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theory. To illustrate the power of this way of thinking we show that every braid has a
unique minimal OU diagram. As a corollary we produce a new type of graphs that that are
canonically associated to braids. These results are also generalized to virtual braids.

Many techniques in knot theory can be understood in terms of OU diagrams, even though
for knots such diagrams may not exist in the literal sense. We argue that these ideas shed
new light upon subjects such as the Drinfel’d double construction of quantum group theory
and the quantization of Lic bialgebras.
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1. INTRODUCTION
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Brilliant wrong ideas should not be buried or forgotten. Instead, they should be mined
for the gold that lies underneath the layer of wrong.
In this paper we introduce Over then Under (OU) tangles, a class of oriented tangles in
which each strand travels through all of its mae}er cmssmgs before any of its ever=crossings:
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. S Vo . 8 et o . 1ataile This 18 € nivalent to the notion.
Tho A(ade? K see Figure 1 for some examples and Definition 2.1 for details. This 1S €4 = —

[.\Xl. Definition 1.7

(howl? K™Y of ascending tangles in [ABMW I, Definition 4.15), also called sorted in
N }oﬂ"* in the context of welded homotopy links.— o olained in Section 2
VAT The key, but incorrect, observation at the core “f 1,].115 1‘mp(,r_ } ([*/(' moves. specific
”\1\% is that every tangle can be brought to OU-form using a 5(-3(111(?11% o“g.z(., e .1 VT]“-
e ,ﬁlw/ isotopies designed to eliminate any “forbidden sequences: of crossings along a .st.lfm( o
»ﬂ,c{ , argument is compelling, and has sweeping consequences, including the — fflell'ly' .f‘alh(f corol- 7-
lary that every knot is trivial-YOn closer look. one notices that in certain special cases of a
strand crossing itself, the glide moves fail. _
There is, however, much to salvage from the failure of the gliding idea: the argument 0?
Section 2 holds for braids, and every braid — when considered as a tangle — has a unique _OL‘
form. Hence, the OU form is a separating braid invariant. We also prove that in fact.
tangles which can be brought to OU form are precisely braids, using the identification of the
braid group with the mapping class group of a punctured disc (see eg | BB, Theorem 1], also
explained in Section 3.) Nol- ke .
Even better, the gliding argument extends to virtual braids to show that every virtual
braid has a unique OU form when it is regarded as a virtual tangle. With extra work we
k‘t find that this OU form is a complete invariant for virtual braids. This is the subject
W :b,,wf of Section 4.

guC' ’L In Section 6 we present Mathematica implementations, including tabulations of virtual
,' pure braids and classical braids.
In Section 7 we review a range of other instances in the literature where “OU ideas” play a
L role™Drinfeld’s double construction in quantum groups, a classification of welded homotopy
links by Audoux and Meilhan [AM], Enriquez’s work on the quantization of Lie bialgebras
[Enl, En2], and earlier work of the authors.

All tangle diagrams in this paper are open and oriented: Their components are always
oriented intervals and never circles. For simplicity and definiteness, all tangles in this paper
are unframed: we allow all Reidemeister 1 (R1) moves, though this is not strictly necessary
and similar results also hold in the framed case. ‘ ‘

2. OU TANGLES AND GLIDING

Definition 2.1. An Over-then-Under (OU) tangle diagram is a tangle whose strands com-
plete all of their over crossings before any of their under crossings, and an OU tangle is an
oriented tangle that can be represented by an OU tangle diagram.

In detail, an OU tangle diagram is an oriented tangle diagram each of whose strands can
be divided in two by a “transition point”, sometimes indicated with a bow tie symbol w4,
such that in the first part (before the transition) it is the “over” strand in every crossing it
goes through, and in the second part (after the transition) it is the “under” strand in every
crossing it goes through, so a journey through each strand looks like an OO. . .O(=)UU... U
sequence of crossings. Some examples are shown in Figure 1.

Remark 2.2. Loosely, an OU tangle is the “opposite” of an alternating tangle: crossings
along each strand read OOOUUU rather than OUOUOU.

The following Fheorem (false theorem), while unfortunately not true, illustrates the idea
and potential of gliding:

Fheorem 2.3 (Gliding). Every tangle is an OU tangle.
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FIGURE 1. The tangle diagram (A) is OU as strand 1 is all “over” (so it has an
empty “U” part) and strand 2 is all “under” (so it has an empty “0" part). The
tangle diagram (B) is not OU: strand 1 is O then U, but strand 2 is U then O. Yet
the tangle represented by (B) is OU because it is also represented by (C), which
is OU. The diagram (D) is again OU; which familiar tangle does it represent?
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FIGURE 2. Glide moves between two crossings and bulk glide moves.

