Products and Semi-Direct Products

April-17-15 12:38 PM

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/ExQu/

ivšečisoés

2. Some Soft Facts about Power Series and Expansions

2.1. More About the Polynomial Algebra $\mathcal{A}(G)$. We start with a few trivialities. For $g \in G$ we let $\bar{g} := g - 1 \in \mathbb{Q}G$. It is clear that $\bar{g} \in I$ and that elements of the form \bar{g} generate I. And as I/I^2 generates $\mathcal{A}(G)$, the classes of the \bar{q} 's in I/I^2 generate $\mathcal{A}(G)$.

Proposition 2.1. In I/I^2 , $\overline{gh} = \overline{g} + \overline{h}$ for any $g, h \in G$. In particular, $\overline{g^k} = k\overline{g}$ for any $k \in \mathbb{Z}$.

 $\begin{array}{ll} Proof. & \mbox{In } \mathbb{Q}G, \, \overline{gh} = gh-1 = (g-1) + (h-1) + (g-1)(h-1) = \overline{g} + \overline{h} + \overline{g}\overline{h}, \, \mbox{and modulo} \\ I^2 \mbox{ the last term drops out.} & \hfill \Box \end{array}$

This proposition implies that if the group G is torsion then $\mathcal{A}(G) = 0$ justifying Table I line I. Indeed if G is torsion and $g \in G$, then $g^k = 1$ for some k, hence $k\bar{g} = \overline{g^k} = g^k - 1 = 0$, hence $\bar{g} = 0$, hence all the generators of $\mathcal{A}(G)$ vanish.

If x and y are elements of a group, we denote their group-commutator by $(x, y) := xyx^{-1}y^{-1}$. If a and b are elements of an algebra, we denote their algebra-commutator by [a, b] = ab - ba. In our context, these two notions are compatible:

Proposition 2.2. If $x, y \in G$, then $\overline{(x, y)} \in I^2$ and in $\mathcal{A}(G)_2 = I^2/I^3$, $\overline{(x, y)} = [\overline{x}, \overline{y}]$.

Proof. In $\mathbb{Q}G$ and since 1 is central, $[\bar{x}, \bar{y}] = [x, y] = \overline{(x, y)}yx$. Hence $\overline{(x, y)}yx \in I^2$, hence $\overline{(x, y)}(yx - 1) \in I^3$, hence modulo I^3 , $\overline{(x, y)} = \overline{(x, y)}yx = [\bar{x}, \bar{y}]$.

The above proposition has a stronger variant:

Proposition 2.3. If $x, y \in G$ are such that $\bar{x} \in I^m$ and $\bar{y} \in I^n$, then $\overline{(x,y)} \in I^{m+n}$ and in $\mathcal{A}(G)_{m+n}, \overline{(x,y)} = [\bar{x}, \bar{y}]$.

Proof. Same proof, with I^2 replaced with I^{m+n} and I^3 with I^{m+n}

2.2. Products and SemiPDirect Products. We aim to prove Proposition 1.5, asserting that $\mathcal{A}(G \times H) \cong \mathcal{A}(G) \otimes \mathcal{A}(H)$. As we shall see, the proof revolves around the fact that $\mathbb{Q}(G \times H) = (\mathbb{Q}G) \otimes (\mathbb{Q}H)$ is twice-filtered. Hence we start with a general fact about twice-filtered vector spaces.

Suppose a vector space V is twice-filtered. Namely, we have a pair of filtrations, $V = F'_0 \supset F'_1 \supset \cdots$ and $V = F''_0 \supset F''_1 \bigcap \cdots$. We write $F_{p,q} := F'_p \cap F''_q$ (see Figure 1). The associated doubly-graded space of V is defined by

$$\operatorname{gr}^2 V \coloneqq \bigoplus_{p,q} V_{p,q} \coloneqq \bigoplus_{p,q} \frac{F_{p,q}}{F_{p+1,q} + F_{p,q+1}}.$$

We can define an additional "diagonal" filtration on V, by setting $F_n := \sum_{p+q=n} F_{p,q}$, and hence a singly-graded associated space $\operatorname{gr} V = \bigoplus_n V_n := \bigoplus_n F_n/F_{n+1}$. If p + q = n, then $F_{p,q} \subset F_n$ and $F_{p+1,q} + F_{p,q+1} \subset F_{n+1}$, and hence there are maps $V_{p,q} \to V_n$, which induce a map $\alpha : \bigoplus_{p+q=n} V_{p,q} \to V_n$.

Lemma 2.4. The map α is an isomorphism.

We need a sub-lemma:

Lemma 2.5. If $D_1 \subset D_0$ and $E_1 \subset E_0$ are all subsets of the same vector space, and $D_0 \cap E_0 \subset D_1$, then

$$\frac{D_0+E_0}{D_1+E_1}\cong \frac{D_0}{D_1}\oplus \frac{E_0}{E_1+D_0\cap E_0}.$$

Proof. Define $\psi: \frac{D_0+E_0}{D_1+E_1} \to \frac{D_0}{D_1} \oplus \frac{E_0}{E_1+D_0\cap E_0}$ by $[d_0+e_0] \mapsto ([d_0], [e_0])$ and verify that this map is well defined: if $d_0+e_0 = d'_0 + e'_0$ with $d_0, d'_0 \in D_0$ and $e_0, e'_0 \in E_0$, then $d_0 - d'_0 \in$ $D_0 \cap E_0 \subset D_1$ and $e_0 - e'_0 \in D_0 \cap E_0$ so $\psi(d_0+e_0) = \psi(d'_0+e'_0)$, and likewise, easily $\psi((d_0+e_0) + (d_1+e_1)) = \psi(d_0+e_0)$ when $d_1 \in D_1$ and $e_1 \in E_1$. The construction of an inverse of ψ is even easier.

