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IAbstract. Following joint work with Itai Bar-Natan, Iva Halache-
iva, and Nancy Scherich, I will show that the Best Known Time
(BKT) to compute a typical Finite Type Invariant (FTI) of type d
on a typical knot with n crossings is roughly equal to n%/2, which
is roughly the square root of what I believe was the standard be-
lief before, namely about n¢.

My Primary Interest. Strong, fast, homomorphic knot and tan-
ele invariants. wef/Nara, wep/Kyoto, wef/Tokyo
T T T L

Conventions. e n = {1,2,...,
ignore constant and logarithmic terms: n* ~ 2023d!(log n

n}. e For complexity estimates we
Yn3.

A Key Preliminary. Let Q C
n’ be an enumerated subset, with
l < g =|0| <n Intime ~ g
we can set up a lookup table of
size ~ ¢ so that we will be able
to compute |Q N R| in time ~ 1,
for any rectangle R C n'.

[Fails. e Count after R is prese-
nted. e Make a lookup table of
|O N R| counts for all R’s.

>

IUnfail. Make a restricted loo-
kup table of the form

{ dyadic lQ m Rl }

e Make the table by running
through x € Q, and for each
one increment by 1 only the
entries for dyadic R > x (or
create such an entry, if it di-
dn’t exist already) This takes
q - (logy n)' ~ g ops. .
e Entries for empty dyadic R’s are not needed and not created

e Using standard sorting techniques, access takes log, g ~ 1 ops. |
e A general R is a union of at most (2log, n)! ~ 1 dyadic ones,

so counting |Q N R| takes ~ 1 ops.

Generalization.  Without changing the conclusion, replace
counts |Q N R| with summations Y 6, where 6: n’ — V is suppor-
ted on a sparse Q, takes values in a vector space V withdim V ~ 1,
and in some basis, all of its coefficients are “easy”.

Gauss Diagrams.
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"The [GPV] Theorem. A knot invariant is fi-

" for some w € de
/@ & is easy; = is hard and IMHO not well understood.

""o The theory of finite type invariants is very rich. Many knot

rrfrrre We need a fast algorithm to compute ¢!

e -_';Our Main Theorem. On an n-arrow Gauss diagram, ¢, can be
-:* computed in time ~ n/%/?1.

+Proof. Withd = p + I (p for “put”, [ for “lookup”), pick p arrows

" “and look up in how many ways the remaining / can be placed in

G ~ T 8§
+ + = @ K and now ¢4(G) = ( ) Z Z P#, O
I 2 3 45 6 7 8 - Pe(G) o gfi’;;’f‘lg [T:(Paiy-1-Pac)
ngri;sgfgp:re’;; dl)f)o i == : can be computed in time ~ n” + n'. Now take p = [d/2]. a
I e 2 o _ Question ([BBHS], wep/ :
R D i L o T Fields).  For computations,

--planar projections are better
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Goussarov-Polyak-Viro

nite type of type d iff it is of the form w o ¢4

® .4 is not an invariants and not every w gives an invariant!

invariants factor through finite type invariants, and it is possible
that they separate knots.

between the legs of the first p:
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[To reconstruct D = P#,L from P and L we need a non-decreasing
“placement function” A: 2] — 2p + 1.

-1
0a(G) = Z D= (i) Z P# L
De(y) PeC) BT LD,
Define 65 : 2_n2’ — G, by
L if(Ly,...,Ly) are the ends of some L C G

0 otherwise

(L],...,Lz[) I—){

Definitions. Let G := Q(Gauss Diagrams), with G, / G<,4 the
diagrams with exactly / at most d arrows. Let ¢;: G — G, be

(Pd:G'_) Z D = Z D,andlet¢5d=zegd‘ﬁe-
DCG, |Dl=d De($)
Naively, it takes (Z) ~nd

ops to compute @g.
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than braids (as likely [ ~ n3/?).
But are yarn balls better than  Length L
planar projections (here likely n ~ L*/3)?

Knot: Piccirillo

n crossings
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Dror Bar-Natan: Talks: Ottawa-2306:

Thanks for inviting me to Ottawa!
Computing the Zombian of an Unfinished Columbarium confession. It's about 50% of what I do.

oef:=http://drorbn.net/ott23 [H]3 =]

=

IApology. It’s a 20 minutes talk. Necessarily, it will be superficial.
IAbstract. The zombies need to compute a quantity, the zombian
that pertains to some structure — say, a columbarium. But un—
fortunately (for them), a part of that structure will only be known | i
in the future. What can they compute today with the parts they
already have to hasten tomorrow’s computation?

That’s a common quest, and I will illustrate it with a few exa-
mples from knot theory and with two examples about matrices —

ams (perhaps delusions): that one day I will be able to reproduce,
and extend, the Rolfsen table of knots using code of the highest
level of beauty.

Columbaria in an East Sydney Cemetery

determinants and signatures. I will also mention two of my dre- |

_| o The Alexander polynomial ~> Zombian = det.

Jacobian, Hamiltonian, Zombian|

IKnots and Tangles

“Nautical Knots”
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'Why Tangles? e As common as knots!

e Faster computations!

e Conceptually clearer proofs of invariance
(and of skein relations).

e Often fun and consequential:

i

2n/2 4 on/2 4 VR n

o Knot signatures ~> Pushforwards of quadratic forms.

Computing Zombians of Unfinished Columbaria.

e Future zombies must be able to complete the
computation.

e Must be no slower than for finished ones.

e Future zombies must not even know the size
of the task that today’s zombies were facing.

e We must be able to extend to ZPUCs, Zombie
Processed Unfinished Columbaria!

[Exercise 1. Compute the sum of 1,000 num-

bers, the last 50 of which are still unknown.

1,000 x 1,000 matrix in which 50 entries are not yet given.
I[Example 3. Same, for signatures of matrices / quadratic forms.

Zombies: Freepik.com|

%' #|0One more story is left to tell, of knot tabulation.

[Exercise 2. Compute the determinant of a Columbarium near Assen

o The Jones Polynomial ~» The Temperley-Lieb Algebra.

o Khovanov Homology ~» “Unfinished complexes”, complexes
in a category.

o The Kontsevich Integral ~» Drinfel’d Associators.

'wo slides from R. Jason Parsley’s wef/history:

\ Brief History of (Prime) Knot Tabulation Brief History of Knot Tabulation 111

Gauss knew and thought about knots — 1833 integral formula
for linking number. Before him, Vandermonde (1771) wrote a

i @ Conway (1964)
seminal paper on topology & discussed knots.

Knots to 11 crossings, links to 10 crossings; errors.
@ Rolfsen (1976)  Knots to 10 crossings. 1 error.
@ Caudron (1978) - knots to 11 crossings correctly.

@ DollHoste (1991)  Oriented links to 10 crossings.
@ Cerf (1998) Oriented alt. links to 10 crossings
@ Hoste/Thistlethwaite/Weeks (1998)
1,701,936 knots to 16 crossings; determined chirality
@ Flint/Rankin (2007)
98,517,495,461 alternating links to 23 crossings.
Al of these are for prime knots only!!

Atomic model [Kelvin, late 1800's]
Atoms are knotted vortices in the ether.

This theory, albeit vastly incorrect, led to the first serious work
in knot theory.
a Tait (1876), a colleague of Kelvin — knots to 7 crossings
o Kirkman (1885, British) — knot projections
o Little (1885, Nebraska) — knots to 10 crossings
a by 1900, Tait, Kirkman, Little had produced all < 10
crossing knots and all 11 crossing alternating knots

A quadratic form on a v.s. V over C is a quadratic Q: V — C,
or a sesquilinear Hermitian (-,-) on V X V (so (x,y) = (y, x) and
Q(y) = (y,y)), or given a basis ; of V*, a matrix A = (a;;) with
A = AT and Q = Y a;;fim;. The signature o of Q is oy — o_,
where for some P, PTAP = diag(1, -, 1,-1,"~,—1,0,...).

here's also Burton’s tabulation to 19 crossings wef/Burton, and Khesin's K250, arXiv:1705.10319.
I[Embarrassment 1 (personal). I don’t know how to reproduce
the Rolfsen table of knots! Many others can, yet I still take it on
faith, contradicting one of the tenets of our practice, “thou shalt
not use what thou canst not prove”.

A Partial Quadratic (PQ) on V is a quadratic Q defined only on
a subspace Dy C V. We add PQs with Dy, .o, = Do, N Dy,.
Given a linear y: V — W and a PQ Q on W, there is an obvious
pullback y*Q,aPQon V.

Theorem 1 (with Jessica Liu). Given a linear ¢: V —
W and a PQ Q on V, there is a unique pushforward PQ
#..Q on W such that for every PQ U on W,

ov(Q + ¢"U) = Okerg(Qliery) + ow(U + ¢.0).

Gist of the Proof. T W Jessica Liu
0 (Qlers)
P . | . | 0 0 —_— ker ¢
i simul. :
A B | row/col VO,,%E,,V,,,
. -
p ops 0 : 0 C
/BT U I
W Wl 0 | CT|U+F
\/‘/\/\/ )

.. and the quadratic F =: ¢..Q is well-defined only onD : = kerC.

(more at wef/icerm.)

I[t’s harder than it seems! Producing all knot diagrams is a mess,
identifying all available Reidemeister moves is a mess, and you
sometimes have to go up in crossing number before you can go
own again.

mbarrassment 2 (communal). There isn’t anywhere a tabu-
ation of tangles! When you want to test your new discoveries,
here do you go?

ream. Conquer both embarrassments at once. Reproduce the
olfsen table, and extend it to tangles, using code of the highest
level of beauty. The algorithm should be so clear and simple that
anyone should be able to easily implement it in an afternoon wi-
thout messing with any technicalities. |

_

()<

)Acknowledgement. This work was partially supported by
INSERC grant RGPIN-2018-04350 and by the Chu Family Foun-
dation (NYC).

A
We don’tevenneed tolo-  The dreaded slide moves, which go R-moves
. . . are tangle
ok at all knot diagrams! up in crossing number, are parame- .
equalities!

trized by tangles!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ottawa-2306/
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Dror Bar-Natan: Talks: ICERM-2305: Thanks for inviting me to ICERM! Zoomers: Please please pretty please, webcams on! E‘[} =]
Shifted Partial Quadratics, their Pushforwards, and Signature Invariants for Tangles htp://drorbn.net/icerm23  [g]

quadratic form on a v.s. V over C is a quadratic Q: V — C,
r a sesquilinear Hermitian (:,-) on V X V (so (x,y) = (y,x) and
Q(y) = (y,y)), or given a basis 7; of V*, a matrix A = (a;;) with

= A" and Q = Y a;;fim;. The signature o of Q is oy — 0,
here for some P, PTAP = diag(1, -, 1,-1,"~,—1,0,...).

IAbstract. Following a general discussion of the co-
mputation of zombians of unfinished columbaria (with
examples), I will tell you about my recent joint work
w/ Jessica Liu on what we feel is the “textbook’ exten-
sion of knot signatures to tangles, which for unknown

reasons, is not in any of the textbooks tha we kl;lOW. Jessica Liv [A™p 170l Quadratic (PQ) on V is a quadratic Q defined only on
] : £ 'ag:- Hﬁu a subspace Do C V. We add PQs with Dy, .o, = Do, N Dy,.
S v Given a linear : V — W and a PQ Q on W, there is an obvious
i ? {pullback Yv'0,aPQon V.
i j L. theenitconTheorem 1. Given a linear ¢: V. — Wand aPQ Qon V, there is
(Columbaria in an East Sydney Cemetery Jacobian, Hamiltonian, Zombianig unique pu Sthl’W(ll’d PQ ¢*Q on W such that for every PQ U on
IPrior Art on signatures for tangles / braids. Gambaudo|W, ov(Q + ¢*U) = Okerp(Qliery) + ow (U + ¢.0).
and Ghys [GG], Cimasoni and Conway [CC], Conway [Col], (If you must, D(¢.Q) = ¢(anny(D(Q) N ker ¢)) and (¢.0)(w) = O(v),
Merz [Me]. All define signatures of tangles / braids by first clo- where v is s.t. ¢(v) = w and Q(v, rad Qlkerg) = 0).
sing them to links and then work hard to derive composition pro- Gist of the Proof. 7 T w T Tttt T
perties. kL0,
'Why Tangles? e Faster! - | simul o T o °
. . A B | row/col |- T, __|___
e Conceptually clearer proofs of invariance S — ‘
(and of skein relations). Vn ‘ — ops 0 ! 0| ¢
e Often fun and consequential: R e W oo '¢TlUu+F
o The Jones Polynomial ~» The Temperley-Lieb Algebra. L”Y/YxWJ l .
o Khovanov Homology ~» “Unfinished complexes”, complexes |- and the quadratic F' =: ¢.Q is well-defined only o
in a category. (; ””””””””””” [Exactly what we want, if the Zombian is the signature!
o The Kontsevich Integral | § wawasas |V The full space of faces. wlw|w [ow W
~» Associators. 'S — - W: The boundary, made of gaps. N el o N
12 b & R R AL
o HFK ~> OMG, type D, ! g WJ U Q: The known parts. ST
type A, Ao, ... M pagaped \_ [U: The part yet unknown. *W‘/m IO S—
Computing Zombians of Unfinished Columbaria. 2" " "ov(Q + ¢*(U)): The overall Zombian. ¢ W.- LU
e Must be no slower than for finished ones. 0 (Qlkerg): An internal bit. U + ¢.Q: A boundary bit.
e Future zombies must be able to complete the And so our ZPUC is the pair S = (0°(Qlierg), ¢:0).
computation. A Shifted Partial Quadratic (SPQ) on V is a pair S = (s €
e Future zombies must not even know the size g < =17, 0 aPQ on V). addition also adds the shifts, pullbacks keep the

shifts, yet ¢..S = (s + Oker¢(Qlierg), ¢ Q) and (S) = s + 0(Q).
heorem 1’ (Reciprocity). Given ¢: V — W, for SPQs S on
V and U on W we have oy(S + ¢*U) = ow(U + ¢.S) (and this
haracterizes ¢..S ).

of the task that today’s zombies were facing.
e We must be able to extend to ZPUCs, Zombie
Processed Unfinished Columbaria!
[Example / Exercise. Compute the determinant

of a 1,000 x 1,000 matrix in which 50 entries Theorem 2. y* and ¢, are functorial. Also, if /B = %6
are not yet given. Columbarium near Asseny /5, @ is surjective, § is injective, and imy D kerd, V.7 {8
Homework / Research Projects. e What with ZPUCs? e Use then y*/a., = 6,/B". Finally, y* is additive but ¢, isn’t.  * 5 ¢
this to get an Alexander tangle invariant. — & SPQ S 83 82
. . . signature ..o ” .
Reminders. {knots} = {matrices / quadratic forms} ——— Z: |[Definition. S8 8| := {on (g } iy bV
e > [ R . l_ 814 g
8 " 3 U, — o= Theorem 3. {S('cychc sets)} .1's a | 4f1 4
A= AT |7 " o.—0_+s planar algebra, with compositions 8 o
9 / - [: .7~ |1 Kashaev’s SDY(S)) = ¢£(§0*D(@l S:)), where & *
1 ﬂ 0. |} Conj. [Ka] Wp: (fiy — <(g.) maps every face . D
2 o1 L, okas =207 : 8 - —86
=~~~ 1 Tristram-Levine (7L) 1 Kashaev  (Kas) Of_ Dt th.e sum gf. the input gaps Connection Diagram
ikl | - -t 2 iyi v u 1 . i@djacent to it and ¢”': (f;) — {(g;) maps every face to the sum
ANE i U A U A VAR R BT A of the output gaps adjacent to it. So for our D, ¥p is fi — g,
! \] | _ a - ik S w v ulklp o gn g+ gt 833, i > g3, fa P gin fs P g3+ ga1s fo 83,
17 N4 0s=0 Ly 0 — o)1 s—=1u 1 u 1)1 D
e - = s e e oo SV gt and @” 1S i g1, o g2+ 8. 5= 0, fa> g3, fs > 0,
X_ijh—i | r -t =2t t\i, v u 1 wu\i fo = g5, 1 > g -
; -t 0 f 0fj! 1 117 ’
kz k/,’ VARSI S, . F ,J( I A-= lf " Z " ,J(Theorem 4. TL and Kas, defined on .
) | | ~
e ][ vs=0 ;s o - o)r+s+=1l 1 u 1)1X and X as before, extend to planar . § g
where |w| = 1,7 =1—w, r =t+1,v=Re(w), and u = Re(w'/?). algebra morphisms {tangles} — {S}. - =

Video and more at http://www.math.toronto.edu/~drorbn/Talks/ICERM-2305/
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Implementation (sources: http://drorbn.net/icerm23/
ap). I like it most when the implementation matches the math
perfectly. We failed here.

