The Pure Virtual Braid Group is Quadratic¹

Dror Bar-Natan and Peter Lee in Oregon, August 2011 http://www.math.toronto.edu/-drorbn/Talks/Oregon-1108/ foots & refs on PDF version, page 3

Let K be a unital algebra over a field \mathbb{F} with char $\mathbb{F} = 0$, and Why Care? let $I \subset K$ be an "augmentation ideal"; so K/I — $\stackrel{\sim}{\longrightarrow} \mathbb{F}$. Definition. Say that K is quadratic if its associated graded if it is quadratic it is as simple as it may be without being $\operatorname{gr} K = \bigoplus_{p=0}^{\infty} I^p/I^{p+1}$ is a quadratic algebra. Alternatively, silly. • In some concrete (somewhat generalized) knot theolet $A = q(K) = \langle V = I/I^2 \rangle / \langle R_2 = \ker(\bar{\mu}_2 : V \otimes V) \rightarrow$ I^2/I^3) be the "quadratic approximation" to K (q is a lovely functor). Then K is quadratic iff the obvious $\mu: A \to \operatorname{gr} K$ is an isomorphism. If G is a group, we say it is quadratic if its group ring is, with its augmentation ideal.

The Overall Strategy. Consider the "singularity tower" of (K, I) (here ":" means \otimes_K and μ is (always) multiplication):

$$\cdots$$
 $I^{:p+1}$ $\xrightarrow{\mu_{p+1}}$ $I^{:p}$ $\xrightarrow{\mu_{p}}$ $I^{:p-1}$ \longrightarrow \cdots \longrightarrow K

We care as $\operatorname{im}(\mu^p = \mu_1 \circ \cdots \circ \mu_p) = I^p$, so $I^p/I^{p+1} =$ $\operatorname{im} \mu^p / \operatorname{im} \mu^{p+1}$. Hence we ask:

• What's $I^{:p}/\mu(I^{:p+1})$? • How injective is this tower?

Proposition 1. The sequence

$$\mathfrak{R}_p := \bigoplus_{j=1}^{p-1} \left(I^{:j-1} : \mathfrak{R}_2 : I^{:p-j-1} \right) \xrightarrow{\partial} I^{:p} \xrightarrow{\mu_p} I^{:p-1}$$
Proposition 2. If (K,I) is 2-local and 2-injective, it is an appropriate $I^{:p-1}$

is exact, where $\mathfrak{R}_2 := \ker \mu : I^{:2} \to I$; so (K,I) is "2-local". The Free Case. If J is an augmentation ideal in $K = F = \begin{cases} I^{p} & I^{p} \\ \langle x_i \rangle, \text{ define } \psi : F \to F \text{ by } x_i \mapsto x_i + \epsilon(x_i). \text{ Then } J_0 := \psi(J) \end{cases}$ $\xrightarrow{K^p} = 0$, and hence the same is easy to check that $\mathfrak{R}_2 := \begin{cases} I^{p} & I^{p} \\ I^{p} / \ker \mu_p \\ I^{p} / \ker \mu_p \end{cases} \xrightarrow{I^{p}} \xrightarrow{\mu_p} \cdots \xrightarrow{K} K$, get $\xrightarrow{I^p} \times \ker \mu_p = 0$, so the above is $(I/I^2)^{\otimes p} / \sum_{I \in I^p / I^p} (I^{p-1} : \mathfrak{R}_2 : I^{p-1})$. But that's is exact, where $\Re_2 := \ker \mu : I^{:2} \to I$; so (K, I) is "2-local".

The General Case. If $K = F/\langle M \rangle$ (where M is a vector spacethe degree p piece of q(K)). of "moves") and $I \subset K$, then $I = J/\langle M \rangle$ where $J \subset F$. Then The X Lemma (inspired by [Hut]). $I^{:p} = J^{:p} / \sum J^{:j-1} : \langle M \rangle : J^{:p-j}$ and we have

$$J^{:p} \xrightarrow{\mu_F} J^{:p-1}$$

$$\underset{\text{onto}}{\text{onto}} |_{\pi_p} \xrightarrow{\mu_F} J^{:p-1}$$

$$I^{:p} = J^{:p} / \sum J^{:} : \langle M \rangle : J^{:} \xrightarrow{\mu} I^{:p-1} = J^{:p-1} / \sum J^{:} : \langle M \rangle : J^{:}$$