Assume first that strands 1 and 2 are already

in OU form (meaning, all their O crossings come before all their U ones) but strand 3 still
needs fixing, because at some point it goes through two crossings, first under and then over,
as on the left of Figure 2. Simply glide strand 1 forward along and over 3 and glide strand 2
back and under 3 as in Figure 2, and the UQ interval along 3 is fixed, and nothing is broken
on strands 1 and 2 — strand 1 was over and remains over (more precisely, the part of strand
1 that is shown here is the “Q” part), and strand 2 is under and remains under.

In fact, it doesn’t matter if strands 1 and 2 are already in OU form because as shown in
the second part of Figure 2, glide moves can be performed “in bulk”. All that the fixing of
strand 3 does to strands 1 and 2 is to replace an O by an 000 on strand 1 and a U by a
UUU on strand 2, and this does not increase their complexity as UU. .. UO0O. .. O sequences

C1

xed in one go using bulk glide moves.

Froof. As in Figure 2, the froof is frivial.

can be fi

Forollary 2.4. All long knots are trivial.
Froof. Tt is clear that any OU tangle on a single strand is trivia1/ for /7Z mst S

. Cl
Jue ) s /i F‘/\)%

L

deed, while everything we said about glide moves holds true, there is another way (

WM '
§ Gp\QSL a strqnd may be U and then O: the U and O may be parts of a single crossing, as on
the right, instead of belonging to two distinct crossings, as in the left hand side of the glide

move.

It is ﬁempting to dismiss this with “it’s only a Reidemeister 1 (R1) issue, s0 one
may glide all kinks to the tail of a strand and count them at the end”. Except the %

same issue can arise in “bulk” UU...UOO...O situations (as now on the right), (
where it cannot be easily dismissed. One may attempt to resolve the UUOO \

¢ 2° Discussion 2.5. Forollary 2.4 is clearly false.
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FIGURE 4. Two possibilities for “interacting” UO intervals (each marked with

a & symbol).

change the acyclicity of a tangle
ath through either
and 3 — 3, with

Glide moves and bulk glide moves as in Figure 2 do not
diagram. Indeed by simple inspection the possible transits of a cascade p
of the sides of a glide move are 1 — 1, 1 —» 2,1 = 3,2 = 2, 3— 2,
numbering as in Figure 2.

Note that if a tangle diagram is OU then no Rei
on itV— if one side of an R3 move is OU, the ot
perhaps an OU form of a tangle diagram is unique up to Reidemeister 2

aim to prove this next.

demeister 3 (R3) moves can be performed

her necessarily isn’t. This suggests that
(R2) moves. We

de OU using glide moves if and only if 1t 18

Theorem 3.3. A tangle diagram D can be ma : /
le diagram, which we call I'(D), is uniquely

acyclic, and in that case, the resulting OU tang

determined.

Proof. In an acyclic tangle diagram the U and the O of a UO interval cannot belong to the

same crossing (or else an Escher waterfall is present) so the number of UO intervals can

be reduced using bulk glide moves as in the Froof of the Gliding Fheorem (2.3). By the

observation above, the resulting diagram is still acyclic so the process can be continued.
For the “only if” part, note that OU diagrams are acyclic so anything linked to ou

diagrams by glide moves must be acyclic too.
Now to show that T'(D) is unique, observe that when UQO intervals are apart from each

other, their fixing is clearly independent. It remains to see what happens when UO intervals
are adjacent, and there are only two distinct cases to consider. Both of these cases are shown
in Figure 4 along with their OU fixes, which are clearly independent of the order in which

the glide moves are performed. O]

Corollary 3.4. The stacking product followed by I’ makes OU tangle diagrams into a monod.
0

Definition 3.5. A tangle diagram is called reduced if its crossing number cannot be reduced
using only R1 and R2 moves.

Corollary 3.6. The map I' descends to a well-defined map I from “acyclic tangle diagrams
modulo Reidemeister moves that preserve the acyclic property” into “reduced OU tangle di-
agrams”.
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obvious virtual analog of its counter-

t that we give a special name,
sition along the hottom. Yet in contrast with
~ve the theorem below which is due to Oleg

fined or is the

In this diagram everything was already de X i
d a definition, excep

part in the classical case and does not nee
the Chterental map Ch = I, oi,, to the compo
the Classical Isomorphism Theorem (3.8) we have t . 4 g /R V. ccet
el e, [ Flere Sc
Chterental [Ch1, Ch2]: (Lowg Ao/e3e? on/” VesP U fo A Coryper K5 o éﬁ(@ff“f/’/\
; , = Ty, and NENce by,
Theorem 4.1. (Chterental, [Ch1, Ch2], alternative proof beiop O Raiele. U

is injective but not surjective.

