"Some Computational Examples" on March 6, 2013

March-06-13
10:50 AM

o If y; = (A\isw;) € M(T}: Hy) for i = 1,2 (and, of course, Ty NTy, = 0 = H, N H,), set
prn g o= (A x Aot g (wh) + 1a(ws)),

where ¢; are the obvious inclusions ¢;: CW(T;) — CW(T, U Ty).

wr.,

e The only truly new definition is that of tha"":
(Asw) f tha™ = (X w+ Ju(A\)) [/ 1?(',’,\".
Thus the “new” tha®* is just the “old” tha"*, with an added term of .J,(\,).

Theorem 4.2. M, with the operations defined above, is a meta-group-action (MGA). Fur-
thermore, if C: KU — M is defined on the generators in the same way as (. except extended
by 0 to the CW factor,

¢(eh) == (0 0), ¢(") == ((z = 0); 0), and Cps,) = ((x — £u); 0),
then at s well-defined; namely, the values above satisfy the relations in Definition 2.5.

Proof. MORE.
Thus we have a tree-and-wheel valued invariant ¢ defined on K, and thus & is a
0
tree-and-wheel valued invariant of tangles and w-tangles.

5. SOME COMPUTATIONAL EXAMPLES

Part of the reason I am happy about the invariant ¢ is that it is relatively easily com-
putable. Cyclic words are easy to implement, and using the Lyndon basis (e.g. [Re, Chap-
ter 5]), free Lie algebras are easy too. Hence I include here a demo-run of a rough imple-
mentation, written in Mathematica. The full source files are available at [KBH].

First we load the package FreeLie.m, which contains a collection of programs to manipu-
late series in a completed Lie algebra and series of cyslic words. We tell FreeLie.m to show
series by default only up to degree 3, and that if two (infinite) series are compared, they are
to be compared by default only up to degree 5:
<< FreeLie.m
$SeriesShowDegree = 3; $SeriesCompareDegree = 5;

Merely as a test of FreeLie.m, we tell it to set t1 to be beh(w, v). The computer’s response
is to print that series to degree 3:

tl =BCH[(u), (V)]

oV 1 [re— 1 —_—]
+ v 1 b <
LS[u Vi S0 13 WUV + 55 UVV

Note that by default Lie series are printed in “top bracket form”, which means that
brackets are printed above their arguments, rather than around them. Hence u%e means
[, [u, v]]. This practice is especially advantageous when it is used on highly-nested elements,
when it becomes difficult for the eye to match left brackets with the their corresponding
right brackets.

Note also that that FreeLie.m utilizes lazy evaluation, meaning that when a Lie series
(or a series of cyclic words) is defined, its definition is stored but no computation take place
until it is printed or until its value (at a certain degree) is exolicitly requested. Hence t1
is a reference to the entire Lie series beh(w, v), and not merely to the degrees 1-3 parts of

19

KBH Page 1

that series, which are printed above. Hence when we request the value of t1 at degree 6, the
computer complies:

tl@6 // TopBracketForm

uuuuvYy 1 —= 1 — 7 1 =7 57 uuvv vy
~2A8WOVV . ey W) Sowe: 5 - ARV VY
1440 360\.111 uvv v zwuu uvv 720uuuv uv 1440

The package FreeLie.m know about various free Lie algebra operations, but not about our
specific circumstances. Hence we have to make some further definitions. The first few are
set-theoretic in nature. We define the “domain” of a function stored as a list of key— value
pairs to be the set of “first elements” of these pair: meaning, the set of keys. We define
what it means to remove a key (and its corresponding value), and likewise for a list of keys.
We define what it means for two functions to be equal (their domains must be equal, and
for every key #, we are to have # J fi = # J f»). We also define how to apply a Lie
morphism mor to a function (apply it to each value), and how to compare (A, w) pairs (in

FL(T)® x CW(T)):

Domain[f List] := First /@ £f;
f \key_ := DeleteCases[f, key -» _];
£ \ keys List := Fold[#1\#2 &, f, keys]:
f1 List = f2 List := Domain[f]] === Domain[f2] && (And @@ (
((#/. £f1) = (# /. £2)) & /@ Domain[£f1]
)i

LieMorphism[mor][£f List] := MapAt[LieMorphism[mor], £, {All, 2}];
M[A1 , w1l] = M[22 , w2] := (1= A2) && (wl=w2);

Next we enter some free-Lie definitions that are not a part of FreeLie.m. Namely we
define R}:(s) to be the result of “stable application” of the morphism u — ¢*)(@) to s
(namely, apply the morphism repeatedly until things stop changing; at any fixed degree this
happens after a finite number of iterations). We define R} to be RY: /(@ — w). Finally,
we define .J as in Equation (13):

RC[u , Ax LieSeries, ub][s_] :=
StableApply[LieMorphism[(u) - Ad[Ax] [(ub)]], s];
RC[u , Ax LieSeries][s_] := s // RC[u, Ax, (v)] // LieMorphism[(v) - (u)];
J[u , Ax] := Module[{s},
IntegrateCWSeries|
div([u, Ax // RC[u, s Ax]] // LieMorphism[u - Ad[-s Ax][u]],
{s, 0, 1}11;
Next is a series of definitions that implement the definitions of *, tm, hin, and tha following
Sections 3.2 and 4.2:

20

KBH Page 2

3
\’,\\
b

b}

()