Once[<< KnotTheory  ];
Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.
Utilities. The step function, algebraic numbers, canonical forms.
6[x_]1 /; NumericQ[x] := UnitStep[x]
w2[v_][p_] :=Module[{q = Expand[p], n, c},
If[q===9, 0,
c = Coefficient[q, w, n = Exponent[q, w]];
cv'+w2[vl[g-c (w+0™)"]]];
sign[&_] := Module[{n, d, v, p, rs, e, k},
{n, d} = NumeratorDenominator[&];
{n, d} /= wExponent[n,w]/2+Exponent[n,w,Min]/2;
p = Factor[w2[v]e@nxw2[v]@d /. v 4u®-2];
rs = Solve[p == @, u, Reals];
If[rs === {}, Sign[p/.u-0],
rs = Union@ (u /. rs);
Sign[ (-1)°=BPonentl?.ul coefficient[p, u, e]] + Sum[
k =0;
While[ (d = RootReduce[dy, ,si3P /- U > r])
If[EvenQ[k], @, 2Sign[d]] *6[u-r],

{r, rs}l

= 0];

]
]

SetAttributes[B, Orderless];
CF[b _B] := RotateLeft[#, First@eOrdering[#] -1] & /@
DeleteCases[b, {}]
CF[&_] :=Module[{ys = UnioneCases[&, ¥_| ¥ , «]},
Total[CoefficientRules[&, ¥s] /.
(ps_ > c_) = Factor[c] « Times @@ ys™] |
CFL{}] ={};
CF[c List] :
Module[ {¥s = Union@Cases[C, ¥ , @], ¥},
CF /@DeleteCases[0] [
RowReduce[Table[d,r, {r, ¢}, {¥, ¥S}1].¥s] 1]
()"
r_Rule*

=8 /. {F>v, ¥ ¥, w-w?, c_Complex = c*};
={r, r*}
RulesOf[y; +rest_.] := (y;—> -rest)’;
CF[PQ[C , g 1] :=Module[{nC = CF[C]},
PQ[nC, CF[q /. Union @@ RulesOf /@nc]] ]
CF[2p [0, PG_1] = Zcrpy [0, CFPq]]

Pretty-Printing.

Format[Z, z[o_, PQ[C , g 111
¥S = ¥» & /@Joineeb;
Column[ {TraditionalForme o,

TableForm[Join[
Prepend[""] /@ Table[TraditionalForm[&.r],
{r, ¢}, {¢, ¥s}],
{Prepend[""] [
Join ee
(b/. {L_,m __
{DisplayForm@RowBox[{" (", L}],
m, DisplayForm@RowBox[{r, ")"}1}) /.
1_Integer = ¥; 1},
MapThread [Prepend,
{Table[TraditionalForm[d.,.q], {r, ¥s*},
{c, ¥s}1, ¥s*}]
1, TableAlignments - Center]
}, Center] ]1;

:= Module[{¥s},

s P} >

The Face-Centric Core.
Zp; [o1_, PQICL_, q1_1]1®%p; [02_, PQ[C2_, q2_]] ":=
CF@zJo1n[b1 b2] [(71 + 0'2 PQ[a U 6’2 ql + q2] ] H

GT for Gap Touch: T %

Ti ,5 @Bsrqti i ,ri___},{lj___,3_.ri__ _alas
PQ[C , q_1] :=
CF@Zg(ri,Li,j,rj,L5,i},b5] [T PRIC U {¥i - ¥j}» 911

-

Eﬂrdﬂn "i ee'en ) e
.. tiizp e ICTIOMARY
: (&7 FaALER ]

l, 1. Al O pesoioee, il ktany posis, o sheps statinned anoeses
nn nres o srckse or guand il es oow
2. A rope, B [Rpe. of stmilar Berder gretc hed prodeed

HidE, s iiEl D s Eeliiaal RSN THEl ases i

FH
Fesifieand

use ¢, to kill its row and

(0 |¢ Crest Ap¢p #0 column, drop a ((1)(1)) summand
il |2 6 |-
C‘Zégtg Arest ¢=0,1#0 use A to kill 6, let s += sign()
¢=0,1=0 append 6 to Creg-
Cordon; @Zgrii i ,ri___3,bs___100 5 PQLC_, q_1] :=

Module[{¢ = 8,,C, A = 85,,4;4s NO = 0, NG, nq, P},
{p} = FirstPosition[ (# =!=0) & /@ ¢, True, {0}];
{nc, nq} = Which|

p >0, {¢,q} /. (yi»-clpl/olpe])" /.
=1=0, (no +=sign[1];
{6’, q/. (vi- —(G;iq)/l)+ /. (xi»0)'}),
r===0, {cU{67,9},9/- (¥i>0)'}];
CF@Zgmoste(ri,Li},bs] [NO)
PQ[NC, nql /. (Yiasteiri,Li} = YFirste(ri,Li}) ] ]

(¥i>0)",

Video and more at http://www.math.toronto.edu/~drorbn/Talks/ICERM-2305/
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Strand Operations. c¢ for contract, mc for magnetic contract: Reidemeister 3.

8 9
2,
Ci 5 @t Bapi it 30w 3. 1[__1:= R3L = PD[X_3,5,4,-15 X_3,7,6,-55
t // GTj rirste(ri,Li} // Cordon; X_6,9,8,-4]13 “
4

R3R = PD[X_ _2s X _ /
Ci,;@t:Zg( i .5, 3, 1[__1:=Cordon;et [X-3,5,4,-25 X-4,6,8,-15

X.s5,7,9,-613

C-,:_,j_@t . EB[(j_,___,i_),___] [__] o= cof'donj@t
{TL@R3L == TL@R3R, Kas@R3L == Kas@R3R}

Ci ,j@et:Zg 5 .i, 3, 1[__]:=Cordon;et

Ci ,j @t :Zgri, ,i3, 1[__1:=Cordon;et {True, True}

mc[&s ] :=&8//. KaseR3L
20(u-2%)-20(u+t)-2

t : ZB[(___;":_:__._}:{__._)j_:._._._).v_.__] [——] | (v-3 Y7 : 719) ( 2) 8 -1 ¥-2)
Bere__,ii,_de_ L 21 I B, iy, _a[__1 /5 v L s oo i ey e
1+ j =0 Ci,j@t v z“u :uzzi 1 ‘zi:u‘zz:; ‘z:‘:‘u‘zzz‘m Y l‘lwzu.l‘ Y] 1““4 "2 ll‘zu.l

o N 1 u(au? 3 20 (4u?-3) u(au?-3 N 1 N 2u
The Crossings (and empty strands). B e Een gen e gungen o gen ey e e
RE) T 2u1) 2ue1) T 2u1) 2ue) 2u-1) @uD) 2u-l) @l 2u-1) (Zael T 2u1) 2ue)
KaseP; ,; :=CF@Zg((i,j;[0, PQ[{}, @]1; Vi mmmw mmw wmmmw | el Zodr bl
TL@P; ,; := CF@Zg((i,j;;[0, PQ[{}, @] ve S s oithw wmmw el Ml

Kas[x :X[1_,J , k , L 1] :=

. — Reidemeister 2. 56
Kas@I-F[P051t1veQ [X1, X_1,5,k,-Ls X_j,k,L,_i]; _
_ ) TL@PD[X_2,4,3,-15 X_4,6,5,-3 =
Kas[(x:X|X)fS__] :=Modu1e[{v=2u -1, p, ¥s, m}, 0
¥S =¥z &/@{fs}; p= (x===X); 1 0 -1 0 2
vu1lu vu1lu (¥-2 Y6 ¥s Y-1)
ulul ulul1l Y-2 0 0 0 0
m=I-F[p, 1uvu’_1uvu]’ Ye 0 0 0 )
ulul ulul s 0 0 0 %]
Y-1 (7] (] (7] (7]

CFeZa((so)) [IF[P, -1, 11, PQI{}, ¥s*.m.¥s]]] _
{TL@PD[X_;,4,3,-15 X_4,6,5,-3] == GTs, ,@TL@PD[P_y 5, P_5 6],
TLIx:X[i_,J ,k , L_]] := Kas@PD[X_3,4,3,-15 X-4,6,5,-3] = GTs,_,@Kas@PD[P_y s, P_; 6]}

TL@If[PositiveQ[x], X_i,j,r,-1s X_j,k,1,-i]
_ {True, True}
TL[(x DX | x)fs__] := Module[{t =1-w, r, ys, m},

r=t+t*; ys=vy,&/@{fs}; Reidemeister 1.

t :
m=If[x === X, {TL@PD[X_3,3,2,-1] == TL@P_, 5,
KaS@PD[X_3,3,2,_1] = KaS@P_l,z} 1
-t* @ t* o -t* o t* a].
B

2
] o=
1
-r -t 2t t* roo-t -2t* t*
2t* t -r -t* |’ -2t t r -t*
A Knot.
t @ -t o t @ -t o ) -
f = TLSig[Knot[8, 5]]
CF@Zg (55 [0, PRL{}, ws*.m.¥s]] | 3 NE
29[—— +u] —29{7 +u} -
Evaluation on Tangles and Knots. 2 2
Kas[K_] := Fold[mc[#1®#2] &, Zg(; [0, PQ[{}, @11, 20[u- @-0.63.. | +20[u- @e.630.. =

{True, True}

List @@ (Kas /@ PD@K) ];
KasSig[K ] := Expand[Kas [K] [1] / 2] Plot[f, {u, -1, 1}]
TLIK ] :=
Fold[mc[#1&® #2] &, Zg[; [0, PQ[{}, O]],
Listee (TL /@PDe@K)] /.
©[c_+u] /; Abs[c] 21 0[C];
TLSig[K ] := TL[K][1]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/ICERM-2305/
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The

Conway-Kinoshita- :t— ]0
15 .'
Terasaka Tangles. /15\
Conway Kinoshita Temnkﬂ

T1=PD [Y-s,2,7,-1: X_2,8,3,-75

X_g,4,9,-3> X_11,6,12,-5>
X_4,11 5,-19]

0 | v
7 /
245 =2,8,3,- \\ \/
X_g,4,9,-35 X_12,6,13,-5» /

T2 = PD[X_s 2,7,-15 X_2,8,3,-7»

X_a,12,5,-11> X-10,15,11,-145> X-15,10,16,-9

Columne@ {TL[T1], Kas[T1]}

~20(u-L)26(us L) 1
2 2
(¥-10 Y9 Y1
Y-10 2] 1-w 2]
— w-1 2w w-1
v o W2-wsl e
Y- 2] w-1 2]
= w-1 2w w-1
Y12 T P T
—Zo(u u+£) -1
2
(¥ 10 Y1 Y12)
Y-10 2 (u-1) (u+1) (4u®-3) 0 “2(u-1) (u+1) (4u*-3) 0
o _ 1
Yo 0 2 (au?-3) 0 2 (4u?-3)
Y “2(u-1) (u+1) (4u*-3) ° 2 (u-1) (u+1) (4u*-3) 0
o _ 1 1
12 0 2 (4u?-3) 0 2 (4u?-3)
Columne@ {TL[T2], Kas[T2]}
2]
(¥ 14 Y16 Y1 Y13)
Y-14 [2] 1-w [2] w-1
3, w-1 B 2 (w-1)20 _w-1 2 (w-1)20
1 w w?-3034502-3 041 w w?-3034502-3 041
Y- ] w-1 ] 1-w
v, _w-1 2 (w-1)20 w-1 B 2 (0-1)20
3 w 303502 3001 303502 3001
1
(¥-14 Y16 -1 Y13)
Y1 5 (-16ut+2807-13) 0 3 (16u* - 2807 +13) 0
_ 21 (usl) 2 (u-1) (us1)
Y16 e 16u4-28u?-13 e 16u4-28u2-13
Y1 2 (16u* - 2807 +13) 0 2 (-16u* 2807 -13) 0
Va3 ° 2 (u-1) (u+1 ° _2(u-1) (u+1)

16 u*-28u?+13

]4k

16 u*-28u%+13

Examples with non-trivial co- 4 )7 s
i i 10 4
dimension. B R 4 13
Bl = PD[X_s,2,6,-15 X_8,3,9,-25 2
6 o
X_11,4,12,-35 X_12,10,13,-9> ; 0
X. s
13,7,14,-6 ‘ 12
B2 = PD[X_ X_ "
5,2,6,-15 A-9,3,30,-2> | o g 1 Ns o
X_10,7,11,-65 X-12,4,13,-35> X-13,8,14,-7]
Columne {TL[B1], Kas[B1]}
o
1 ) 1 o 2 ) -2 0
o ) -1 : ) -2 1
(¥-11 Ya Y1e Y7 Y14 Y-1 Y-s Y-8)
Y1 2] 2] 2] 2] 2] 2] 2] 2]
Vs [ [ o [ el ) -2 0
Y10 [ o o 0 -ed o ed [
v7 ] ] ] ) 'é‘z ] - lep? 0
V1a ° “(w-1)w)  w-1 (w-1)2 0 -t o )
Y o 2] 2] 2] w 2] 1-w o
Y5 ) (w-1) w 1-w (w-1)2 1-w el w2 °
Y-8 o 2] 2] 2] o 2] 2] 2]
2]
1 2] 1 2] 1 2] 1 2]
(v-11 Ya Y1e Y7 Y14 Y- Y-s Y-8)
Y1 o o o 2] 2] 2] 2] o
Ya o o ] -1 -u 2] u 1
Y1e ] 2] 2] u 1-2u? 2 2u? -1 u
Y7 ] -1 u 2u?-3 u -1 2] 1
Y14 ] u 1-2u? -u -1 -u 2 (u-1) (u+1) u
Y ] ] ] -1 -u 2] u 1
Y5 2] u 20 -1 2] -2 (u-1) (u+1) u 4u®-3 2}
Y8 2} 1 u 1 u 1 2} 1-242

Columne{TL[B2], Kas[B2]}

0
0

2
1 1 PORETE ) 2ea o
0

0
1
0

20(u- L) _20(us B
2 2

I
s
I

EY
1 20 e

© © ©o o © © of

0
0
0
0
0
0
0
0

A B\ detr) (I A°'B 1 I A-lB
cC U ¢ v "o v-ca'B)

so det 5) = det(A) det(U — CA™'B).

C

Questions. 1. Does this have a topological meaning? 2. Prove
the Kashaev conjecture. Is there a version for tangles? 3. Find
all solutions of R123 in our “algebra”. 4. Braids and the Burau
representation. 5. Recover the work in “Prior Art”. 6. Are there
any concordance properties? 7. What is the “SPQ group”? 8. The
jumping points of signatures are the roots of the Alexander poly-
nomial. Does this generalize to tangles? 9. Which of the three
Cordon cases is the most common? 10. Are there interesting e-
xamples of tangles for which rels is non-trivial? 11. Is the pgq
part determined by I'-calculus? 12. Is the pg part determined by
finite type invariants? 13. Does it work with closed components
/ links? 14. Strand-doubling formulas? 15. A multivariable ver-
sion? 16. Mutation invariance? 17. Ribbon knots? 18. Are there
“face-virtual knots”? 19. Does the pushforward story extend to
ranks? To formal Gaussian measures? To super Gaussian measu-
res?

(what if AA717)
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Proof of Theorem 1.

Uniqueness: If A and B are 2 pushforwards, then ow(U + A) =
ow(U + B) for all PQs U on W.

Thus Dy = Dp, because otherwise if w € Dy \ Dp, by ta-
king U(w) = 1 on Dy = span{w}, we get ow(U +A) =1 #0 =
ow(U + B). Furthermore, A and B must agree where they are both
defined, because by taking U(w) = w on Dy = span{w}
we get (U + A)(w) = ’w = —(U + B)(w), so we must have
A(w) = B(w) to satisfy ow(U + A) = ow(U + B).

Existence: Define ¢.Q by Dy, o = ¢(anng(ker ¢)) and ¢.O(w) =
Q(v) where v € anng(ker ¢). Note that ¢, Q is well-defined.

First consider when U = 0 on all of W. Let K be a maximal
non-degenerate subspace of ker ¢. Then Q = Q|x ® Olanny(k)» and
we can write anng(K) = R ® A © B where R = radgp(ker ¢) and
A, B are chosen so that A C anng(R) and B C anng(K) \ anng(R).
Since Q : R — B* is surjective, for any v € Dy there is some
r, € R such that Q(r,, B) = Q(v, B). If we choose the r, so that
Ty, + Ty, = Iy 40y, then we canreplace Aby A’ = {a—r, : a € A}
and Bby B’ ={b—3r, : b € B} to get Q = Qlx & Qlren ® Qla’-
Then notice that

e oy(Qlk) = O—ker¢(Q|ker¢)

e 0y(Qlrer) =0

e oyv(Qla) = ow($:0)

so we get oy(Q) = Tker¢(Olkerg) + ow(@: Q).

Now for an arbitrary U, note that (Q + ¢*U)lxerg = Qlkerg and
0.(0 + ¢*U) = ¢.0 + U so we can replace Q in the U = 0 case
by O + ¢*U to get the general case.

