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Let K be a unital algebra over a field F with char F = 0, and [Why Care?
let 7 ¢ K be an “augmentation ideal”; meaning K/I = F. | In abstract generality, gr K is a simplified version of K and

or K = @p <o I"/IPT s a quadratic algebra. Alternatively, pilly. o In some concrete (somewhat generalized) knot theo-
let A = q(K) = (V = I/I?)/{Ry = ker(fiy : V ® V —» [retic cases, A is a space of “universal Lie algebraic formulas”
I2/1%)) be the “quadratic approximation” to K (q is a lovely and the “primary approach” for proving (strong) quadratic
functor). Then K is quadratic iff the obvious y: A — gr K fity. constructing an appropriate homomorphism Z : K — A
is an isomorphism. If G is a group, we say it is quadratic if Pecomes wonderful mathematics:

Definition. Say that K is quadratic if its associated graded fif it is quadratic it is as simple as it may be without being

its group ring is, with its angmentation ideal. y "'[‘f""“ and i )
K| Braids v-Knots w-Knots
The Overall Strategy. Consider the “singularity tower” of Metrized  Lie Finite dimensional Lie
(K, 1) (here *:" means g and g is (always) multiplication): | A| algebras [BN1] [Lie bialgebras [Hav] [algebras [BN3]
Etingof-Kazhdan Kashiwara-Vergne-
Ll Hent opp Mo rr-1 K Associators quantization Alekseev-Torossian
.|| i, BND]  [[EK. BN2| [KV, AT]
We care as im(p” = pyo---o0 = I?, so IP/IP* — - ——— ——
],‘ e (s K1 Hp) / Proposition 2. If (K.I) is 2-local and 2-injective, it iy
im g” / im pP 1. Hence we ask: ;
quadratic.
e How injective is this tower? Proof. Staring at  the I-reduced  sequence
ot T Py 1Pl Bett, _IP Lol 4 > wl, ~
e What's I'? [u(I'PT1)? | vee Frii K, get = o
— . 1'7 [ ker pp a5 Ir " I'r oy 2\®p o
Lemma. I'P/u(IPHY) ~ (I/1%)®P = VP, W(IFPF T ker ppyr) — pI 77 )Fkerpg But gy = (I/I°)°P, s

Flow Chart oy Yo —_— the above is (I/I°)%P /3 (1971 : Ry : I'P=I=1). But that'y
alt. £ rop TO. s L) s A Bore O :
-—-l—L ' —(& Quadratid [the degree p piece of ¢(K).

£ I'he X Lemma (ins‘pir('(l by [Hut]).

' Thm S_ Tutchings’ _ -
l)\ Peter \ Criterion \ /

roposition 1. The sequence
) - TP _ﬁl’__) lzp—-l / \

®l’_l (1J—-l RZ =i j )

y SRR () S - o 2 < 3 o .
is exact, where Ry := kerpu: I'* — It so (K, I) is “2-local”. [ Lll(‘ al)ov(' (llilgl‘dlll is (()uwny (X) exact, then its twc

poay 3ay KSojowar NS [[1n

(The Free Case. If J is an augmentation ideal in K = F =djagonals have the same “2-injectivity defect”. That is
(i}, denote F' — F/J =F by @ + [2] and define ¢»: F — Flif Ay — B — Cy and A, — B — C; are exact, then
by z; — x; + [z;]. Then Jy := ¢(J) is {w € F : degw > 0} ker(3; o o)/ ker avg = ker(fg © a1 )/ ker ay.
For Jo it is casy to check that Ry = R, = 0, and hence the, = ker(ioao) _~ | o5 Aimag

same is true for every .J. kerag ag

is “injective” if for all p > 0, kerd, = 0. It is “2-injective” if

its “l-reduction” James Gillespie's Sightline #2
(1984) is a syzygy, and (ar-

Kpiy byt K, 5y Koy guably) Toronto's largest sculp-

keropia I‘Tl‘%; kerd, S ture. Find it next to University

of Toronto’s Hart House.
is injective: i.e. if for all p, ker(d, o 1) = kerd, 1. A pair
(K, I)is “2-injective” if its singularity tower is 2-injective.

I'he General Case. If K = F/M and I C K, then I = J/M| = ker Gy Nim oy ‘TN‘ kl—lk((%%:l—]l
B The P — JP .:.j—l,) ..:p~j; . = 1
1\'hff( i, Then ] e Mzl B The Hutchings Criterion [Hut]. R, [p-1
e Jr ‘l“; = Jip—1 I'he singularity tower of (K, I) is X /
. i i 2-injective iff on the right, ker(wo ;
onpl Rzl Bk J) = ker(d). That is, iff every ’;’/’ NA
IP=J? )y J : M : J —Es -1 = g-1/3 g o M g0 ["diagrammatic syzygy” lifts to a [+ ver
“topological syzygy”
S0 ker(y1) = mp (/I;l(km"r,,_ )) =mp (Z/t;l (J: M J)) = e — = - -
Sy (5 gt (M) s J) = X It Ry« . Conclusion. ,We need to know that (K,]) is
: ‘s " hat every diagrammatic syzygy
D Tnjectivity. A ded infinite) sequenc _f”’_/'“g’y} proe” y Clag YZYE)
njeckIsy \onezstcled Ttinite) Bequence <liftx to a )nglogi('ul syzygy, that ker(wod) = ker(0). Nemretyy
s 2 oy 5 > 2 i it .
—— Kpi1 LN K, —— -+« — Ky=K ‘ !
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(goes back to [Koh])
1=(X=/-X) | P

(invariants of type p) =:V,

V = (94 = gy = <| H_|>

Example. /

T, Kohno \
I\/Ip+l

(Ip/]p+l)t — VI,/V,_]

ker iz = ([t¥, %] = 0 = [t", ¢** + #/*]) = (4T relations)
horizontal chord dia- —I

A =q(K = AT

A=g(K)= (umma mod 47T > |

s T gneRd g Y = &

Z: universal finite type invariant, the Kontsevich integral.

PuB,, 1s the group

0ijOik0jk = OjkOikTij
TijOkl = OkiTij

(”u l<7#j§n)/
L. Kauffman

o : S s [Kau, KL]
bf “pure virtual braids™ (“braids when you look™, K" KU

“blunder braids”):

g24 =

T'he Main Theorem [Lee|. PuB,, is quadratic.

Ap = = q(PuBy).

v-braids

[Gpv]
N/
with X =8 =g, — 1 =X = X,
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Goussarov-Polyak-Viro
the “semi-virtual crossing”.
=TI/ =
\\1111 one &

)/ =% H
= (@ij)1<iAj<n

%An = TV/([au\j :I.] + au-a)k] + [alh )k] Ewa}.l])b
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Figuring out Ro and Ro.

ker pp = o (;L;l(M)) l
Ta ™
is in principle computable, and 2 ;
then R, follows as V©®2 = I s

(1/1%)%% = I*[py(I?)

The set of all
’D projections
of reality

)

Just for fun.

7\

l\/ln'— K/Kz— K/K3v— K/Kj+~

ﬁnwmm

K/Ky &K /KB Ka/KsB K3/ KiB Ky /KD Ks [ KeD -+

Il Il
R? ker(K/K;—K/K3)

Crop
Rotate
Adjoin

An expansion Z is a choice of a
“progressive scan” algorithm.

crop
rotate
adjoin
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