The Variables:

In $\Delta[i \rightarrow jk]$: At $\epsilon = 0$:

$b_1 \setminus a_1$	<i>x</i> ₁₂	x_{13}	
<i>y</i> ₁₂	$b_2 \setminus a_2$	x_{23} ,	ξ, α, β, η
V ₁₃	<i>y</i> ₂₃	$b_3 \backslash a_3$	

We short " x_1 " for either of x_{12} , x_{23} and " x_2 " for x_{13} . Weights are intuitive on yb and 3-complementary on ax: wt: $b \to 0$, $y_1 \to 1$, $y_2 \to 2$, $a \to 3$, $x_1 \to 2$, $x_2 \to 1$. Weights are 3-complementary on the dual (greek) variables. In $m[ij \to k]$: At $\epsilon = 0$: ..., $\xi_1 \eta_1 b$, $\xi_2 \eta_2 b$, $\xi'_1 \xi''_1 x_2$, $\eta_2 \xi_1 y_1$, $\alpha \xi_i x_i$... At ϵ/ϵ^2 : ..., $\xi_1 \eta_1 a$, $\xi_2 \eta_2 a$, ...

DIF For FEREZi] let NF)=n.deg_F-2wtF Chim & is non-decreasing under 9h morphisms. Def For ØERES;Z:] let NØ)=

 $\ldots, \eta_i b y_i, \ldots$

 $\begin{aligned} \mathcal{L}(x_1, x_1) & = -1 \quad \mathcal{J}(ab) = 0 \quad \mathcal{J}(ab^2) \\ \mathcal{J}(a) &= -1 \quad \mathcal{J}(ab) = 0 \quad \mathcal{J}(ab^2) \\ \mathcal{J}(ab) &= 0 \quad \mathcal{J}(ab) \quad \mathcal{J}(ab) \\ \mathcal{J}(ab) &= 0 \quad \mathcal{J}(ab) \quad \mathcal{J}(ab) \\ \mathcal{J}(ab) &= 0 \quad \mathcal{J}(ab) \quad \mathcal{J}($

y₃ y₂ y₃ y₆