M /: M[A1 , w1] M[A2_, w2] := M[A1 | A2, wl+w2];
tm[u , v, w][A List] := A // LieMorphism[{(u) = (w), (V) > (w)];
tm[u , v, w][M[2 , «#]] := LieMorphism[{(u) » (w), (v) > (w)] /@ M[4,
hm[x , v , z][A List] := Union[A\{x, vy}, {z-2BCH[x/. 1, y/.A]1}];
hm(x , v , z]J[M[A2, «]] := M[2 // hm[x, y, z], @];
tha[u , x][A List] := MapAt[RC[u, x /. 1], A, {All, 2}];
thaf[u , x J[M[2 , «]] :=

M[2 // tha[u, x], (#+J[u, x /. A]) // RC[u, x /. A]];

p*[u_, x] := M[{x-> MakeLieSeries[(u)]}, MakeCWSeries[0]];
p [u_, x] M[{x -» MakeLieSeries[-(u)]}, MakeCWSeries[0]];

Print /@ {{u=("u"), v=("v"), w={"w")};
1 - (tl= M[{
x -» MakeLieSeries[u+v+w],
y - MakeLieSeries[b[u, v] +b[v, w]]
}, MakeCWSeries[CW["uvw"]]]),
(t1 // tm[u, v, u]),
(t2=t1 // tm[u, v, u] // tm[u, w, u]),
(tl // tm[v, w, v]),
(t3=t1 // tm[v, w, v] // tm[u, v, u]),
(t2 = £3)

o U s WwN
L2 T T

)z

l1->M[{x->LS[u+v+w, 0, 0], y->LS[O, OV+VW, 0]}, CWS[O, O, CW[uvw]]]
2->M[{x->LS[2u+w, 0, 0], y->LS[0, UW, 0]}, CWS[O, O, CW[uuw]]]
3->M[{x->LS(3u, 0, 0], y-1LS[0, O, O]}, CWS([O, O, CW[uuu]]]

4 5M[{x->LS[u+2v, 0, 0], y-LS[0, UV, 0]}, CWS[O, O, CW[uvv]]]
5-M[{x->LS[3u, 0, 0], y->LS[O, O, O]}, CWS[O, O, CW[uuu]]]

6 = True

KBH Page 3

@] ;

Com rMeN {/h/
Pri:t_’/@{ \7 f\,”/é e R/Aw/f ////

(t1=p'[u, x]Up*[v, y1 Up*[w, 1),
2- (t1 // hm[x, y, x]),
35 (t2=t1 // hm[x, y, x] // hm[x, z, x]),
4- (t1 // hm[y, z, ¥]),
5- (t3=t1 // hm[y, z, y] // hm(x, y, x]),
6 - (t2=1t3)
};

1->M[{x~>LS[u, 0, 0], y-»LS[v, 0, 0], z>LS[w, 0, 0]}, CWS[0, 0, 0]]
2-M[{x>Ls[u+v, ¥, Luwv + L TOV], 218w, 0, 0]}, CWs[0, 0, 0]]

12 12
3oM[{xo1sfusvew, W, T 13gv+Lluawe+luvw +
[{ [LA 2 271 12 3
Lyvw+ Ll ovvsiT v+iuww+vaw”,CWS[O, 0, 0]‘i
12 12 6 12 12 i

4->M[{x->LS[u, 0, 0], y>Ls[vsw, T, Lyvw+ L Tww]}, cws(o, 0, 0]]

2’ 12 12 3
1 GFas L 1w 4L 3]
LVvw+ LTvve L AWy + L Tww + L Tww]}, cus(o, 0, 0]]

5-—>M[{x->LS[u+v'w, R R Lyav + L uuw + L uvw +
T

6 = True

Print /@ { ‘(—/\ C //0 /l/

1 - (tl=p*[u, x] Up‘ [v, ¥] Up‘ [w, 2]),

2 5 (t2=¢t1// tm[v, w, v] // hm[x, y, x] // tha[u, z]),
3 - (t3=p*[v, x] Up’ [w, 2] Up’[ul vl),

4 5> (t4=t3 // tm[v, w, v] // hm[x, y, x]),

55 (t2=t4)

}i

1-M[{x->LS[u, 0, 0], y=LS[v, 0, 0], z->LS[w, 0O, 0]}, CWS[O, O, 0]]
2-M[{x>Ls[u+v, —?, E uTv + 11—2 wvv], z-»LS[v, 0, 0]}, CWs[0, 0, 0]]
3->M[{x->LS[v, O, 0], y-»LS[u, 0, 0], z- LS[w, O, O]}, CWS[O, O, 0]]

4-M[{x->LsS[u+v, -, Lynv+ L wvv], z-LS[v, 0, 0]}, CWs[0, 0, 0]]

5 - True

6. THE RELATION WITH THE BF ToOPOLOGICAL QUANTUM FIELD THEORY

7. THE SIMPLEST NON-COMMUTATIVE REDUCTION AND AN ULTIMATE ALEXANDER
INVARIANT

8. THE RELATION WITH ALEKSEEV-TOROSSIAN AND WITH [BND]
9. OpDS AND ENDS

9.1. Linking Numbers and Signs. If = is an oriented S' and u is an oriented S? in an

oriented S* (or R*) and the two are disjoint, their linking number /,, is defined as follows.

Pick a ball B whose oriented boundary is u (using the “outward pointing normal” convention
22

KBH Page 4