Proof of Theorem 2.

It’s clear that pullback is functorial and that pushforward by the
identity is the identity. To show (¢¥). = ¢.i., use theorem 1
repeatedly to get

o((py)..Q + U)

=0(Q + (¢¥)"U)

=0(Q + Y ¢"U) — 0(Qliergy)

=o(.0 + ¢* U)+ O'(Qlken//) - O'(Q|ker¢w)

=0 (¢ 0 + U) + O'(Qlkerw) + U(¢*Q|ker¢) - U'(Qlkerqﬁw)

=0 (¢p Q + U)
for any U, where the last step uses theorem 1 on Q|4 with the
map ¢ : ker ¢y — ker ¢.
To show a.y* = B%0,, first note that 5*B, is the ide- oL e
ntity on any PQ since 8 is injective, so Yy ATAB

@.y'Q =B Ba)y' Q=BEny0=Foyy0 "7°
As B0.y.+y*Q and 876, Q have the same values whe-
re they are both defined, it remains to show that they

have the same domain. Since « is surjective and vy is
surjective onto ker(0), we see that

B'6(A) = B716(A Nimy)
for any subspace A. By taking A = anng(ker ¢), the two sides of
the equality become the domains of 5%6..Q and 8*3..y.y* Q.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/ICERM-2305/
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Dror Bar-Natan: Talks: Oaxaca-2210:

IAbstract. Reporting on joint work with
Roland van der Veen, I'll tell you some
stories about p;, an easy to define, strong, E——
fast to compute, homomorphic, and well- veen

connected knot invariant. p; was first studied by Rozansky and
Overbay [Rol, Ro2, Ro3, Ov], it has far-reaching generalizations,
it is dominated by the coloured Jones polynomial, and I wish I un-
derstood it. Common misconception. “Dominated” = “lesser”

Thanks for inviting me to Oaxaca!

Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants More at wep/APAT El

ol
Rozansky Overbay

. rotation numbers ¢;. Let A be the 2n+1)x(2n+1)

wef:=http://drorbn. net/oa22

Jones:

Formulas stay;
interpretations change with time.

[Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k € {1,...,2n + 1} and with

¢4 =~1

'We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.

matrix constructed by starting with the identity ma-
trix /, and adding a 2 X 2 block for each crossing:

INSERC grant RGPIN-2018-04350 and by the Chu Family Foun-
dation (NYC).

[Fast. Computable even for large knots (best: poly time). s=+1 s=-1
J—‘ -] fr —]== h 7 i+l J+y\ A |coli+l col j+1
(NS e “11  Piccirillo / TS s _
\ ] ; ; ; .-__.f-:"-"'-.. \ .:.____-_—__ -'\:."':-"'-\._ ' / —_— Trow l- T T 1
< A .f,-"f :r:*. 0 ‘H_:__I \ j row j 0 -1
W | f ,.;.?' b i I: LetG = (gap) = A~!. For the trefoil example, itis: ~ Burad
- L e O 1 =T 0 0 T-1 0 0
i %wL St 01 -1 0 0 0 0
Gompf— Sch;r}izr:n;r; E _. SR ___'-_-_';.\_-.';---.{-_;-_.- 0 0 1 _T 0 0 T —1 |Alexander
o 3 L A=l00 1 -1 0o o |
Homomorphic. Extends to tan- K/\ K&\\J 0 0 T-1 0 I =T 0
gles and behaves under tangle 0 0 0 0 0 1 -1
operations; especially gluings \\ \f\’\ 0 0 0 0 0 0 1
and doublings: 1 T 1 T 1 T 1
2
'Why care for “‘Homomorphic”’? Theorem. A knot X is ribbon 0 1 = e Tz_Tgﬂ 1
iff there exists a 2n-component tangle T. with skeleton as below 0 0 T21—jZ[+1 TZ—TT+ : T2—?+1 TZ_T - 1
such that 7(T") = K and where 6(T") = U is the untangle: G=10 0 T Z_TM (R s 1 | Wirtinger
URURWY. J 0 0 wmmy ~7ora 7o o | [ Lo
U 00 0 0 0 11 |hg
n=3) K ﬁ“o 0o 0 0 0 0 1
Hear more at wep/AKT. The Green Function : — Blanchfield
Acknowledgement. This work was partially supported by [\°te- The Alexander polynomial A is given by

A = T2 der(A),

with ¢ = Zwk, WZZS
k c

Classical Topologists: This is boring. Yawn.
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[Formulas, continued. Finally, set
Ri(c) = s(gji (gj+1,j + 81— gij) — &ii (gj,j+1 - 1) - 1/2)

p1 =N (Z Ri(©) = > e (8w - 1/2>) :
c k

In our example p; = -T2 + 2T -2+ 2T~ - T72,
Theorem. p; is a knot invariant.

Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability 7° ~ 1, but falls off with probability 1 — T° ~ 0*. See
also [Jo, LTW].

@I T T 1 0 0 17 1-7!
gl
\ @ @ ( image credits:

— _Ts
pP= 1 T diamondtraffic.con)
* In algebra x ~ 0 if for every y in the ideal generated by x, 1 — y is invertible.

Proof: later.

Wang

Jones Lin Tian

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0axaca-2210/
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Preliminaries
This is Rho.nb of http://drorbn.net/oa22/ap.

Once[<< KnotTheory™ ; << Rot.m];

Loading KnotTheory™ version

of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/la22/ap

to compute rotation numbers.

The Program

R1[S_, i_) J_] o=

S (8ji (85+*,7 * 8j,5* — 8ij) — 8ii (85,5+-1) -1/2);
Z[K ] := Module[{Cs, @, Ny A, S, i, s ks A, G, o1},

{Cs, ¢} =Rot[K]; n = Length[Cs];
A = IdentityMatrix[2n +1];
Cases[Cs, {s_,1_,7_}»
.. . . =T TP = 4l .
(pnci, 33, tiet, 50 mm 0= (75 T 1))
A= T(—Total[w]—Total[CslIAll,l]]])/2 Det[A];
G = Inverse[A];
pl= " Ri@@CsIk] - »*" o[k (g -1/2);
Factore
{2, 0201 /. a *»a+1/.g,,; »6Gla, /3]]}];

The First Few Knots
TableForm|[Table[Join [{K[1l«gy}, Z[K1],

31

4,

52

61

62

63

{K, AllKnots[{3, 6}]}], TableAlignments - Center]

17,72 (-14T)2 (1+T2)
T Tz
_13m.r? o

T

1772 13,74 (-14T)2 (1+T2) (2+T2+2 T4)

T2 T4
2-3T:272 (-1+T) 2 (5-4T+572)
T 2
_(-24T) (-1+2T) (-1+T)2 (1—4T+T2)
T 2
13737237374 (-1:+T)2 (1—4T+4T2—4T3+4 T4-4T5+T5)
T2 T4
1-3T+5T72-373.,74
f e

 p=1-T°¢

Video and more at http://www.math

Timinge
Z[GST48 = EPD [X14,1: X2,205 X3,205 Xa3,2, X26,5, Xe,055

Xos,75> X13,85 Xo,285 X10,415 Xa2,115 X27,125> X30,15»
X16,615> X17,725 X18,835 X19,3a5 Xgo,205 X21,925
X79,225 Xes,235> Xs7,245 X25,565 Xe2,315 X73,325
Xga,33> Xs0,35, X36,815 X37,705> X3g,505 X39,545 Xaa,ss,
Xsg,455 Xe9,465 Xso,47, Xag,015 Xoe,205 Xs1,825 Xs52,715
Xs3,60> Xe3,74> Xea,855> X76,655 Xg7,665 X67,945

i75,86: i88,77: i78,93]]
{170.313, {*i (71+2T—T2,T3+2T47T5+T8>
T8

(F1+T 2T TP T8 277 4 T8, %
(-1+T)% (5-18T+3372-32T°+2T*+42T° - 62T° -
8T  +166 T8 - 242T° + 108 T*® + 132 T - 226 T2 +
148 T2 -~ 11T - 36T - 11 7% + 148 TV - 226 T¥8 &
1327 +108T7%° - 242 T2 + 166 T2 -8T2 - 62T +

4272 272 3277 43378 1872+ 5T3°)}}

Strong!
{NumberOfKnots[ {3, 12}],
Lengthe
UnioneTable[Z[K], {K, AllKnots[{3, 12}]}],
Lengthe
Union@Table[ {HOMFLYPT[K], Kh[K]},
{K, AllKnots[{3, 12}]}1}

(2977, 2882, 2785}

So the pair (A, py) attains 2,882 distinct values on the 2,977 prime
knots with up to 12 crossings (a deficit of 95), whereas the pair
(HOMFLYPT, Khovanov Homology) attains only 2,785 distinct

Lickorish Yetter Przytycki  Traczyk Khovanov

.toronto.edu/~drorbn/Talks/0Oaxaca-2210/
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Theorem. The Green function gz is the
reading of a traffic counter at 3, if car traffic

is injected at « (if @ = B, the counter is after @ 63
the injection point).

[Example.

Zpso(l- T)P =7 T L7t

PSS

1
1 1
0O 0 1

Proof. Near a crossing ¢ with sign s, incoming upper M/
edge i and incoming lower edge j, both sides satisfy the

g-rules: i )
8ip =0+ T'°gip+ (1 =T )gjr1p.  8jp=0jg+&jr1p:
and always, g, 2,+1 = 1: use common sense and AG = I (= GA).
Bonus. Near c, both sides satisfy the further g-rules:

8ai = Tﬁs(ga,i-#l - 6(l,i+1)’ ga/ 8a, j+1 — (1 - Ts)gai - 6a,j+1~

N 08

Wearing my Quantum Algebra hat, I spy a Heisenberg
algebra H = A(p, x)/([p, x] = 1):
traffic counters < x

Yang
Baxter
Drinfel’d
K
Lawrence
Ohtsuki

rx
A

'-‘EE-FHH:
= L{y,b,a, x)

Heisenberg
e

H o

cars © p

Where did it come from? Consider g = s/
with relations

[b,x] = ex, [b,yl=—-€y, [b,a]l]=0

[a,x] =x, [a,y]l=-y, [x,y]=0b+e€a.

IAt invertible e, it is isomorphic to s/, plus a central factor, and
it can be quantized a la Drinfel’d [Dr] much like sl, to get an
algebra QU = A(y, b, a, x) subject to (with g = &"€):

Invariance of p;. We start with the hardest, Reidemeister 3:
T(1-T)

L 1-T (-T 1717

2 J@hT(l—T)
\iﬂ—ﬁ

= Overall traffic patterns are unaffected by Reid3!
= Green’s gqp is unchanged by Reid3, provided the cars injection
site a and the traffic counters 5 are away.
= Only the contribution from the R; |
terms within the Reid3 move matters, and
using g-rules the relevant gqz3’s can be pu- L
shed outside of the Reid3 area:
6i ,5_ i=If[1i===7,1,0];
BRI VERY
{8is 615+ T 8ir,5+ (1-T°) 8j*,45 Bjs > 6js + Bj*, 05
8o ,i T (8a,it = 8ayit) s
8a j  8a,j* ~ (1 - TS) 8ai — 6a,j+}
lhs = Ry [1, j, k] +Ra[1, i, k™] +Ry[1, i%, 7] //.
gRules, ; , UgRules, ; ,+ UgRules, ;-

i

J Jror
N

kT i

N

gRules

3%

rhs =Ry [1, i, j]1 +R1[1, i*, k] +Ry[1, ", k'] //.
gRules, ; ;U gRules, ;+ U gRules; j+ \+;

Simplify[lhs == rhs]

True

Next comes Reid1, where we use results from an earlier example:
1T1Tt1
eTt1|la, Al

Ri[1, 2, 1] -1 (822-1/2) /. 84,5 =‘>[
0 0 1

141
T

1 1
T T T —— {7 .

Invariance under the other moves is proven similarly.

1

?

Al

3
pr=1
2

[b,al =0, [b,x]=ex, [b,y]=—ey,
1-— (B—h(b+ea)
[Cl,x]zx, [asy]:_ > Xy —qyx = .
INow QU has an R-matrix solving Yang-Baxter (meaning Reid3),
D" @ (ha)" (hix)"

([n]g! is a “quantum factorial)

)

m![n],!

and so it has an associated “universal quantum invariant” a la
ILawrence and Ohtsuki [La, Oh], Z.(K) € QU.
Now QU = U(ge) (only as algebras!) and U(g.) represents into
H via

y— —tp—e-xp’,
(abstractly, g, acts on its Verma module

U /(U@ y, a,b — €a — 1)) = Q[x]
by differential operators, namely via H), so R can be pushed to
ReH®H.
[Everything still makes sense at € = 0 and can be expanded near
€ = 0 resulting with R = Ry(1+ R +- - - ), with Ry = e/*P®1-x®P)
and R a quartic polynomial in p and x. So p’s and x’s get crea-
ted along K and need to be pushed around to a standard location
(‘“normal ordering”). This is done using

PO DRy =Ro(T(p® 1)+ -T)(1&p)),

(18 p)YRy = Ro(1 ® p),
and when the dust settles, we get our formulas for p;. But QU
is a quasi-triangular Hopf algebra, and hence p; is homomorph-
ic. Read more at [BV1, BV2] and hear more at wef3/SolvApp,
weP/Dogma, wef/DoPeGDO, wef/FDA, wefi/AQDW.
)Also, we can (and know how to) look at higher po-
wers of € and we can (and more or less know how
to) replace sl, by arbitrary semi-simple Lie algebra
(e.g., [Sch]). So p; is not alone!
These constructions are very similar to Rozansky-Overbay [Rol,
Ro2, Ro3, Ov] and hence to the “loop expansion” of the Kontse-
vich integral and the coloured Jones polynomial.

b—ot+e-xp, a—xp, x-— X,

Schaveling

[f this all reads like insanity to you, it should (and you haven’t
seen half of it). Simple things should have simple explanations.

Hence, Homework. Explain p; with no reference to quantum
ivoodoo and find it a topology home (large enough to house ge-

'Wearing my Topology hat the formula for R;, and
even the idea to look for R;, remain a complete my-
stery to me.

.FE

neralizations!). Make explicit the homomorphic properties of p;.
[Use them to do topology!

IP.S. As a friend of A, p; gives a genus bound, sometimes better
than A’s. How much further does this friendship extend?

Video and more at http://www.math.to

ronto.edu/~drorbn/Talks/Oaxaca-2210/
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A Small-Print Page on p;, d > 1.

Definition. {f(z;), h({i))izy = f(agi)h|(i=0, SO (pzxz, @8y = 2g2.
Baby Theorem. There exist (non unique) pow-
er series rf(pLpynxi.x) = Ta€ri(ppnxix) €
QIT*!, p1, p2, x1, x2][[€]] with deg r; < 2d + 2 (“docile”) such
that the power series Z” = 3, phe? =

exp Z r*(pi, Pj» Xi» Xj) |, €xp Z 8aBTalp
¢ ap {Pasxp}

is a bnot invariant. Beyond the once-and-for-all computation of
8op (a matrix inversion), 7zl is computable in on?) operations in
the ring Q[T*!].
(Bnots are knot diagrams modulo the braid-like Reidemeister mo-
ves, but not the cyclic ones).
Theorem. There also exist docile power series y¥(p,x) =
Ya€y € QIT*!, p,x][e] such that the power series Z =
Y pae? =

exp Z”S(Pi,Pjaxi,xj)+Z’)"pk(ﬁk»xk) ,
k

c

exp| D" 2ap(a + )& + &) + D Make
af @
is a knot invariant, as easily computable as Z”.
Implementation. Data, then program (with output using the
Conway variable z = VT - 1/ \NT ), and then a demo. See Rho.nb
of wef/ap.

