The Variables:

$$\begin{pmatrix} b_1 \backslash a_1 & x_{12} & x_{13} \\ y_{12} & b_2 \backslash a_2 & x_{23} \\ y_{13} & y_{23} & b_3 \backslash a_3 \end{pmatrix}, \quad \xi_-, \alpha_-, \beta_-, \eta_-.$$

We short " x_1 " for either of x_{12}, x_{23} and " x_2 " for x_{13} . Weights are intuitive on yb and 3-complementary on ax: wt: $b \to 0, y_1 \to 1, y_2 \to 2, a \to 3, x_1 \to 2, x_2 \to 1$. Weights are 3-complementary on the dual (greek) variables.

In
$$m[ij \to k]$$
:
At $\epsilon = 0$:
At ϵ/ϵ^2 :
In $\Delta[i \to jk]$:
At $\epsilon = 0$:
 $\ldots, \xi_1 \eta_1 b, \xi_2 \eta_2 b, \xi_1' \xi_1'' x_2, \eta_2 \xi_1 y_1, \alpha \xi_i x_i \ldots$
 $\ldots, \xi_1 \eta_1 a, \xi_2 \eta_2 a, \ldots$
 $\ldots, \eta_i b y_i, \ldots$