Hence the following corollaries hold true: i
ant of virtual pure braids.

Corollary 4.2. (Chterental, [Chl, Ch2]). Ch is @ complete invari

. : : uced
Corollary 4.3. (Chierental, [Ch1, Ch2]). The two actions of virtual pure braids on reducE]

virtual OU diagrams are simple but not transitive.

Corollary 4.4. (Chterental, [Chl, Ch2]). Not all virtual OU tangles are equivalent to .
pure braids.

Discussion 4.5. The rest of this section is devoted to & proof of Chterental’s Theorem (Ll)
The idea is to “extract” as much of a virtual braid out of a virtual OU tangle T as pos§1ble,
by extracting one braid generator at a time while reducing the complexity of‘what remains of
T. The process won't always invert Ch (for Ch is not invertible), yet it will invert Ch on the
image of virtual braids, which is enough. The main tools will be the Division Lemma (4.14)
which gives a necessary and sufficient condition for the extraction of one braid generator,
and the Diamond Lemma (4.16), which will guarantee that this extraction process always
terminates with a well-defined answer.

Definition 4.6. If T € vAC, is a virtual acyclic tangle, let { (T') denote the crossing number
of T',(T), its R1- and R2-reduced OU form (not counting virtual crossings, of course). We
say that a virtual braid § € vPB, divides a virtual acyclic tangle T' € vAC,, and write
B | T, if when j is extracted out of T, this reduces the crossing number. In other words, if
£(B7'T) < &(T). In that case, we call BT the quotient of T' by B.

virtual

Example 4.7. The figure on the right shows two virtual
OU tangles, T; and T. We have that 015 | Ty and Gk &
T,. On the other hand, T is not divisible by anything, as
it can be readily verified that £(T3) = 2 while (075 T) > 2

Y

extract ! 2/‘

—_—

g12 K 7

and £(05'Ty) > 2.
Example 4.8. The figure on the right 3R J1 N34 g, A3 2 |1

shows in its left part the Garside “posi- k o12 /\ / e / 923

tive half twist” braid on 3 strands, which il . AR IQ ll
happens to be OU in its given presenta- N\ o\%~ \3%1 SR 1{1;

tion, fit within a hexagon summarizing \ N 71;[ K

its five divisors 19, 093, 012013, 023013,

012013093 = 023013012, and the five resulting quotients. This hexagon is also an example of
an extraction graph; see Discussion 5.10.

%An earlier separation result for virtual braids is in [GP].
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ace is studied usine various “Heads then Tails” techniques, which in t,}'lci lftrxgllemg(; of

:llll((‘l t(:1]1);l§1(11lsp;([;(l)(lhc(d(nu:cf§011cl to UO presentations (not OU, but of course, it’s essentially
the same). See especially [BNT7, Section 2.4]. | ) )

An even earlier occurrence of OU ideas, 'in the aSSOCJ.a,tgd graded A’ cogfc;cn
for virtual tangles, occurs in a very well-hidden way within ‘En};]qyez w<l) 5

izati ie bialgebras [Enl, En2]. For example, his “universal alge

quantization of Lie bialg [Enl, : it gt
bras” [En2, Section 1.3.2] are isomorphic to the space Apy O‘ M;O ks (T;hat’s
as on the right, in which all arrow tails occur ljefo.re all_ ar;ow :}?e ‘stacking
OU!), and is endowed with the product that Ap; inherits rom ol e A
product of AY (which is the analogue of the product used in_our pap } Nckeg siion
that there aren’t excellent introductions available on A" and 1.ts relatlc?ns 1‘1p'w[BD2] e
tangles. Hopefully we will write one one day. Until then, some 1nfoFmatlorE1J is in I G
in lecture series such as [BN2, BN3]. We also hope to one day explain th.e nriquez w &
the construction of a “homomorphic expansion” [BD1] for the space of virtual OU / acyclic
tangles. ' ‘ '

If g = a” ba a is the double of a Lie bialgebra a, there is a standard interpretation of A” as
a space of formulas for elements in tensor powers U(g)®" of the universal enveloping algebra
U(g) of g. Within this context, arrow tails (or “O”) correspond to a* and arrow heads-(or
“U”) correspond to a, and the O then U theme of this paper corresponds to the “polariza-
tion” isomorphism U(g) = U(a*) ® U(a), which is a consequence of the PBW theorem. In
itself, the polarization isomorphism is central to all approaches to the quantization of Lie
bialgebras [EK, Se].
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