Vey1,, [k.]1=0(1/2-P%X); Veyy,, [k 1=-0"B X /2;
veys,, [k.] :=-0"P,%./6

{pa,]_’(y”xﬁaxﬁ}

very,s [i_,7_] :=

S(-1+2pix;i-2pjx;i+ (-1+T°) pl-pjx2i+(1—T5)p§x§—2p‘-pjxixj+2p§x1~xj)/2

very [i_, J_] :=

(-6pixi+6pjxi-3 (-1+3T) pipjX2+3 (-1+3T) p§x§+4(-1+7) p2p; X -
2(-1+T) (5+T)pip3x3+2 (-1+T) (3+T) p3xd +18p; p; x; X5 -
18p§x,-xj—5p§pjx§xj+6(2+T) pipﬁxij—6(1+T) p;xij—
6pi p3 x: X% + 63 x; X3) /12

very, 1[i_,J_] :=

(-6T2pix; +6T?pix; +3 (=3+T) Tp;p; X2 -3 (-3+T) Tp3x} -
4(-1+T)Tplp;x}+2 (-1+T) (1+5T) p;pixi-2(-1+T) (1+3T) p3xd+
18sz,-pjxix]-—lasz?xixj—GTprpjx§Xj+6T(1+2T)pip§x§xj—
6T (1+T) p2x3x; - 6T p; pix; X+ 6T p3x; x3) / (1272)

Z,[GST48]
{1-42*-612%-2072°-2962° - 210 2% - 77 2** - 14 2** - 2*°,

« takes a few minutes

vers[i_, J_] :=
(4pixi-4p;x;+2(5+7T) p;ip;xi-2(5+7T) p3x} -4 (-5+6T) plp;x;+
4(-16+17T+27T?) p;pix3 -4 (-11+11T+2T?) p3x} +3 (-1+T) pp;xi -
3(-1+T) (4+3T) pipixt+ (-1+T) (13+22T+T%) p; pj x} -
(-1+T) (4+13T+T7%) p?xt - 28 p; p; Xi X; + 28 p X; X; + 36 p7 p; X2 X; -
12 (9+27T) p; pixE x5 +24 (3+T) p3xZ x5 - 4p? p; X3 x; + 28T p? p? x3 x; -
4(-6+17T+T2) pipixix; +4 (-5+10 T+ T2) p}x? x; + 24 p; p? x; %5 -
24p3x; x5 -24pipixix%+6 (10+T) pip3x3x% -6 (6+T) pfxix} -
4p1-p;x.-x;+4p;xix;)/24
vers i[i_,J_] :=
(-7 pix; +4T2pix; -2T* (7+5T) pip; X +2T2 (7+5T) p3 X’ -
4T (-6+5T) pip; X} +4T (-2-17T+16T%) p; p3x3 -
4T (-2-11T+117%) p3x3+3 (-1+T) Tpip;xt -3 (-1+T) T (3+4T) ppixt+
(-1+T) (1+22T+137%) p;pixi- (-1+T) (1+13T+4T?) pixi+
28 T2 p; pjxi X; - 28 T2 p? x; X; - 36 > pZ p; X2 x; + 12 T2 (2+97T) p; p3 X} x; -
24T2 (1+37T) p3xix; + 4T pdp;x3 x; - 28 T2 p? p? xI x; -
4T (-1-17T+6T?) pip}xix;+4T (-1-10T+5T%) pix3x; -
24T p; pixi x5 +24 T2 pix; x5+ 24 T2 p2 pi xix3 - 6 T2 (1+107T) p; p3 i x5 +
6T2 (1+6T) pixix3+4T p;pix; X3 -4T pix;x3) / (24 T°)
P X, P X ={m &7 6} (2. )" i= (29
Zip“[s_] 1= 53
zip, . 4080 :=
(collect[s // Zip(,sys 2] /. f_. 2% » (DIf, {2*, d}])) /. 2" > @
gPair([fs ,w ] :=
gPair([fs, w] =
Collect [ZiPJoineeTaIue[{pa,ia,xa,?a),(a,w)] [
(Times @@ (V /@ fs))
Exp[Sum[ga,s (7o + 7o) (€ +Es)s {5 Whs {Bs W] - Sum[Ea 7oy {5 w3]]]s
- Factor-]
T2z[p_] :=Module[{q = Expand[p], n, c},
If[q ===, @, c = Coefficient[q, T, n = Exponent[q, T1];
CZZ"+TZZ[q—C (Tllz—T'UZ)z"]]];
Z, [K_] :=Modu1e[{Cs, ¢, n, A, s, i, j, k, A, G, d1, 71, 722, 23},
{Cs, ©} =Rot[K]; n =Length[Cs]; A = IdentityMatrix[2n+1];
. . . ) = =4
Cases[Cs, {s_>1_,7J_}» (A[('L, J}, {1+1, J+1}] += ( o 1 ))],
{4, G} = Factore{T(Totl[?)-Total[CSIALL D /2 pet @A, InverseeA};
71 =
Exp[Total[Cases[Cs, {s_, i_, j_} » Sum[e™ ra;,c[1, 51, {d1, d}]]] +
sum[e™ ya,opg [k15 {k, 2n}, {d1, d}] /. ¥_e[_1>0];
Z2 = Expand[F[{}, {}] xNormal@Series[Z1, {e, @, d}]] //.
FIfs_, {es___}1x (f: (P |¥)ps [is__1)P- =
F[Join[fs, Table[f, p]], DeleteDuplicates@{es, is}];
Z3 = Expand[Z2 /. F[fs_, es_] =» Expand[gPair[
Replace[fs, Thread[es » Range@Lengthees], {2}], Lengthees
1/.8a,s »Gleslal, es[A11] 1;
Collect[{a, 23 /. " - p! A“’e"}, e, T2z] ];

1+ (382%+2552% + 1696 2° + 16281 2° + 86952 2'® + 259994 z'% + 487372 2** + 615066 2'® + 543148 2'® + 341714 2% +

153722 2% + 48983 2" + 10776 2°° + 1554 2°° + 1322%° + 52%) e +

(-8 -484 2% + 9709 z* + 165952 2° + 1590491 z° + 16 256 508 2'° + 115341797 z'? + 432685748 z'* + 395838354 2'° - 4017557792 2*° - 23300064167 2*° -
70082264972 2% - 142572271191 z** - 209475503 700 z2° - 221616 295 209 z2® - 151502 648428 z>° - 23700199243 732 +
99462146328 z>* + 164920463074 z° + 162550825432 z>® + 119164 552296 z*° + 69153062 608 z*? + 32547596 611 z** + 12541195448 2% +
3961384155 z*° + 1021219696 2°° + 212773106 2°* + 35264 208 z°* + 4537548 z°° + 436 600 z°° + 29536 z*° + 1252 2% + 25 %) €%}

TableForm[Table [Join[{K[1ly}s Z5[K1], {K, AllKnots[{3, 6}]}], TableAlignments - Center]

3 1422
4 1-22
51 14322+ 2%
52 1:222
61 1-222
6 1-22-2%
63 14224 2%

= takes a few minutes =«

1+(222+2%) e+ (2-422+32°+42°+2%) €?+ (-12+742% - 272" - 202° +82° + 621% + 212) &3

1+ (-2+22%) ¢

1+ (1022 +212%+122°+22%) e+ (6-2822+332%+3642°+6552% + 5362%% + 22722+ 482 + 42%%) €2 + (-60 + 970 2% + 645 z* - 3380 2° - 3280 2° + 7470 2% + 19475 212 + 20536 2% + 12564 2° + 4774 2% 1 1109 2%° + 144 222 . 8 2%%) &3
1+ (622+52%) e+ (4-202%+432% +642°+262°%) c? + (-36+ 498 2> - 883 2% + 100 2° + 816 2° + 556 2% + 146 27?)
1+ (-22242% e+ (-4+4224+252° -825+22%) c2+ (12415422 - 223 7% - 608 2° + 100 2° - 52 7% + 10 212) 3
1+ (-222-32°+22%+2%) e+ (-2-422+292%+282°+422% -821° 221242+ 21%) €2+ (12 + 166 22 + 155 2° - 194 26 - 2453 28 - 1622 z1° - 1967 212 - 258 21 + 49 216 - 30 218 + 22° 4 6 222 + 2%*) &*
1+ (2+822-162°-242% -1621° - 22712) &2

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0axaca-2210/
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Dror Bar-Natan: Talks: LesDiablerets-2208: Thanks for inviting me to Les Diablerets! wef:=http://drorbn.net/1d22/ 1_@ [=]
[Tangles in a Pole Dance Studio: A Reading of Massuyeau, Alekseev, and Naef OER

IPreliminary Definitions. Fix p € Nand F = Q/C. Other Passions. With Roland van der Veen, I use “so-
PDS; w

LetD, = D*\( p pts), and let the Pole Dance Studio Ivable approximation” and “Perturbed Gaussian Differe-
be PDS, := D, X I. ntial Operators” to unveil simple, strong, fast to compu-
IAbstract. I will report on joint work [ . te, and topologically meaningful knot invariants near the
with Zsuzsanna Dancso, Tamara A lexander polynomial. (C polymath!)
Hogan, Jessica Liu, and Nancy Sche- ' : i
rich. Little of what we do is original,
and much of it is simply a reading of Massuyeau [Ma] and Alek-
seev and Naef [AN1].

We study the pole-strand and §
strand-strand double filtration on
the space of tangles in a pole
dance studio (a punctured disk
cross an interval), the correspon-
ding homomorphic expansions, | &
and a strand-only HOMFLY—PT Jessica, Nancy, Tamara, Zsuzsi, & Dror in PDS.
relation. When the strands are transparent or nearly transparent
to each other we recover and perhaps simplify substantial parts [
of the work of the aforementioned authors on expansions for the |;j¢
Goldman-Turaev Lie bi-algebra.
Definitions. Let 7 := FG(X1, ..., X,) be the free group (of defor-
imation classes of based curves in D)), 7 be the framed free group
(deformation classes of based immersed curves), || and |77| deno-

Dancso Hogan Liu  Scheric

Key 1. W: |7 — |Alis Z)} : K1 (O) = AL (O).
Key 2 (Schematic). Suppose Ay, 1 : |7 — K(QO) are two ways
of lifting plane curves into knots in PDS,, (namely, P o 4; = I).

. e . Then for y € |r], Lemma 1. “Division by #” is well-defined.
te F-linear combinations of cyclic words (|x;w| = |wx;|, unbased _ B e acl! L B
curves), A := FA(xy, ..., x,) be the free associative algebra, and 1) = (o) — )/ € Ky (OO) = || ® [7]
let JA] := A/(x;w = wx;) denote cyclic algebra words. and we get an operation 7 on plane curves. If Kontsevich likes g

and A; (namely if there are A7 with Z2i(y)) = A (W(y))), then
| 7 will have a compatible algebraic companion r*:

m ﬂ E E w WA @= W@ - K@)/ e ALOO) = A8 Al

Theorem 1 (Goldman, Turaev, Massuyeau, Alekseév, Kawazu- [For indeed, in ﬂg we have AW (n(y)) = hZ(n(y)) = Z(Ap(y)) —
imi, Kuno, Naef). || and |A| are Lie bialgebras, and there is a [Z(1;(y)) = A5(W(y)) — A{(W(y)) = in“(W(y)).

“homomorphic expansion” W: || — |A|: a morphism of Lie bial- ol ik Example 1. With 71,72 €
‘- il Cor 1) set a7y = (C35D) (D)
D

igebras with W(IX;|) =1 + [x;| + .. ..
Further Definitions. e K = %K, = K = K(S) := | ¥1 - and 41(y1,72) = 2 -
F(framed tangles in PDS)). <§¥ #3517, where ¥; are arbitrary lifts of ;. Then 7, is the Gol-

® K’ :=(the image via X — {— X of tangles in PDS), 1 dman bracket! Note that here 1y and A; are not well4
that have 7 double points, of which s are strand-strand). BESSEE (efined, yet 7 is.

. , [Example 2. With y;,y, € «m (or &) and with
2 _ —
KO = < OOO [ X > A=X o, A1 as on the right, we get the “double bra-
Nan
i

E.g.,

o K5 := /K. Most important, K/(QO) = |a|, and there is cket”mp: 7 ® 7 _) TR (OITR®T > ART).
P: 7((0) N |7Tl'| Example 3. With Y € 7 and
o A= [1K:/FKon1n A= [1K /K, C A, Al = AR, Wo(y) its ascending realization i

[Fact 1. The Kontsevich Integral is an “expansion” Z: K — A, as a bottpm tangle a}nd AL IS yscending  descending
. . descending realization as a bottom tangle, we get
compatible with several noteworthy structures.

[Fact 2 (Le-Murakami, [LM1]). Z satisfies the strand-strand 3 :_ﬁ -a® |_7_T|_' C10s1'ng' the first component and
IHOMEFLY-PT relations: It descends to Zy : Ky — Ay, where anti-symmetrizing, this is the Turaev cobracket.

. . [Example 4 [Ma]. With y € & and Ay(y) its

o _ (M2 _ oh)2
K = 7</ (K —N =@ -e™?)) C) ascending outer double and 2;(y) its ascen-
A =A/(+—=h— or =h==) ding inner double we getns: 7 —» T® 7. A-

ascending escending

and deg? = (1, 1). fter some massaging, it too becomes the Tu-
Proof of Fact 2. Z(7) — Z(X) = X - (72 - e7"172) raev cobracket.
- . (th/z _ e—hX/z) _ ((Bh/Z _ (B—h/z))(_ O The rest is essentially Exercises: 1. Lemma 1? 2. A?
3. Fact2? 4. A''? Especially, A/'(Q) = |A|! 5. Explain
m Le, Murakami why Kontsevich likes our ’s. 6. Figure out ¢, i =1,...,4.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/

13


http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/

Kontsevich in a Pole Dance Studio. (w/o poles? See [Ko, BN])

[Unignoring the Complications. We need A and A, such that:
1. 2,(y) is obtained from Ay(y) by flipping all self-intersections

+.. = XXX @ [yx| — xxyx @y + ...

| |

1

B PlD le dz; a v from ascending to descending.
Z Qriyn I( ) P ~7 € 2. gp to conjugation, A;(y) is obtained from Ay(y) by a global
il ip.
. | Pl 3. Z(A(y)) is computable from W(y) and Z/'(4:(y)) = W(y).
1|
| —— D .
\ q | D
i b o S HL- B
> e o 0 AL
24 g, 4 / graded by the number of chords View from above:
filtered by the number of ss chords o
Comments on the Kontsevich Integral. Kuitting needles .—Ej . .
1. In the tangle case, the endpoints are fixed at top and bottom. Yarn N
2. The (- --)~ means “a correction is needed near the caps and the
cups” (for the framed version, see [LM2, Da]). 1. Is there more than Examples 1-4? Homework
3. There are never pp chords, and no 47T ,,; and 4T, relations. | 2. Derive the bialgebra axioms from this perspective.
4. Z is an “expansion”. 3. What more do we get if we don’t mod out by HOMFLY-PT?
5. Z respects the ss filtration and so descends to Z/*: K/* — A/*. | 4. What more do we get if we allow more than one strand-strand
Comments on A. In A’! legs on poles commute, Iﬁa f, interaction? e
so A'N(O) = |A]! A EP\J ;%H 5. In this language, recover Kashiwara- L3
ity bt \ Vergne [AKKN1, AKKN2].
In Ay we have: Y == ooyl 6 How is all this related to w-knots? Kashiwara Vergne
I:i: }—% =h H - H—< ) NP 7. Do the same with associators. Use that to derive formulas for
- - solutions of Kashiwara-Vergne.
Example 1% nf(lxyxyl, lxyx)) = 8. What’s the relationship with the Habiro-Massuyeau invariants
| H :O of links in handlebodies [HM] (different filtration!).
4l %3 :\/ N 9. Pole dance on other surfaces!
| ' 10. Explore the action of the mapping class group.
’ Acknowledgement. This work was partially supported by NSERC
grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).
X X [ also wish to thanks A. Alekseev, F. Naef, and M. Ren for listening to
y y an earlier version and catching some bugs, and Dhanya S. for the dance
- | _ #Q + - . studio photos. And of course, thanks for listening!
[AKKN1] A. Alekseev, N. Kawazumi, Y. Kuno, & F. Naef, References
g\] = beyxyxl The Goldman-Turaev Lie Bialgebra in Genus Zero and the Kashiwara-
y —lyyxyxl | Vergne Problem, Adv. Math. 326 (2018) 1-53, arXiv:1703.05813.
_J x +... [AKKN2] A. Alekseev, N. Kawazumi, Y. Kuno, & F. Naef, Goldman-Turaev
Example 34, Ignoring complications, n‘g(xxyxyx) — ];?;rlr\llall?;zm(;]l)l]tgg Kashiwara-Vergne, Quant. Topol. 11-4 (2020) 657--689,
— — [AN1] A. Alekseev & F. Naef, Goldman-Turaev Formality from the Knizhnik-
1 ry ™\ Zamolodchikov Connection, Comp. Rend. Math. 355-11 (2017) 1138-1147,
=n'( 1] - %)— 4= n ;ﬁ] +... | arXiv:1708.03119.
L - [BN] D. Bar-Natan, On the Vassiliev Knot Invariants, Top. 34 (1995) 423-472.
[Da] Z.Dancso, On the Kontsevich Integral for Knotted Trivalent Graphs, Alg.

Geom. Topol. 10 (2010) 1317-1365, arXiv:0811.4615.

[HM] K. Habiro & G. Massuyeau, The Kontsevich Integral for Bottom Tangles
in Handlebodies, Quant. Topol. 12-4 (2021) 593-703, arXiv:1702.00830.
[Ko] M. Kontsevich, Vassiliev’s Knot Invariants, Adv. in Sov. Math. 16(2)
(1993) 137-150.

[LMI1] T. Q. T. Le & J. Murakami, Kontsevich’s Integral for the HOMFLY
Polynomial and Relations Between Values of Multiple Zeta Functions, Top.