So $\ker(\mu) = \pi_p \ (\mu_F \ (\ker \pi_{p-1})J - \pi_p \ (\triangle \mu_F) \ (B \cap A_1)J - \pi_p \ (\triangle \mu_F) \ (B \cap A_1)J - \pi_p \ (\triangle \mu_F) \ (B \cap A_1)J - \pi_p \ (\triangle \mu_F) \ (B \cap A_1)J - \pi_p \ (\triangle \mu_F) \ (B \cap A_1)J - \pi_p \ (\triangle \mu_F)J - \pi_p \ (\triangle$ $\mathfrak{R}_2 = \pi_2(\mu_F^{-1}M).$

 \mathfrak{R}_p is simpler than may seem! In $\mathfrak{R}_{p,j} = I^{:j-1} : \mathfrak{R}_2 : I^{p-j-1}$ the I factors may be replaced by $V = I/I^2$. Hence

$$\mathfrak{R}_p \simeq \bigoplus_{j=1}^{p-1} V^{\oplus j-1} \otimes \pi_2(\mu_F^{-1}M) \otimes V^{\otimes p-j-1}.$$
 Claim.
$$\mathfrak{R}(\mathfrak{R}p,j) = R_{p,j}; \text{ namely,}$$

$$\pi\left(I^{:j-1}:\mathfrak{R}_2:I^{:p-j-1}\right)=V^{\otimes j-1}\otimes R_2\otimes V^{\otimes p-j-1}$$

 In abstract generality, gr K is a simplified version of K and retic cases, A is a space of "universal Lie algebraic formulas" and the "primary approach" for proving (strong) quadraticity, constructing an appropriate homomorphism $Z: K \to \hat{A}$ becomes wonderful mathematics:

	u-Knots and		
K	Braids	v-Knots	w-Knots
	Metrized Lie		Finite dimensional Lie
A	algebras [BN1]	Lie bialgebras [Hav]	algebras [BN3]
			Kashiwara-Vergne-
	Associators	quantization	Alekseev-Torossian
Z	$[\mathrm{Dri},\mathrm{BND}]$	[EK, BN2]	[KV, AT]

2-Injectivity. A (one-sided infinite) sequence

$$\cdots \longrightarrow K_{p+1} \stackrel{\delta_{p+1}}{\longrightarrow} K_p \stackrel{\delta_p}{\longrightarrow} \cdots \longrightarrow K_0 = K$$

is "injective" if for all p > 0, ker $\delta_p = 0$. It is "2-injective" if

$$\cdots \longrightarrow \frac{K_{p+1}}{\ker \delta_{p+1}} \xrightarrow{\bar{\delta}_{p+1}} \frac{K_p}{\ker \delta_p} \xrightarrow{\bar{\delta}_p} \frac{K_{p-1}}{\ker \delta_{p-1}} \longrightarrow \cdots$$

s injective; i.e. if for all p, $\ker(\delta_n \circ \delta_{n+1}) = \ker \delta_{n+1}$. A pair (K, I) is "2-injective" if its singularity tower is 2-injective.

quadratic.

If the above diagram is Conway (X) exact, then its two So $\ker(\mu) = \pi_p \left(\mu_F^{-1}(\ker \pi_{p-1}) \right) = \pi_p \left(\sum \mu_F^{-1} \left(J : \langle M \rangle : J^: \right) \right) = \text{diagonals have the same "2-injectivity defect".}$ That is, if $A_0 \rightarrow B \rightarrow C_0$ and $A_1 \rightarrow B \rightarrow C_1$ are exact, then

 $= \ker \beta_0 \cap \operatorname{im} \alpha_1 \in$

The singularity tower of (K, I) is 2-injective iff on the right, $\ker(\pi \circ$ ∂) = ker(∂). That is, iff every "diagrammatic syzygy" is also a _{I:p+1} "topological syzygy".

Conclusion. We need to know that (K, I) is 'syzygy complete" — that every diagrammatic syzygy is also a topological syzygy, that $\ker(\pi \circ \partial) = \ker(\partial)$.