Proof of Lemma 2.4. We study "the part of the picture where $p \ge s$ " and compare it with "the part of the picture where $p \ge s+1$ ". Let $s \ge 0$ and set $F_n^s := \sum_{p+q=n, p \ge s} F_{p,q}$. Then

$$\frac{F_{n}^{s}}{F_{n+1}^{s}} = \frac{F_{n+1}^{s+1} + F_{s,n-s}}{F_{n+1}^{s+1} + F_{s,n-s+1}} = \frac{D_{0} + E_{0}}{D_{1} + E_{1}},$$

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/ExQu/

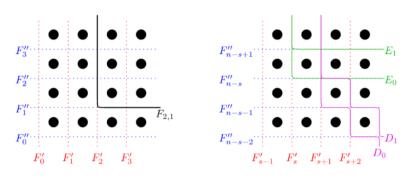


Figure 1. Subspaces of V that can be defined using F_p^\prime and $F_q^{\prime\prime}$ correspond to monotone subsets of the lattice $\mathbb{Z}_{\geq 0}^2$ and these are defined by their "lower / left boundary lines". For example, on the left $F_{2,1} = F'_2 \cap F''_1$ is "everything above and to the right of the solid black line", and this is the intersection of F'_2 , "right of the dotted red line labeled F''_2 ", and F''_1 , "above the dotted blue line labeled F''_2 ". The right half of this figure displays spaces that occurr within the proof of Lemma 2.4.

where we denote $D_0 := F_n^{s+1}$, $D_1 := F_{n+1}^{s+1}$ Clearly, $I_{GH} = I_G \otimes \mathbb{Q}H + \mathbb{Q}G \otimes I_H$: the (the Diagonal terms), and $E_0 := F_{s,n-s}$ and " \supset " inclusion is obvious, and the " \subset " inclu- $E_1 := F_{s,n-s+1}$ (the Extra terms). Then sion follows from $D_0 \cap E_{0} = F_{1,n-s} \subset D_1$, and hence by $g \otimes h - 1 \otimes 1 = (g-1) \otimes h + 1 \otimes (h-1)$. Lemma 2.5,

$$\frac{F_n^s}{F_{n+1}^s} \cong \frac{D_0}{D_1} \oplus \frac{E_0}{E_1 + D_0 \cap E_0} \\ = \frac{F_n^{s+1}}{F_{n+1}^{s+1}} \oplus \frac{F_{s,n-s}}{F_{s,n-s+1} + F_{s+1,n-s}} = \frac{F_n^{s+1}}{F_{n+1}^{s+1}} \oplus V_{s,n-s}.$$

Hence by induction,

$$V_n = \frac{F_n^0}{F_{n+1}^0} \cong \frac{F_n^1}{F_{n+1}^1} \oplus V_{0,n}$$
$$\cong \ldots \cong V_{n,0} \oplus \ldots \oplus V_{0,n}.$$

We leave it to the reader to verify that the above isomorphism is induced by the map α .

Proof of Proposition 1.5. Without further comment we will identify G and H as subgroups of $G \times H$ using the coordinate inclu-sions, and likewise $\mathbb{Q}G$ and $\mathbb{Q}H$ as subalgebras of $\mathbb{Q}(G \times H) = \mathbb{Q}G \otimes \mathbb{Q}H$. Let I_G, I_H , and I_{GH} denote the augmentation ideals of $\mathbb{Q}G$, $\mathbb{Q}H$, and $\mathbb{Q}(G \times H)$ respectively. 10

$$g \otimes h - 1 \otimes 1 = (g - 1) \otimes h + 1 \otimes (h - 1).$$

By expanding powers it follows that $I_{GH}^n = (I_G \otimes \mathbb{Q}H + \mathbb{Q}G \otimes I_H)^n = \sum_{p+q=n} I_G^p \otimes I_H^q$, and therefore, taking $V = \mathbb{Q}G \otimes \mathbb{Q}H$, $F'_p = I_G^p \otimes \mathbb{Q}H$ and $F''_q = \mathbb{Q}G \otimes I_H^q$ and using no-tation as in the preceding discussion, $I_{GH}^n = \sum_{q=1}^{n} E'_q \otimes E'_q$. $\sum_{p+q=n} F'_p \cap F''_q = F_n$ and hence $\mathcal{A}(G \times H)_n = V_n$. Likewise

$$V_{p,q} = \frac{I_G^p \otimes I_H^q}{I_G^{p+1} \otimes I_H^q + I_G^p \otimes I_H^{q+1}} \\ \cong \frac{I_G^p}{I_G^{p+1}} \otimes \frac{I_H^q}{I_H^{q+1}} = \mathcal{A}(G)_p \otimes \mathcal{A}(H)_q$$

and thus by Lemma $2.4, \mathcal{A}(G \times H)_n$ $\sum_{p+q=n} \mathcal{A}(G)_p \otimes \mathcal{A}(H)_q.$ MORE.

2.3. More About Expansions $Z: G \rightarrow$ $\hat{\mathcal{A}}(G)$. MORE Existence in the plain case, uniqueness, A-expansions.

Almost-Einert Junte Erzy

MORE: Something about GT/GRT.

Topology and its Applications 118 (2002) 169–185

www.elsevier.com/locate/topol

TOPOLOGY AND ITS

The universal finite-type invariant for braids, with integer coefficients

Ştefan Papadima

Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-70700 Bucharest, Romania Received 18 May 1999; received in revised form 26 March 2000