IProof of Lemma 1. We partially prove Theorem 2 instead:
Theorem 2. gr* Ky = F[A] @ (K')o.

Proof mod 7°>. The map « is obvious. To go —, map Ky —
F[7] ® K/ using 22 - X + 2)Tand X - X — 2 Cand apply the
ffunctor gr®.

and its Appl. 62-2 (1995) 193-206.

[LM2] T. Q. T. Le & J. Murakami, The Universal Vassiliev-Kontsevich Inva-
riant for Framed Oriented Links, Comp. Math. 102-1 (1996) 41-64, arXiv:
hep-th/9401016.

[Ma] G.Massuyeau, Formal Descriptions of Turaev’s Loop Operations, Quant.
Topol. 9-1 (2018) 39-—117, arXiv:1511.03974.
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http://drorbn.net/cms21

Kashaev's Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021
Dror Bar-Natan with Sina Abbasi

Agenda. Show and tell with signatures.

Abstract. | will display side by side two nearly identical computer programs whose
inputs are knots and whose outputs seem to always be the same. I'll then admit,
very reluctantly, that | don't know how to prove that these outputs are always the
same. One program | wrote mostly in Bedlewo, Poland, in the summer of 2003 and
as of recently | understand why it computes the Levine-Tristram signature of a
knot. The other is based on the 2018 preprint On Symmetric Matrices Associated
with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he
conjectures that a certain simple algorithm also computes that same signature.

If you can, please turn your video on! (And mic, whenever needed).
http://drorbn.net/cms21

Bed(K_, v ] := Kas[K_, w_] :=

mdule[((, r, XingsByArmpits, bends, faces, p, A, is},
t=l-w; r=tet’;
XingsByArmpits =
List@ePD(K] /. x 1 X[i , j ,k , L 1=
If[PositiveQ[x], X.[-1, J, ky =L1, X_[=J, R, L, =115
bends = Times @@ XingsByArmpits /.
_IXI0a_s by c_y A1 PoyoaPs,
faces = bends //. Px_,y Py ,z_ # Px,y,:3
A = Table[®, Lengthefaces, Lengthefaces];
DO[)S = Position[faces, #][1, 1] & /@ List @@ x;

Pe,-b Pd,-c3

Alis, is] += xf[neaa[x] === X,,

Module[(u, v, XingsByArmpits, bends, faces, p, A, is},
u=Re[s¥?]; v = Re[s];
XingsByArmpits =
List@@PD[K] /. x :X[i_, j_, k , L ]
If[PositiveQ[x], X, [-1, J, ks L1, X-[=J, ks L, =111
bends = Times @@ XingsByArmpits /.
_[X1la_, b_, c_, d_] *Pa,-a Pv,-a Pc,-b Pa,-c3
faces = bends //. Px_,y Py_,z_ = Px,y,25
A= Table[0, Lengthefaces, Lengthefaces];
no[is = Position[faces, #][1, 1] & /e Listeex;

A[is, is] += If[Head[x] ===X,,

D o
e

,t.]'
-t e

oot -2ttt
-t* @ t* e
-2t t r

2

-r -t
-t* o
2t t -r

t e

vuilu vua1l
ulua1 ulu
Tuvul”’[1uv ]’
ulu1 ulu

x, XingsByArmp)ts)];
(MatrixSignature[A] - Writhe[K]) /2 ] B

ReRc

x> X)ngsEyArmplts)];

MatrixSignature[A] | ;

http://drorbn.net/cms21

Bed(K_, ] = Kas(k_, v ] :=

mdule[(t, r, XingsByArmpits, bends, faces, p, A, is}, Module[(u, v, XingsByArmpits, bends, faces, p, A, is},
t=l-w; r=tet’;
XingsByArmpits =
List@ePD(K] /. x 1 X[i , j ,k , L 1
1f[PositiveQ(x], X, [-1, J» ks ~L1, X_[~F, by L, =111
bends = Times @@ XingsByArmpits /.
_IX10a_, b_y €y @_1  Pay-g Pby-a Pe,-b Pa,-c3
faces = bends //. Px_y_Py_,z_ * Pry,c
A = Table[@, Lengthefaces, Lengthefaces];
DO[)S = Position[faces, #][1, 1] & /@ List @@ x;

u=Re[4']; v=Re[s];
XingsByArmpits =
ListeePD[K] /. x:X[i_, j ,k , L ]
If[PositiveQ([x], X, [-1, J, ky =L1, X [-J, By L, =115
bends = Times @@ XingsByArmpits /.
_[X1la_, b_, c_, d_] *Pa,-a Pv,-a Pc,-b Pa,-c

_oy_Py_,z_ ™ Px,y,z3
A = Table[@, Lengthefaces, Lengthefaces];
no[is = Position[faces, #][1, 1] & /e Listeex;

ALis, is] += T [Head [x] === X,, ALis, is] += Tf [Head [x] === X,,

-r -t 2t t° root 2ttt vuilu vuilu

[»t' o t* a]’ -t* o t* a]]’ [ulul] _[ulul]]
2t t -r -t* -2t t r  -t* Tuvul?Tl1uvull
t e -t e t e -t o ulu1 ulu1

It X)ngsEyArmplts)]; x> XingsByArmp)ts)];

MatrixSignature[A] ] 5 (MatrixSignature[A] - Writhe[K]) /2 ] H

http://drorbn.net/cms21

Label everything!

13

11

10

PD[X[10,1,11,2], X[2,11,3,12],...]  {X_[-1,11,2,—10], X_[-11,3,12,-2],...}

http://drorbn.net/cms21

These slides and all the code within are available at http://drorbn.net/cms21.

(I'll post the video there too)

http://drorbn.net/cms21

Why am | showing you (code(y?
» | love code — it's fun!

> Believe it or not, it is more expressive than math-talk (though I'll do the
math-talk as well, to confirm with prevailing norms).

» It is directly verifiable. Once it is up and running, you'll never ask yourself “did
he misplace a sign somewhere"?

http://drorbn.net/cms21

Verification.

Once[<< KnotTheory" ]

Loading KnotTheory™ version of February 2, 2020,
Read more at http://katlas.org/wiki/KnotTheory.

10:53:45.2097.

MatrixSignature[A_] :=
Total[Sign[Select[Eigenvalues[A], Abs[#] > 10712 &]11s
Writhe[K_ ] := Sum[If[PositiveQ[x], 1, -1], {x, ListeePDeK}];
Sum[w = et fendomieal (0,271 ged[K, w] = Kas[K, w], {10},
{K, AllKnots[{3, 10}]}]
- KnotTheory: Loading precomputed data in PD4Knots"
2490 True

http://drorbn.net/cms21

3
3
Lets run our code line by line. .. 2 11
PD[8,] = PD[X[10, 1, 11, 2], >
X[2, 11, 3, 12], X[12, 3, 13, 4],
X[4, 13, 5, 14], X[14, 5, 15, 6], 10
X[8, 16, 9, 15], X[16, 8, 1, 7],
X[6, 9, 7, 10]1]; 5 4
9 7
K= 8;;
16
8

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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XingsByArmpits =
ListeePD[K] /.
X:X[1_ ,J s,k , L 1=
If[PositiveQ[x], X,[-1, j, k, -L1,
X_[-J, k, L, -1]]

(X_[-1, 11, 2, -1@], X_[-11, 3, 12, -2],
X_[-3, 13, 4, -12], X_[-13, 5, 14, -4],
X_[-5, 15, 6, -14], X, [-8, 16, 9, -15],
X.[-16, 8, 1, -7], X_[-9, 7, 18, -6]}

A = Table[0, Lengthefaces, Lengthefaces];

A // MatrixForm

© 000 0000600
© 000000000
© 0 000000O0O0
© 000000000
© 000000000
© 000000000
© 000000000
© 000000 O0O0O0
© 0000000000
© 000000000

X = XingsByArmpits[1]
X [-1, 11, 2, -10]
faces

P-13,4,-13 P-11,2,-11 P-5,14,-5 P-3,12,-3 Ps8,16,8 P6,-15,-9,6
P9, -16,7,9 P1e,-7,-1,10 P-10,-2,-12,-4,-14,-6,-10 P1,-8,15,5,13,3,11,1

is = Position[faces, #][1, 1] & /@ List ee x

{8, 10, 2, 9}

Do[is = Position[faces, #][1, 1] & /@ List ee x;

A[[is, is] += If[Head[x] === X,,

)

{x, Rest@XingsByArmpits} ]

cC »m o<
B o RrCc
€< c R
R cRCc
cC B o<
B o RrCc
€< c R
R cRCc

http://drorbn.net/cms21

http://drorbn.net/cms21

http://drorbn.net/cms21

http://drorbn.net/cms21

bends = Times @@ XingsByArmpits /.
_[Xl[a_,b ,c_ ,d ]
Pa,-d Pb,-a Pc,-b Pd,-c
P-16,7 P-15,-9 P-14,-6 P-13,4 P-12,-4 P-11,2
P-10,-2 P-9,6 P-8,15 P-7,-1 P-6,-10 P-5,14
P-4,-14P-3,12 P-2,-12 P-1,10 P1,-8 P2,-11
P3,11 Pa,-13 Ps,13 Ps,-15 P7,9 P8, 16 P9,-16
Pie,-7 P11,1 P12,-3 P13,3 P14, -5 P1s,5 P1s,8
faces =bends //.px ,, Py ,2 #Pxy,z
P-13,4,-13 P-11,2,-11 P-5,14, 5 P-3,12,-3
Ps, 16,8 Ps,-15,-9,6 P9,-16,7,9 P10,-7,-1,10

P-1e,-2,-12,-4,-14,-6,-10 P1,-8,15,5,13,3,11,1

Do|is = Position[faces, #][1, 1] & /@ List @@ x;

A[is, is] += If|Head[x] === X,,
vVvudlu Vvudlu
ulul1l ulul J
1 uvu|’ 1uvu l’
ulul ulul

{X, XingsByArmpits} |;

A[is, is] += I'F[Head[x] === X,,
vulu vulu
ulul ulul1l .
Tuvul’ [1uvu ]’
ulul ulul
A // MatrixForm
© 0 00000 ©0 0 0
0 -v 0 0606006 -1 -u-u
© 0 00000 ©0 0 0
© 0 00000 0 0 0
O 0 00000 0 0 0
© 0 00000 0 0 0
© 0 00000 ©0 0 0
0 -1 00000 -v -u -u
© -u©® 00600 -u-1-1
© -u®eoeoeo -u-1-1
A // MatrixForm
-2v @ -1 -1 0 ] )
0 -2v 0@ -1 0 0 )
-1 e -2v o 2] -1 2]
-1 -1 2] -2v 0 0 )
] ) 2] 2] 2 1 2u
] ) -1 2] 1 1-2v )
] ) ) 0 2u ) -1+2v
2] -1 2] 2] 1 -1 o
-2u -2u -2u -2u © -2u -1
-2u -2u -2u -2u 2u 0 2

-2u
-2u
-2u
-2u

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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Recall, is = {8,10,2,9}

http://drorbn.net/cms21
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http://drorbn.net/cms21

Plot[w=e""; u=Re[w'?]; v=Re[w];

(MatrixSignature[A] - Writhe[K]) /2,

{t, 0, 27\'}]
ol
3l
oL
4L
1 2 3 4 5 6

http://drorbn.net/cms21

Kashaev for Mathematicians.
For a knot K and a complex unit w set u = R(w/2), v = R(w), make an F x F
matrix A with contributions

v

v

and output 3(c(A) — w(K)).

http://drorbn.net/cms21

Why are they equal?

| dunno, yet note that

» Kashaev is over the Reals, Bedlewo is over the Complex numbers.
» There's a factor of 2 between them, and a shift.

...s0 it's not merely a matrix manipulation.

http://drorbn.net/cms21

Thank You!

http://drorbn.net/cms21

Plot[Bed[Knot[8, 2], "], {t, @, 27}]

4

http://drorbn.net/cms21

Bedlewo for Mathematicians.

For a knot K and a complex unit w set t =1 —w, r = 2R(t), make an F x F
matrix A with contributions

(conjugate if going against the flow) and output o(A).

http://drorbn.net/cms21

Theorem. The Bedlewo program com-
putes the Levine-Tristram signature of K
at w.

(Easy) Proof. Levine and Tristram tell . Y AT
us to look at o((1 — w)L + (1 —w*)LT), | i \ |
where L is the linking matrix for a Seifert ] LW 4
surface S for K: Lj = Ik(v,7;") where E )
7 run over a basis of Hy(S) and ~;"

is the pushout of 7;. But signatures r,-'--'-'.'.d_-:ﬂ-'"" -
don't change if you run over and over- r | |
determined basis, and the faces make ' lIeP-. ‘-' 4
such and over-determined basis whose - =% T

linking numbers are controlled by the !

crossings. The rest is details. Art by Emily Redelmeier

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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Warning. The second formula on page (—2) “Conclusion” is
silly-wrong. A fix will be posted here soon: some of the numbers
written in this handout are a bit off, yet the qualitative results remain
exactly the same (namely, for finite type, 3D seems to beat 2D, with
the same algorithms).

Thanks for inviting me to speak at [K-OS]!

Most important: http://drorbn.net/kos21

See also arXiv:2108.10923.

If you can, please turn your video on! (And mic, whenever needed).

We often think of knots as planar dia-
grams. 3-dimensionally, they are embed-
ded in “pancakes”. Knot by Lisa Piccirillo, pancake by DBN

‘Connector’ by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from
www.waterfrontbia.com /ice-breakers-2019-presented-by-ports/.

Yarn-Ball Knots
[K-OS] on October 21, 2021

Dror Bar-Natan with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich

Agenda. A modest light conversation on how knots should be measured.

Abstract. Let there be scones! Our view of knot theory is biased in favour of
pancakes.

Technically, if K is a 3D knot that fits in volume V' (assuming fixed-width yarn),
then its projection to 2D will have about V4/3 crossings. You'd expect genuinely
3D quantities associated with K to be computable straight from a 3D presentation
of K. Yet we can hardly ever circumvent this V4/3 > V “projection fee”.
Exceptions include linking numbers (as we shall prove), the hyperbolic volume, and
likely finite type invariants (as we shall discuss in detail). But knot polynomials and
knot homologies seem to always pay the fee. Can we exempt them?

More at http://drorbn.net/kos21

A recurring question in knot theory is “do we have a 3D understanding of our
invariant?”

> See Witten and the Jones polynomial.
» See Khovanov homology.
I'll talk about my perspective on the matter. ..

But real life knots are 3D! A Yarn Ball

The difference matters when

» We make statements about “random knots”.
» We figure out computational complexity.
Let's try to make it quantitative. . .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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V~L3
n = xing number ~ [2[% = [* = V43

(“~" means “equal up to constant terms
and log terms™)

Theorem 1. Let /k denote the linking number of a 2-component link. Then
Ci(2D, n) ~ n while Ci(3D, V) ~ V, so Ik is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

£

N,
A
e,

-

%
-
F.

he

\red /green —blue

And here's a bigger knot.

This may look like a lot of in-
formation, but if V is big, it's
less than the information in a pla-
nar diagram, and it is easily com-
putable.

So 212 times we have to solve the problem “given two sets R and G of integers in
[0, L], how many pairs {(r,g) € R x G: r < g} are there?". This takes time ~ L
(see below), so the overall computation takes time ~ L3.

Below. Start with rb = ¢f = 0 (“reds before” and “cases found") and slide v from
left to right, incrementing rb by one each time you cross a e and incrementing cf
by rb each time you cross a e:

Conversation Starter 1. A knot invariant  is said to be Computationally 3D, or
C3D, if
C:(3D, V) < C(2D, V*73).

This isn’t a rigorous definition! It is time- and naiveté-dependent! But there’s
room for less-stringent rigour in mathematics, and on a philosophical level, our
definition means something.

Here's what it look like, in the case of a knot:

|t|i1og:-f|e|ds Fi in such a projec- m:m:ﬁ.ﬁrn

There are 212 triangular “cross-

WLOG, in each F, all over
strands and all under strands are
oriented in the same way and all
green edges belong to one com-
ponent and all red edges to the
other.

In general, with our limited tools,
speedup arises because appropri-
ately projected 3D knots have
many uniform “red over green"”
regions:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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Great Embarrassment 1. | don't know if any of the Alexander, Jones,
HOMFLY-PT, and Kauffman polynomials is C3D. | don't know if any
Reshetikhin-Turaev invariant is C3D. | don't know if any knot homology is C3D.

Or maybe it's a cause for optimism — there’s still something very basic we don't
know about (say) the Jones polynomial. Can we understand it well enough
3-dimensionally to compute it well? If not, why not?

Next we argue that most finite type invariants are probably C3D...
(What a weak statement!)

All pre-categorification knot polynomials are power series whose coefficients are
finite type invariants. (This is sometimes helpful for the computation of finite type
invariants, but rarely helpful for the computation of knot polynomials).

