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ILet K be a unital algebra over a field F with char F = (), and
let I C K be an “augmentation ideal”; so K/ %* F.
IDefinition. Say that K is quadratic if its associated graded
or K = $3C=U IP /1P s a quadratic algebra, Alternatively,
let A = q(K) = (V = I/I*)/{Ry = ker(jiz : V@V —
I2/I*)) be the “quadratic approximation” to K (g is a lovely
functor). Then K is quadratic iff the obvious p: A — gr K
is an isomorphism. If G is a group, we say it is quadratic if
its group ring is, with its augmentation ideal.

. becomes wonderful mathematics:

foots & refs on PR version, page 3

Why Care?
® In abstract generality, gr K is a simplified version of K and
if it is quadratic it is as simple as it may be without being]
killy. e In some concrete (somewhat generalized) knot theo-
retic cases, A is a space of “universal Lie algebraic formulas”
wd the “primary approach” for proving (strong) quadratic
ity, constructing an appropriate homomorphism Z : K — A

[he Overall Strategy. Consider the “singularity tower™ of
(K, I) (here *:" means ¢op and jris (always) multiplication):
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We care as im(p” = pyo--op,) = IP, so IP/IPH =
i g/ im p? !, Hence we ask:
o What's I'"/u(I"T1)? e How injective is this tower?

Lemma, TP/ (PP ~ (I/I2)9P = VO, set w2 TP — VO,

u-Knots  and
K| Braids v-Knots w-Knots
Metrized  Lie Finite dimensional Lie
Al algebras [BN1] |Lie bialgebras [Hav] |algebras [BN3]
Etingol-Kazhdan Kashiwara-Vergne-
Associators quantization Alekseev-Torossian
Z| [Dri, BND]| [EK, BN2| KV, AT]

2-Injectivity. A (one-sided infinite) sequence

K;J+].

Ky=K

‘5P+1 K— 'sp
g

IFlow Chart.

p
Tutchings .
utchings

Criterion

Thin S

by Peter

s “injective” if for all p = 0, ker d,,
its “l-reduction”

= 0. It is “2Z-injective” i

o K dptr K, 9 K,
" kerd,a " kerd, " kerd,

is injective: Le. if for all p, ker(d, o §,11) = kerd,i 1. A paix

Jroposition 1. The sequence

M, = 0, and hence the same is true for every J.
The General Case. If K = F/{M) (where M is a vector space]
of “moves” ) and I € K, then I = J/{M) where J C F. Then
P = P /3" J9 (M) P73 and we have
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Jr:p—l.
onto | Tp e \l(mu)
TP = JP /ST (M) J =S =t = gl S (M) T

So ker(p) = mp, (y,;_l(k(‘r"rp_ )=T,, (X upt( (J:(M):J7))
Do (J i (M) ) = 3T Ry T Zp LERIJJ

R, = 3’;]1 (171 Ry prI70) 9, pp M pp-1 Proposition 2. IF (K, T) is 2-Jocal and 2-injective, it i
) juadratic,
is exact, where My := ker p: I'? — 1 so (K, 1) is “2-local™. |p.oof Staring at the l-reduced sequencd
[The Free Case. If J is an augmentation ideal in K = F = petr tn e [N y K, get 2
(x;), define ¢ : I — " by x; — x; + €(x;). Then Jy := )k”-‘?;{lk”ﬂ 1‘”_""‘ = v IT: N
fis {w e F:degw > 0}, For Jy it is easy to check that My =[@T7 ket pip0) — #lT77 ) T her iy © But pey = (I/I7)7P, s¢

=liagonals have the same

(K, 1) is “2-injective” if its singularity tower is 2-injective.

the above is (I/1%)% /30 (1971 Ry Fr=i=l),
the degree p piece of g(K).
I'he X Lemma (inspired by [Hut]).

b . s,
\3/
2N
1

Il the above diagram is Conway (=) exact,

But that's
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then its two
“Z-injectivity defect”. That is
if Ay - B — Cy and Ay — B — (4 arc exact, then|

It's
“angmentation bimodule” (IR, =
) = Nol thus zr = e(x)r = re(x) = rx
for x € K and » € My), and hence

Mo is simpler than may seem! :2 e
L

Joh

(=

T2

12— 1= J/(M)

1-1 IProof.
-

ker(/3) o ag)/ ker eyg ~ ker(fy o vy )/ ker oy
ker(5; oar)

Terar — —— ker Sy Nimay

g

ker ﬁuoal]

ker oy

= ker g N im ag

mz = Tl'z{,ui,-lf'rfj‘

D, is simpler than may seem! In R, ; = IV71: Ry
the I factors may be replaced by V = I/I°. Hence
p—1

p —_ @VU 1(3' ﬂz(#rlﬂ.{)

i1

= V\}}p—j—l_

The Hutchings Criterion [Hut].
The singularity tower of (K, T) is
2-injective iff on the right, ker(mo
d) = ker(d). That is, iff every
“diagrammatic syzygy” is also a
“topological syzygy”.
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. z=
IClaim. = R, j: namely,

IConclusion.

We need to know that (K.]) i
syzygy complete” that every diagrammatic syzygy

“~

(7 Ry 1P = VST g Ry g VP

is also a topological syzvey. that ker(m o d) =

ker(d).
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ixample. \/ (goes back to [Koh])
N Y
K= / r=(X - K~X>

T, Kohno
(K/IPH* = (invariants of type p) =: V,

(PR =V V=189 =)= (| FH)

ker fig = {[t¥, "] = 0 = [t¥, £ + #/¥]) = (4T relations)

W)= (h()rmmml chord (lm-) _ ﬂ AT

grams mod 4T

Z: universal finite type invariant, the Kontsevich integral.

Ro(PuB,,) is generated as a vector space by Cp} and
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[PuB,, 1s the group

x g TiiOih Ok = OO0
(”:’j +1 <3 7& j< n) 17 OikOjk ThOikTij
OijOkl = Okl0ij

L. Kauffman
[Kau, KL]

of “pure virtual braids™ (“braids when you look™,
“blunder braids”):

= ') .
h 1 9*” ; ¢ v

Syzygy Completeness, for Pu3,, means:

s

{012 : Yaus : Gor .
Is every relation between the y;;.’s

} — {apy“ra(,, cescnl]
s and the c; ,\ )'s also

vV ®p

I'he Main Theorem [Lee]. PuB,, is qud(lml ic.

Ap = q(PuB
GPv]

}d\ Goussarov-Polyak-Viro
with X =6jj =05 —1 =X =X,
the “semi-virtual crossing”.

2= v-braids 5
= X =X
I/ \\ith one ?a(>/( ) = ‘ H’{

Qij)1<itj<n

Ay = TV/([a,j,a,-k] + [aij aje] + lai, ajl, € = [aij, a))

I,

w1+ L L - -

A Syzygy:

la relation between the Y,JL s and the C‘”’s"

James Gillespie's Sightline #2
(1984) is a syzygy, and (ar-
guably) Toronto's largest sculp-
ture. Find it next to University
of Toronto’s Hart House.

crop
rotate
adjoin

“progressive scan

K/Ky®Ky/Ka®Ka/KaDKa/Ki®Ky/KsBKs/Ke® -+

Il
ker(K/Ky—K/Ks)

algorithm.

The set of all
(2[) prnjwlinus)

of reality
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