpl TECS! ptl
Ky fr+y K, 9 L K 1 H ,Hrkl"l Hp+ 1) plIrh) +ker -”’J"

Theorem 1. If (K, [) is 2-local and 2-injective, it]
lis quadratic,
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