Gauss diagrams and sub-Gauss-diagrams:

N W(_) -
L@ 1 2345678
® -
D b

Let g4 {knot diagrams} — (Gauss diagrams) map every knot diagram to the sum
of all the sub-diagrams of its Gauss diagram which have at most d arrows.

Under-Explained Theorem (Goussarov-Polyak-Viro). A knot invariant ( is of type
d iff there is a linear functional w on (Gauss diagrams) such that { = w o ¢g4.

Proof of Theorem FT2D.

A
ES

gy e SR

We need to count how many times a diagram such as the red appears within a
bigger diagram, having n arrows. Clearly this can be done in time ~ n3, and in
general, in time ~ n9.

e e e ,
o a L T o
Pl e o i i I Lt P i,

Conversation Starter 2. Similarly, if 7 is a stingy quantity (a quantity we expect
to be small for small knots), we will say that 7 has Savings in 3D, or “has S3D" if
M, (3D, V) < M, (2D, V*/3).

Example (R. van der Veen, D. Thurston, private communications). The hyperbolic
volume has S3D.

Great Embarrassment 2. | don’t know if the genus of a knot has S3D! In other
words, even if a knot is given in a 3-dimensional, the best way | know to find a
Seifert surface for it is to first project it to 2D, at a great cost.

Theorem FT2D. If  is a finite type invariant of type d then C¢(2D, n) is at most
~ nl3d/4) With more effort, C(2D, n) < n5799,
Note that there are some exceptional finite type invariants, e.g. high coefficients of
the Alexander polynomial and other poly-time knot polynomials, which can be
computed much faster!

Theorem FT3D. If ( is a finite type invariant of type d then C:(3D, V) is at most
~ VOd/TH1/T With more effort, C.(2D, V) < V()9

Tentative Conclusion. As

p3d/A (V4/3)3d/4 —V> V/69/7+1/7
these theorems say “most finite type invariants are probably C3D; the ones in
greater doubt are the lucky few that can be computed unusually quickly”.

n2d/3 (\/4 3)2(/ 3 _ y8d/9 > V4d/5

Theorem FT2D. If  is a finite type invariant of type d then C¢(2D, n) is at most
~ nl3d/4] With more effort, Co(2D, n) < n(3799,

- .._".'_.
A
v

o a0
R

e

e SR

n

"
.

With an appropriate look-up table, it can also be done in time ~ n? (in general,
n9=1). That look-up table (T5:52) is of size (and production cost) ~ n* if you
are naive, and ~ n? if you are just a bit smarter. Indeed

p1.p2 — 70.p2 _ 70.p1 _ 0,p2 0,p1
Tq1=q2 - TO,qz TO,qz TO,q1 + T0,<11 ?

and (T&';) is easy to compute.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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. P 8 Note that this counting argument works equally well if each of the d arrows is
R T L

___-:_-:,,: Sem ST - Bk pulled from a different set!
F-:'F-r.-.j.--":_...- o .::::s'f(\- i ij-h‘“‘;';'-' :\. It follows that we can compute @4 in time ~ nl39/4]
- TR, o et . o i) -

S S A e S N I WA O
With multiple uses of the same lookup table, what naively takes ~ n® can be With bigger look-up tables that allow looking up “clusters” of G arrows, we can
reduced to ~ n3. reduce this to ~ n(3t99,

X . O
In general within a big d-arrow diagram we need to find an as-large-as possible
collection of arrows to delay. These must be non-adjacent to each other. As the
adjacency graph for the arrows is at worst quadrivalent, we can always find [%}
non-adjacent arrows, and hence solve the counting problem in time
d

~ nd151 = pl3d/4]

An image editing problem:
On to
Theorem FT3D. If ( is a finite type invariant of type d then C¢(3D, V) is at most
~ V6d/TH/T With more effort, (2D, V) < V()9

(Yarn ball and background coutesy of Heather Young)
The line/feather method: The rectangle/shark method:
Accurate but takes forever. Coarse but fast.
In reality, you take a few shark bites and feather the rest ...

The structure of a crossing field.

Mommy Shark
DN
B DN K < "’\’)”
NN RNty s
0'0“000"09/.0,’.‘\000"0‘10"000 ‘%9@0’
S NAS

...and then there’s an optimization problem to solve: when to stop biting and There are about log, L “generations”. There are 2 bites in generation g, and the
start feathering. total number of crossings in them is ~ L2/28. Let's go hunt!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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Multi-feathers and multi-sharks.

For a type d invariant we need to count d-
tuples of crossings, and each has its own
“generation” g;. So we have the "multi-
generation”

2
r 81
g=(g,---.84) 3
Let G = > g be the “overall gen-
eration”.  We will choose between a

“multi-feather” method and a “multi-
shark” method based on the size of G.

Conclusion. We wish to compute the contribution to ¢4 coming from d-tuples of
crossings of multi-generation g.

» The multi-shark method does it in time

L jediige

~ (no. of bites) - (time per bite) = 12926 . SminE

(increases with G).
» The multi-feather method (project and use the 2D algorithm) does it in time

d 13d]
~ (no. of crossin s)L%dJ = I I LZL—2 4 < i
: & —\4 T2 (26)3/4
i=

(decreases with G).

Of course, for any specific G we are free to choose whichever is better, shark or
feather.

If time — a word about braids.

Thank You!

The effort to take a single multi-bite is tiny. Indeed, :11
12
Lemma Given 2d finite sets B; = {t;1, tj2,...} C [1..L3] and a ti3
permutation m € Sy, the quantity tig
2d t21 t22 123 t2g
N = 1|4 (bj) € H B;: the b;'s are ordered as m
i=1
131
can be computed in time ~ > |B;j| ~ max|B;|. t32
t:
Proof. WLOG 7 = Id. For ¢ € [1..2d] and 8 € B := UB; let 3
ta1 t42 ta3
L
N,z = H(b,-)eHB,-: by <by<... <bbg[3} .
i=1 ts51
t50
We need to know Ny max 8; compute it inductively using N, g =
N, g + N,_1,4, where 8 is the predecessor of 3 in B. t61 62

The two methods agree (and therefore are at their worst) if 2¢ = L7 and in
that case, they both take time ~ L79+7 = V7d+7,

i i (2+e)d i (3+e)d
The same reasoning, with the n's feather, gives V5

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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| Still Don’t Understand the Alexander Polynomial
Dror Bar-Natan, http://drorbn.net/mo21
Moscow by Web, April 2021

Abstract. As an algebraic knot theorist, | still don't understand the Alexander
polynomial. There are two conventions as for how to present tangle theory in
algebra: one may name the strands of a tangle, or one may name their ends. The
distinction might seem too minor to matter, yet it leads to a completely different
view of the set of tangles as an algebraic structure. There are lovely formulas for
the Alexander polynomial as viewed from either perspective, and they even agree
where they meet. But the “strands” formulas know about strand doubling while
the “ends” ones don't, and the “ends” formulas know about skein relations while
the “strands” ones don't. There ought to be a common generalization, but | don't
know what it is.

| use talks to self-motivate; so often | choose a topic and write an abstract when |
know | can do it, yet when | haven't done it yet. This time it turns out my abstract
was wrong — I'm still uncomfortable with the Alexander polynomial, but in slightly
different ways than advertised two slides before.
My discomfort.

» | can compute the multivariable Alexander polynomial real fast:

— (vww) Y2 (u—1)(v — 1)(w — 1).

BV RY,
R AR5

. Virtual Skein Theory Heaven

Definition. A “Contraction Algebra” assigns a set 7 (X', X) to any pair of finite
sets X = {£...} and X = {x, ...} provided |X| = |X|, and has operations
> “Disjoint union” U: T(X,X) x T(Y,Y) = T(XUY,XUY), provided
xXNny=Xny=40
» “Contractions” cx¢: T(X,X) = T(X\ & X\ x), provided x € X and € X.

> Renaming operations of,: T(xXu{eh X) = T(Xu{n},X) and
oy T(X, X U{x}) = T(X, XU {y}).

Subject to axioms that will be specified right after the two examples in the next
three slides.
If R is a ring, a contraction algebra is said to be “R-linear” if all the T(X, X)'s are
R-modules, if the disjoint union operations are R-bilinear, and if the contractions
Cx,¢ and the renamings o are R-linear.
(Contraction algebras with some further “unit” properties are called “wheeled
props” in [MMS, DHR])

Note 3. A contraction algebra morphism out of 7 is an invariant of virtual tangles
(and hence of virtual knots and links) and would be an ideal tool to prove Skein
Relations:

Thanks for inviting me to Moscow! As most of you have never seen it, here's a
picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

This talk is to a large extent an elucidation of the Ph.D. theses of my former
students Jana Archibald and lva Halacheva. See [Ar, Hal, Ha2].

Also thanks to Roland van der Veen for comments.

A technicality. There's supposed to be fire alarm testing in my building today.
Don't panic!

Example 1. Let T(X, X) be the set of virtual tangles with incoming ends (“tails”)
labeled by X and outgoing ends ( “heads”) labeled by X, with Ll and o the obvious
disjoint union and end-renaming operations, and with ¢, ¢ the operation of
attaching a head x to a tail £ while introducing no new crossings.

Note 1. 7 can be made linear by allowing formal linear combinations.

Note 2. 7 is finitely presented, with generators the positive and negative
crossings, and with relations the Reidemeister moves! (If you want, you can take
this to be the definition of “virtual tangles™).

Example 2. Let V be a finite dimensional vector space and set

V(X, X) = (V*)®¥ @ VEX, with Ll = ®, with o the operation of renaming a
factor, and with c, ¢ the operation of contraction: the evaluation of tensor factor £
(which is a V*) on tensor factor x (which is a V).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Axioms. One axiom is primary and interesting,
» Contractions commute! Namely, ¢, ¢/cy.n = ¢y n//cxc (or in old-speak,
Cyn © Cxg = Cx,e © Cy ).
And the rest are just what you'd expect:

» Ll is commutative and associative, and it commutes with c.. and with o'
whenever that makes sense.

> c..is "natural”’ relative to renaming: ¢ ¢ = (r;‘//o%//cy,,,.

> gg =of=1d, ai//azf = ag, oy/loy = o}, and renaming operations commute
where it makes sense.

2. Heaven is a Place on Earth

(A version of the main results of Archibald’s thesis, [Ar]).

Let us work over the base ring R = Q[{ T*'/2: T € C}]. Set
A(X, X) ={w e A(X UX): degy w = degy w}

(so in particular the elements of A(X, X) are all of even degree). The union
operation is the wedge product, the renaming operations are changes of variables,
and ¢, ¢ is defined as follows. Write w € A(X, X) as a sum of terms of the form
uw’ where u € A(§,x) and w' € A(X \ &, X \ x), and map u to 1 if it is 1 or x¢
and to 0 is if is £ or x:

xw’ — 0, xéw' = w'.

1w — w, &w' =0,

Proposition. A is a contraction algebra.

We construct a morphism of coloured contraction algebras A: 7 — A by declaring

XS, T] — T Yexp ((E/ &) ((1) ! _TT> (Z))
~ —1
XialS, T = T exp <(5f &) (1 T (1)> Cf) )

Pi[T] = exp(&ix))
N Nk j
Y4 AN
XS, T]  PylT]

Xijw[S, T]

with

(Note that the matrices appearing in these formulas are the Burau matrices).

3. An Implementation of A

If I didn’t implement | wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with an implementation of elements (“Wedge") of exterior algebras,
and of the wedge product (“WP"):

WP [Wedge[u ], Wedge[v___]] :=Signature[{u, v}] xWedge @@ Sort[{u, v}];
WP[O, _1 =WP[_, 0] =0;
WP[A , B ] :=

Expand [Distribute[A xx B] /.
(a_. x u_Wedge) *x (b_. » v_Wedge) :»abWP[u, v]];
WP [Wedge[,] + Wedge[a] -2baa, Wedge[,] - 3Wedge[b] +7 cad]
Wedge[] + Wedge[a] - 3Wedge[b] ~arb+7cad+7anrcad+14danbarcnad

Comments.
» We can relax |X| = |X]| at no cost.
» We can lose the distinction between X’ and X and get “circuit algebras”.

> There is a “coloured version”, where T (X, X) is replaced with T(X, X, \, /)
where A: X — C and /: X — C are “colour functions” into some set C of
“colours”, and contractions c, ¢ are allowed only if x and & are of the same
colour, /(x) = A(€). In the world of tangles, this is “coloured tangles”.

Alternative Formulations.

where ¢. denotes interior multiplication.

CreW = /@XEW dédx.

> Cy¢ represents composition in exterior algebras! With X* := {x*: x € X}, we
have that Hom(AX,AY) = A(X* U Y) and the following square commutes:

> C W = Lgbxe"éw,

» Using Fermionic integration,

Hom(AX,AY) @ Hom(AY,AZ) I Hom(AX,AZ)

1

ANX*,Z)

I Cyoy*

AX*UYUY* L Z)—=r

> Similarly, A(X U X) = (H*)®X @ H®X where H is a 2-dimensional “state
space” and H* is its dual. Under this identification, c.¢ becomes the
contraction of an H factor with an H* factor.

Theorem.

If D is a classical link diagram with k components coloured Ti,..., Tx whose first
component is open and the rest are closed, if MVA is the multivariable Alexander
polynomial of the closure of D (with these colours), and if p; is the
counterclockwise rotation number of the jth component of D, then

AD) =T 2(To 1) [ TI T2 ) - MVA- (1 + € A ou)-
j

(A vanishes on closed links).

We then define the exponentiation map in exterior algebras (“WExp") by summing
the series and stopping the sum once the current term (“t") vanishes:
WEXp[A_ ] := Module[{s = Wedge[,], t = Wedge[,], k = @},

While[t =!1=0, s += (t = Expand[WP[t, A] / (++k)])1; s]
WExp[aab+cad+eanf]

Wedge[] +arb+crd+enf+anbrcrdranbrenfrcadrenfranbrcadrent
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Contractions!
Cx_,y [wW_Wedge] := Module[{i, i,
{i} = FirstPosition[w, x, {0}]1; {j} = FirstPosition[w, y, {0}];
w (i=0) A (j=0)
(-1) #IHHED.08 pelete [w, {{i}, {j}}] (i>@) A (j>@)
s
Cx_,y [E.]1 := & /. w_Wedge > cy,, [W]
WExp[aab+2cad]
Cy,c@WExp[aab +2cad]
Wedge[] +anb+2cad+2asbacad
-Wedge[] -a~b

The negative crossing and the “point”:

l\\/k Tz’
SN T,

XialS, T] P;[T]
A[Xi 5k, [S_5 T_1] := a[(i, J¥s {Rs L}, <1&i > S, §5 Ty Xe > S, X, > T|>,

lf—:"l :]-(Xm XL)] /e Ea Xp > §a'\xb]]]}

Expand [ 7/ WExp [Expand [ (&, &)} - [
‘ﬂ[ii,:j,.k,,g] :=-ﬂ[ii,j,k,L[ti: tj]];
ALPi 5 [T_11 1= AL{i}, {J}, <I€i > T, X5 > T|>, WEXp[E:1 2 %5115
AlPi_,5 1 := APy,;[zi]]

The union operation on A’s (implemented as “multiplication”):
A/: A[isl_, 0s1_, cs1_, wl_] xA[1s2_, 0s2_, cS2_, w2_] :=

A[is1|)is2, os1|Jos2, Join[csl, cs2], WP[wl, w2]]
Short[A[Xa,a,3,1[S, T11 * A[Xs,4,6,515 5]

#(1,2,3,4), (3, 4,5, 6),

\/Ta Wedge ]

1E2 =S, Xa > T, X355, E1>T, 35 T3, E4 - Tas X = T3, Xs > Tal>,

\/?
X3 A Xg A Xg A
REZE L D N N R L8 L1 S 8. L1 8
NT VT VT
Xe A £3 VT X3aXs A XgnExnésniy WXBAXSAX6A§ZA§3A§47

—— + <<40>> + -
\/?VIA \Ta N Ta
XgrXsaXenE1nE3nEy . \/?X3AX4AX5AX5A§1A§ZA§3A§4]

VT Va Vta

Automatic and intelligent multiple contractions:
c@A[is_, 0s_, cs_, w_] :=Fold[Csx, 2 [#1] &, A[1S, 0s, cS, W], is(0s]
A[{A_#A}] :=Cc[A];
A[{Al_A, As__A}] :=Module[{A2},
A2 = First@MaximalBy[ {As}, Length[A1[[1] N #[2]] + Length[A1[2] N #[11] &];
A[Join[{c[A1A2]}, DeleteCases[{As}, A2]]] ]
A[Os_List] 1= A[A /@ 0s]
c[AX2,4,3,1[S5 T11 *RA[X3,a,6,51]
AL{L, 2}, {5, 6}, <1&225, E1>T, X6 > S, Xs > Th,
Wedge [] - X5 &1 - Xe A &x — X5 4 Xg A &1 &3]
A@{A[X2,4,3,1[S5 T11, AlX3,4,6,51}
AL{1, 2}, {5, 6}, <1&2 2S5, E1-T, X6 >S5S, Xs > TP,
Wedge[] ~ X5 7 &1~ Xe A &x — X5 4 Xg A &1 &3]

Alis,os,cs,w] is also a container for the values of the A-invariant
of a tangle. In it, is are the labels of the input strands, os are the
labels of the output strands, cs is an assignment of colours (namely,
variables) to all the ends {&;}icis LI {Xj}jcos, and w is the “payload”:
an element of A ({&j}ieis U {Xj}jcos)-

AlXi_,j e, [S_, T 11 := ﬂ[(L; 1} {Js R} <|Ei S, X5 5Ty Xg S, E,>T|>,
11-T7
e T

%
VAN

Xiju[S, T]

Expalnd[T’:”2 NExp[Expand[{gL, §i}.( ).{xj_, xk)] /e & Xp > §,,Axb]]];

A[X1,2,3,a[U, V]]

A4, 11, (2,3}, 461U, X0 5V, X3 5 Uy £V,

Wedge[] Xp4 & X3 A &,
%*%*WXBA&*%* VX3A§4+WX2AX3A§1’\§4]

ALK L5,k ,0 1 1= ALK 5,60 [Tis T]]

The linear structure on A's:

A/: a xA[is_, 0s_, cs_, w_] := A[ls, os, cs, Expand[a w] ]

A/ A[isl_, 0s1_, cs1_, wl_] + A[is2_, 0s2_, cs2_, w2_] /;
(Sort@isl == Sort@is2) A (Sort@os1 == Sort@os2) A

(Sort@Normal@csl == Sort@Normal@cs2) := A[isl, osl, cs1, wl +w2]
Deciding if two A's are equal:
A/: Alisl_,o0s1_, _,wl_] =HA[is2_,0s2 , , w2 ] :=

TrueQ[ (Sort@isl === Sort@is2) A (Sort@osl === Sort@os2) A
PowerExpand [w1 = w2] ]

Contractions of A-objects:
Ch_,t @A[is_, 0s_, cs_, w_] i= A[

DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {X;, £:}1, Cxy, 60 [W]

] 7. If[MatchQ[cs[€:], T_1, €S[&:] » cs[Xnl, €5[X5] > €s[&:115
54,4[3[)(2,4,3,1[5; T11 -W[is,::,s,s]]
A(1,2,3), (3,5, 6}, 16255, %55, E15T, &35 13, X - T3, Xs > Th,
Xer &1 Xgr &3
_

T T

TX3aXsAE1nEr—XznXen&E1aEa+TX3aXenE1 a8+ X3AXgArE1nEs—
X3aXer &1 &3 X5 A Xg A E1n s
% -X3AX5A§2A§3—%

Wedge[] - X34 &1 +TX34 &1 - TX3nEr—Xsn &1 — X A &1 +

“X3AXsAXgrE1nErnls

4. Skein relations and evaluations for A

Y

Al (1,21, (5, 61, <1625V, X5 5 U, £ U, X > VI,

\?‘@{ia,l,a,s [v, ul, 73,2,5,:]’

Vuxsags  Vuxsaé, VWV X6 1 &1
Nu AV Wedge[] - — 2 4 — 2222 U AV g A &y b —————F —Afu AV XA €
N N RN P N 61 €1
\/VXGAfz_\/aXSAXeAQA&_WstxaAflAfz+\NWX5AXSM§1A§Z}
Vu v Vu
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Reidemeister 2

A@{X2,4,3,1[S5 T1, X3,a,6,5} = A@{P1,5[T], P2,6[S1}
True
A@{X3,1,2,4[S5 T1, Xe,5,3,4} = A@{P1,5[T], Ps,2[S]}

True

Reidemeister 1

/k 2 p 2 X 2
= 7171/2 [\/ﬁ\ 711/2 &@ 71—1/2
3 | 3 \ | / 3 "

{R@(X3,3,2,1} = T1V? A@ (P12}, A@{Xy,2,3,3)} = 112 A@(Py,2),

A@{Xy,3,3,2} = ;2 A@{P1,5}, A@{X3,1,2,3} = 3’2 -ﬂ@(PLz}}

S
—
3 1

{True, True, True, True}

(So we have an invariant, up to rotation numbers).

Overcrossings Commute but Undercrossings don't

A@{X2,7,5,15 X3,4,6,7} = A@{X3,7,6,15 X2,4,5,7}
True
«ﬂ@{il,zn,s: i7,3,4,6} = «9‘@{?1,3,7,6: i7,1,4,5}

False

Conway's Second Set of Identities

(see [Co])

/yo /\%}o 5 M6 Q) 2 s % 5 |2
W/D + % = ()2 4 ()72 12 + %: ((u/ )2 + (ufv) ™)
1 \Tu’ I(I 71,’ 1 713 1 (N/ 1{1 6 1 6

A@{Xz,4,3,1[Vs U], Xa,6,5,3} + A@{X1,2,4,3[Us V], X3,4,6,5} =
2. ,1/2 -1/2 ,-1/2
(u” v e ut2 )ﬂ@{P:L,s[u]: P2,6[V]}
True

7@{Xa,1,6,3[V5 Uls X3,2,5,4} + A@{X1,6,3,a[U; V], Xo,5,4,3} =
(ullz v»l/z + u»l/z v1/2) \ﬂ@{Pl,S [u] N PZ,S [V] )

True

Reidemeister 3

A@{X2,5,4,1[ T2, T1], X3,7,6,5[T35 T1l, X6,9,8,4} =
A@{X3,5,4,2[ T35 T21, Xa,6,8,1[T35 T1], X5,7,9,6}

True

The Relation with the Multivariable Alexander Polynomial

MVA = u™2v 2w 2 (u-1) (v-1) (W-1);
A = {X1,12,2,13[U, V1, X13,2,6,35 X8,4,9,35 Xa,10,5,95 X6,17,7,16 [V5> W],
X1s,8,16,7> X14,10,15,115 711,17,12,14]' // A // Last // Factor
(-1+u)2 (-1+v) (-1+w) (Wedge[] - X5~ &)
uv
A=u? (u-1) uPv2w’2MVA (Wedge[,] - X5 A &)
True

The Conway Relation (see [Co])

N 73 s
_ — T—1/2 _ T1/2 > <
1/322 1%2 ( )1 2

A@{Xz,3,4,1[T, T1} - A@{X1,2,3,4[T, T1} = (T2 -T2) A@{P1,4[T], P2,3[T1}

True

Virtual versions (Archibald, [Ar])

3 Jw 3 M

=@+t

2 1 ol2

1W,z (14

A@{Xz,3,4,1} + A@{Xz,1,4,3) = (11/2 + 1;1/2) A@{P1,3, P3,4}
True
A@{X1,2,3,a} + A@{X1,4,3,2} = (r;/z + 1551/1) A@{P1,3, P3,4}

True

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Conway's Third Identity (see [Co])

Virtual version (Archibald, [Ar])

T4 7
™ /56
=)
2 3
#@{Xe,4,9,15 Xa,5,7,85 Yz,a,s,s} + A@{Xa,4,5,1, Xa,3,7,65 Xe,8,9,5} = 7@ {Xs,7,6,1, X7,2,45} + ﬂ@{xfaﬁ'l’ Xs,5,6,7) =
-W@{Yi,s,a,m Xs,7,8,45 Xs,s,s,z} + \ﬂ@{il,z,a,s; X3,7,6,45 i5,5,»3,9} A@{X3,7,6,25 X7,4,5,1} + ‘ﬂ@{xl'zﬂ’s’ x3"’6’7}
True True
Jun Murakami's Fifth Axiom (see [Mu])
3 s Virtual versions (Archibald, [Ar])
5 2 4}y _ V5(1-7) 5
VT 2
-
T‘l 1 =(T-Y2 - T12) —0
T 3
Vs @a-1) 1 7|1
A@{Xq1,4,2,5[T5 S1, Xa,3,5,2} = T A@{Py,3[T]}
T
Ae@ {X S, T1} = (T2 -T1Y2) m@{Py,, [T
True {Xs3,2,3,1[S, T1} = ( ) #@{P1,,[T]}
True
A@{Xq,3,2,3}
AL{1}, {2}, < &1 T, X2 > 11>, @]
Jun Murakami's Third Axiom (see [Mu]) The Naik-Stanford Double Delta Move
/tl /t 6 M 5 o /y\n 6 4 yn t\ 5 o 1 t’. 6 T TR Y
) N $) W
A (] 7 “ s
5 N3 \\lwk 1 2 T N2 3 \11 3 1 JW{ 1 2 3
212 1221 122 i 2 0
FAr112 = A@{X3,8,7,25 X7,10,9,15 X10,11,4,95 X8,6,5,11}3
F1221 = A@{X2,8,7,15 X3,10,9,85> X10,6,11,95 X11,5,4,7} 5
A = AR {X: X X X 5 P 7 -
211 X5,8,7,25 X8,6,9,75 X0,11,30,15 X13,5,4,10} 5 Timing [ﬂ@{xs,le,za,u[w; V], X28,3,20,19 [W5 V], X26,20,27,19 [W> V] X27,23,11,24 [W, V],
HA1122 = A@{X3,8,7,15 X8,9,4,75 X3,11,10,95 X11,6,5,10} 5 - -
@ e (X ;( ; b o ’ @ (X ’ X Py a} X1,12,13,30 [Us W], X13,5,14,25 [Us W], X17,26,18,25 [Us W], Xig,29,8,30 [Us W],
11 = 2,8,7,15 X8,5,4,75 P3,6}5 22 = 3,8,7,25 X8,6,5,7> P1,4}5 X. X.
’ ’ ’ ’ ’ ’ Xa,7,22,15 [V5 Ul, X22,2,23,16 [V5 U], X20,17,21,16 [Vs U], X21,14,9,15 [V, u]} =
To = 5@ {P1as Payss Ps,6)s F@{X [w, v, X; [w, V], X [w, v], X: [w, V]
g 121 1= 22 4 27M2; g [z ] 1= 2M2 - V2 ! 5,9,25,11[ s ] )7 25,4,25,12[ s ] ;x 29,23,39,22[ B ] ,i ;9,29,11,;;1 ,] N
u, w u, w u, w u, w
8. [t1] 8-[t2] A2112 - 8-[72] 8. [T3] FA1221 - 8-[T3/ T1] (HA2211 + F1122) + 2,11,16,27 L% W1 > 716,6,17,28 17> Wl s T14,29,15,28 LTy WJ»> 45,26,7,27 15> Wl
g [t2t3/ta] 8. [T3] Fa - 8. [Ta] 8- [Ta T2/ T3] Aza = 8- [2/ 03] A X3,8,19,18 [V> U], X19,1,20,23 [V5> U] 5 X23,14,24,13 [V U] 5 X24,17,10,28 [V, U] }]
True {190.422, True}
Virtual Version 2 (Archibald, [Ar])
Virtual Version 1 (Archibald, [Ar])
-ﬂ@{ize,gm,u [V, ul, X3,14,19,13 [V5> U], Xaa,11,15,21 [Us W], Xas,6,7,22 [Us W],
A@{X4,8,11,3 [Us V1, X11,2,22,7[Us V]I, Xa2,20,13,4 [Us W], Xi3,5,6,0[Us W]} = X2,12,16,22 [Us W] 5 X16,5,17,21 [Us W], Xis,17,5,18 Vs U], Xa,8,20,28 [V5 ul} =
A@{X1,10,11,4 [Us W] 5 X11,5,12,0 [Us W], X12,8,13,3[Us V1, Xi3,2,6,7 [, V1} A@{X1,11,13,21 [Us W], X13,6,14,22 [Us W] 5 X0,14,10,25 [V5 U], X3,7,10,15 [V, U,
True X19,2,9,16 [Vs> U], Xa,17,20,16 [V> U], X17,12,18,22 [Us W], Xig,5,8,21 [U, W] }

True

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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5. Some Problems in Heaven

Unfortunately, dim A(X, X) = dim A(X, X) = 4X| is big. Fortunately, we have the
following theorem, a version of one of the main results in Halacheva's

thesis, [Hal, Ha2]:

Theorem. Working in A(X U X), if w = we” is a balanced Gaussian (namely, a
scalar w times the exponential of a quadratic A = >y ,ex ¢,2(2), then
generically so is cxﬁge’\.

(This is great news! The space of balanced quadratics is only |X||X|-dimensional!)

[-calculus.

Thus we have an almost-always-defined “I'-calculus”: a contraction algebra
morphism T (X, X) = R x (X ®g/r X) whose behaviour under contractions is
given by

Coelw, A = 4 mx+ &y + agx) = (1 — a)w, p+ny/(1 - a)).

(T is fully defined on pure tangles — tangles without closed components — and
hence on long knots).

Multiplying and comparing I objects:
r/:Tr[isl_,o0sl_,csl_,wl_, A1_] xT[is2_, 082_, cS2_, w2_, A2_] :=
T[is11is2, os1|Jos2, Join[cs1, cs2], wl w2, A1 + A2]
r/:r[isl_,o0sl_, _,wl_, A1_] =T[is2_, 052 , _, w2_, A2_] :=
TrueQ[ (Sort@isl === Sort@is2) A (Sort@osl === Sort@os2) A
Simplify [l = w2] A CF@.il = CFe.i2]

No rules for linear operations!

The crossings and the point:
T[Xi i,k [S_5T_1] := I‘[(L; i}, {Js RYs <1€i 2 S, X5 T, X, 2S5, &> T)>,

T2, e[, £ (g 17T ) 0000 ]

T[Xi 5,0 1S5 T_1] s=T[{d, J}s {ky L} <€ S5 &5 To X > S, X > T,
' e

1-7t1

T[Xi 5,k ,t_ 1 =T[Xij,kclTi> T11;

TXi i 6,0 ] ==I'[Yi,j,h,L[ti: rj]]i

T[Pi ,; [T_11 :=T[{i}, {J}, <I€i> T, X; T, 1, & %513

T[P; ,; ] :=T[Pi,j [ti]];

T2, CF[ (&0 §j}.( ].{xk, x}]];s

Proof. Recall that ¢, ¢: (1,£, x, x§)w’ — (1,0,0,1)w’, write
A= p+nx+ &y + akx, and ponder &* =

...+%(u+7]x+§y+a£x)(u+nx+£y+a§x)-~-(,u+nx+£y+a§x)+....

k factors

Then cxyge)‘ has three contributions:
> ¢#, from the term proportional to 1 (namely, independent of ¢ and x) in &
> —aet, from the term proportional to x£, where the x and the £ come from the
same factor above.
» nyet, from the term proportional to x¢, where the x and the £ come from
different factors above.
So creet = el —a+ny)=(1—a)e(1+ny/(1—a))=(1- a)ereny/(1-a) =
(1 — a)ertmy/(-a)

. An Implementation of I'.

If | didn't implement | wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Gamma.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with canonical forms for quadratics with rational function
coefficients:
CCF[& ] := Factor[&];
CF[5_] := Module[{vs = UnioneCases[s, (£ |x)_, =]},

Total[ (CCF[#[2]] (Timeseevs“I')) & /@ CoefficientRules[&, vs]]];

Contractions:
Cn_,t @T[is_, 0s_, cs_, w_, A_] :=Module[{a, n, y, u},
a=6§t,x"}; u=Aa/.& | xp->0;
n=0xA /.5 >0; y=0g2/.%X;->0;
Tl
DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {X,, £:}1,
CCF[(1-a) w], CF[u+ny/ (1-a)]
1 /. If[MatchQ[cs[&¢], T ], €S[&] » cs[Xp], €5[Xp] C$[§t]]];
cer(is_, os_, cs_, w_, A_] := Fold[Cux, 2 [#1] &, T[1s, 0s, CcS, w, 2], isNo0s]

Automatic intelligent contractions:
TI{>.7}] :=clr];
T[{»1_ I, ys__I'}] :=Module[{¥2},

¥2 = FirsteMaximalBy[{s}, Length[»2[1] N #[2]] + Length[»1[2] N #[1]] &];

T'[Join[{c[»Z ¥2]}, DeleteCases[{»s}, ¥2]1]11]
T[os_List] :=T[T /@ 0s]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Conversions A <> I
T@A[is_, 05 _, cs_, w_ ] :=Module[{i, j, w = Coefficient[w, Wedge[,]1},
r'[is, os, cs, w, Sum[Cancel[-Coefficient[w, x;4&;] & X5/ w],
{i, is}, {3, 0s}1]
15
A@T[iS_, 05_,CS_, w_, A ] :=
Alis, os, cs, Expand [« WEXp [Expand[1] /. &, Xp = E5aXp]11135
The conversions are inverses of each other:
¥ =T[{1, 2, 3}, {1, 2, 3}, {X1 - T1, X2 = T2, X3 > T3, &1 T1, &2 > T2, &3 T3},
Wy, A3 X3 E1+A12 X2 1+ A3 X3 €1+ A X1 Ep+ A0 X Ea + A3 X3 E2+A31 X1 §3 +
a3z Xz €3 + a33 X3 £33
resiey ==y
True
The conversions commute with contractions:
T@c;,3@A@Y = C3,3@Y

True

Conway's Third Identity

Sorry, ' has nothing to say about that...’
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Thank You!

The Naik-Stanford Double Delta Move (again)

Timing[r@{xs,lo,zs,u [W, V1, X2g,3,29,19 [W, V1, X26,20,27,29 [W> V1, X27,23,11,24 [W, V],
X1,12,13,30 [Us W], X13,5,14,25 [U, W], X17,26,18,25 [Us W], Xig,20,8,30 [Us W],
Xa,7,22,15 [V5> U], X22,2,23,26 [Vs> Ul X20,17,21,16 [Vs U] X21,14,9,15 [V u]} =

T@{Xs,s,zs,nlw: V1, Xz5,4,26,22 [Ws V1, Xz9,23,30,22 [W, V1, X30,20,12,21 [W, V],
X2,11,16,27 [Us W], X16,6,17,28 [Us W], X14,29,15,28 [Us W], Xis,26,7,27 [U,s W],
X3,8,19,18 [V5 U] X19,1,20,13 [V5> U], X23,14,24,23 [V U], X24,17,10,18 [V, U] }]

(0.703125, True}

What | still don’t understand.

» What becomes of vage)\ if we have to divide by 0 in order to write it again as
an exponentiated quadratic? Does it still live within a very small subset of
ANX U X)?

» How do cablings and strand reversals fit within A?

v

Are there "classicality conditions” satisfied by the invariants of classical
tangles (as opposed to virtual ones)?

A M. Markl, S. Merkulov, and S. Shadrin, Wheeled PROPs, Graph Complexes
and the Master Equation, J. Pure and Appl. Alg. 213-4 (2009) 496-535,
arXiv:math/0610683.

B J. Murakami, A State Model for the Multivariable Alexander Polynomial,
Pacific J. Math. 157-1 (1993) 109--135.

A S. Naik and T. Stanford, A Move on Diagrams that Generates S-Equivalence
of Knots, J. Knot Theory Ramifications 12-5 (2003) 717--724, arXiv:
math/9911005.

A Wolfram Language & System Documentation Center,
https://reference.wolfram.com/language/.
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Dror Bar-Natan: Talks: LearningSeminarOnCategorification-2006: Thanks for inviting me to speak in my basement! (=] =]

The Alexander Polynomial is a Quantum Invariant in a Different Way wepi=http//drorbn net/cat20/ ejais
P On a chat window here I saw a [The Yang-Baxter Technique. Given an algebra U (typically some

comment “Alexander is the quantum (g) or ﬂq(g)) and suitable elements R, C, K

ig/(1|]1) invariant”. I have an opinion R:Z ;@b e U®U with R :Z a,®b, and C.C™'eU, I

about this, and I'd like to share it. First, < B RN

some stories. form Z(K) = Z a;C”'byajb; ® b ay. a’ b W
I left the wonderful subject of Lk .

IProblem. Extract information from Z.

Categorification nearly 15 years ago. . L. .
The Dogma. Use representation theory. In principle finite, but slow.

[t got crowded, lots of very smart people 12

had things to say, and I feared I will have [Example 1. Let a := L(a, x)/([a, x] = x), b := a* = (b, y), and | Gentle’s Agreement.
nothing to add. Also, clearly the next 8 = b>a =Db® awith [a,x] = x, [a,y] = -y, [b,-] = 0, and Everything converges!
step was to categorify all other “quantum [*, ¥] = b and with deg(y, b,a, x) = (1,1,0,0). Let U = U(g) and

invariants”. Except it was not clear what | R = e”®"®* ¢ U® U orbetter R; = e e U, @ U 5 and C;= e bil?,

“categorify” means. Worse, I felt that Theorem 1. With “scalars”:=power series in {b;} which are rational functions in {b;} and

( ~a
1

I (perhaps “we all”) didn’t understand g .— @b}, With Roland
“quantum invariants” well enough to try the “j over j~  categorify us! van der Veen
to categorify them, whatever that might a tangle w/o .linking numbers scalars a docile perturbation for other
Inean closed components (mtegers)\ \ Lie algebras; semisimple algebras
. have a hidden parameter €!
I still feel that way! I learned a lot since -1 l.jbia -+qijyix . feen 2) o
2006, yet I'm still not comfortable with Z(K) = ybax w ¢ / ](1+EP1 + € Pz + ...
quantum algebra, quantum groups, and T T Continues
quantum invariants. I still don’t feel that B o . Lev Rozansky
. K normal ordering a scalar; if K is a long knot,
[ know what God had in mind when She at ybax order the Alexander poly A(T") categorify me! s 4
created this topic. : : =
IE le 2. L =A =1 Th . Full eval
Yet I'm not here to rant about my xamp e eth (p, ;)/([p, x] -, ) be eorem 3. Full evaluation via
hil hical quandaries. but onlv about the Heisenberg algebra, with C; = '/~ and 1| x Xj
p .l OSOp 1ca q 5 Y Ri‘ — @t/zet(17i7pj)xj' Ijust'tg]d yol}l].lhe \?/hn.ledAle.);ander (x/: N) N 0 Ti] _ 1 (1)D
things that I learned about the Alexander | "/ (et_l)z“’fi f;‘yr‘ ing else is details. N7 j> j7 N i 0 -7
polynomial after 2006. Claim. R;; = Opx (‘B b xj)j‘ P
Yes, the Alexander polynomial fits [Theorem 2. Z(K) = O, (w‘leq”l"‘xi) where wiwy [ X1 Xo
within the Dogma, “one invariant for |, and the ¢/ are rational functionsin T = ', K1 U K2 = P1 | A 0 (2)o
every Lie algebra and representation” [[n fact w and wq”/ are Laurent polynomials Py |0 A
(it’s gl(1]1), T hear). But it’s better to (categorify us!). When K is a long knot, w | w | x; x;
think of it as a quantum invariant arising is the Alexander po]ynomial' pi | @ l[,’ 9 hm;cj
by other means, outside the Dogma. : ) 1 2 pily 6 € — 3)
Alexander comes from (or in) Packaging. Write Oy (a) e /) as . _
practically any non-Abelian Lie algebra. w ‘ Xy X2 - Cley o=
Foremost from the not-even-semi- plqgn ¢7 (1+yw | Xk
simple 2D “ax + b” algebra. You get| Ep..x..[w. Q] < [ Pk 1+8- & a)(l I (]1_+ay)€
a polynomially-sized extension to tangles . . < . (-6)¢ 6)¢ — e
using some lovely formulas (can you ) ) ) ) : Y+ =T 1y
categorify them?). It generalizes to [The “First Tangle”. Z(K) = “T-calculus” relates via A <> I—AT and has
higher dimensions and it has an organized E, [ZT—I (T—l)(Pl—Pz)(Txl—xz)] slightly simpler formulas: w — (1 — B)w,
family of siblings. (There are some r- 2= K 0
s . . @ IB + ad €+ 22
questions too, beyond categorification). 2-77! X1 X \J y & €|— ( 1a—wﬁ ¢g)
I note the spectacular existing =, | LD 6 v = ¢+ Et+ip
: : - 2T-1  2T-1
categorlﬁ?atlon of Alexander by Ozsviath TA-T) 71 1 2 Why Should You Categorify This? The
and Szabd. The theorems are proven and P2 2T-1  2T-1 .
implest and fastest Alexander for tangles,
a lot they say, the programs run and fast [(v-) Tangles. Generated by {*2, N}! . . L
. e easily generalizes to the multi-variable
they run. Yet if that’s where the story i | d
ds, She has abandoned us. Or at least pase, generalizes o v-tangles and w-
eg s’d 4 me: a simol : i~ b tangles, generalizes to other Lie algebras.
abim one }rlne. a simpleton will never be In fact, it’s in almost any Lie algebra,
2 If to cate up.l b ficati and you don’t even need to know what
you care only about categorification, is gl(1]1)! But you'll have to deal with
the take-home from my talk will be a . o
. . . 5t1tch1ng denominators and/or divisions!
challenge: Categorify what I believe is -
. . Note. Example 1 «~» Example 2 via g < b(z)
the best Alexander invariant for tangles. | There’s also strand doubling and reversal. .. via (v, b, a, x) > (=tp, 1, px, x).
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The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.

Convention. For a finite set A, let z4 = {Zi}iea and let
Lo =2} = Lidiea. (p,x)" = (m,¢)
The Generating Series G: Hom(Q[z4] — Q[zg]) — Q[[£4, z5]-
Claim. L € Hom(Q[z4] — Q[zg]) ? Qlzplllgall > £ via

n
G = Z %L(ZX) = L(‘BZ”EA (az,,) =L = geexLiaiin’
neNA
G OW) = (Pl L), _, forpeQlzal

Claim. If L € Hom(Q[z4] — Qlzgl), M € Hom(Q[zg] —
Qlzcl). then G(LJM) = (G(L)lzy-5, GM),,
Examples. ¢ G(id: Q[p, x] — Q[p, x]) = ™+,
« Consider R;; € (b; ® b)[7] = Hom (Q[1 - Qlpi, xi, pj» x,1) [£].
Then G(R;j) = @ =D@i—p)xj — T=1D(pi—ppx;_
Heisenberg Algebras. Let b = A(p,x)/([p,x] = 1), let
O;: Qlpi, xi1 — b; is the “p before x” PBW normal ordering map
and let im;/ be the composition

©k
br Qlpk, xk].

0:80;
Qlpi, xi, pj»xj] — bh;®Y;
Then Q(hm;(]) = @ éimj+ (A ) pr+(EirEDar
Proof. Recall the “Weyl CCR” ef*e™ = e "™ ¢t*, and find
Q(hm;(j) — @ﬂipi+§ixi+”jpj+§jxj//Oi ® ©J'//m;cj//©l:1
— (Bﬂiﬂiefixieﬂ/n/@fjxj//m;cf//@;l — eﬂipkefixk®ﬂjﬂk®§jxk//@l:1

— e—fﬂje(ﬂi‘*—ﬂj)me(fﬁfj)xk//@]:l — e—fiﬂj+(ﬂi+ﬂj)l7k+(-fi+§j)xk_

GDO := The category with objects finite sets and
mor(A — B) = {L = weQ} C Qliga, z8ll,
where: e w is a scalar. e Q is a “small” quadratic in {4 U zp.

e Compositions: L/M = (.£|z,-—>6;,. M)

Compositions. In mor(A — B),

4i=0"

0= ) Ejfzj+ Z Fiidid) + Z Gijziz)s
i€A, jeB 1]EA tjeB R. Feynman
(remember eF=1+x+xx/2+xxx/6+...)

E1E2+E1F26 Ez
+EF>,G F,GE,

NG HEHE

= §) E\(F,G1)'Ey
greek

ldtm

greek ldtln
where @ E = E\(I-F2G\) 'E; o F = Fy + E{F>(I - G Fy)'ET
¢ G =Gy +EIG|(I- F,G))'E;  w = wywy det(I — F,Gy)™'/?
Proof of Claim in Example 2. Let ®; := ¢ PP)% and
D, = Oy, (" DPPIY) = O(P). We show that @y = P, in
(b;®b )] by showing that both solve the ODE 9,® = (p;—p;)x;®
with @|;,—9 = 1. For @ this is trivial. ®;|,—¢9 = 1 is trivial, and
9, @2 = 0(3,¥) = O(e'(pi — p)x,;¥)

(Pi—pjp)xjP2 = (pi—p)x;0O) = (pi—p;)O(x;¥ — 8,,¥)
=0 ((p,-—pj)(xj‘I’ + (03[ - l)ley)) = (O)((Bt(pi_pj)xj\{}) a

Implementation. Without, don’t trust!

CF = ExpandNumerator@xExpandDenominator@xPowerExpand@xFactor;

Epz_ sp1_ [@1_, Q1_]1 Epz 42 [@2_, Q2_] ~:= Eagyaz-pys2 [#1 2, Q1 + Q2]
(Epz_ 1 [@1_, Q1_1 // Epz o2 [@2_, Q2_]1) /5 (B1* === A2) :=
Module[{i, i, E1, F1, G1, E2, F2, G2, I, M = Table},
I = IdentityMatrixeLengtheBi;
El=M[9:,501, {i, A1}, {J, B1}]; E2 = M[01,502, {i, A2}, {], B2}]1;
F1=M[8:,5Q1, {i, A1}, {j, A1}]1; F2 =M[04,502, {i, A2}, {j, A2}];
Gl = M[064,5Q1, {i, B1}, {j, B1}]; G2 = M[94,5Q02, {i, B2}, {J, B2}];
En1.52 [CF[wl w2Det[I - F2.61]%2], CF@Plus[

If[Al === {} VB2 === {}, @, AL.E1.Inverse[I - F2.G1].E2.B2],
1 .
I-F[Al === (3, 0, S AL (F1+E1.F2.Inverse[I - G1.F2].E1) .Al],
1 .
I-F[Bz === {3}, O, ;BZ.(GZ+E2 .Gl.Inverse[I—F2.Gl].E2).BZ”]]

A_\B_ :=Complement[A, B];
(Eaz_ 1 [@1_, Q1_1 // Epz 42 [@2_, Q2_]1) /5 (B1* =1=A2) :=
E a1y (a2\g1*) 81082+ [#15 Q1 + sum[Z* &, {&, A2\B1*}]] //
Ep1+yazsp2y (s2\az*) [#2, Q2 + sum[z* z, {z, BI\A2*}]]
t= (U%) s

{p*s X*, 7, £} = {7, &, P, X}; (u_i_)’

L_List* := #* & /@ L;

. -1/2 X v Y
Rij = Eqafpixippx} [T (1-T) pix;+ (T-1) pix;];
Rii = Eoaforong) [TV (L-T7) b+ (T72-1) poxs]s

P -1/2 .
Ci t=Egap,x) [T % 0];5
C. oo 1/2 .
Ci 1= Egup,x [TV 0]5

hmi L5 ok 2= B, 60,m5,65)>tprxp) [1s =i 7 + (700 + 715) P+ (§i + &5) Xe]
]E()avsi[”n:_) Q_1h := Module[{ps, xs, M},

ps = Cases[vs, p_]; xs = Cases[vs, X_];

M = Table[«i, 1+ Lengtheps, 1+ Lengthexs];

MI2 55, 2 ;5] = Table[CF[ai,jQ]: {i, ps}, {J, xs}1;

MI2 55, 11 = ps; MI1, 2 53] = xs;

MatrixForm[M],]

Proof of Reidemeister 3.
(R1,2 Ra,3Rs,6 // hmy 4,0 hmy 5,5 hms 6,3) ==

(R2,3R1,6 Ra,s // hmy 4,3 hmy 5,5 hms 6,3) i — L

True O
The ““First Tangle”.

Factor /@
(2 =R1,6 C3R7,4Rs,2 // hmy,3,1 // hmy 451 // hmy 5,1 // hmy 6,1 // hmz,7-.z)

-1+2T  (-1+7T) (p1-p2) (TX1-X%p)
]E{)»(p1.pz,><1,><2){ T 1427 ]

z, ‘k
1+2T -
e X X
-T+T2 1-T

P1 1427 -1427 %
P T-12 “14T
2 Trat 121 /h

The knot 8.

z = Ru2,1 Ry7 Re3 R4, 11 Rue, 5 Re,13 Rua, Rio,153
Table[z = z // hmy, {k, 2, 16}] // Last

—_— | +—2
1-4T+8T?-11T3+8T*-4T°+T® i
E ()= p1,xa) [ T3 s 9]
Proof of Theorem 3, (3).
a 3 6
{ Y1 = E (3o (p1,x1,p2,%2,P3,%3) [‘": {P1s P25 P3}-| ¥ 6 € ] s X, x3}]] ’
¢ ¥ B h
(¥17// hm1,z->e)h}
W X1 X2 X3 w+Yw Xe X3
a+Bry+BY+6-085 €-0€+O0+Y O
{ P oa B O 5 Pe 1ey 1oy }
P2 ¥ 6 € $-8 prUey ¥ E+yE-€ 0
ps ¢ ¥ E/n P3 1oy 1oy h [m]
References. On weP=http://drorbn.net/cat20
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Dror Bar-Natan: Talks: Toronto-1912:

Chord Diagrams, Knots, and Lie Algebras oe:=http://drorbn.net/to19

Abstract. This will be a service talk on ancient mate-
rial — I will briefly describe how the exact same type of
chord diagrams (and relations between them) occur in a
natural way in both knot theory and in the theory of Lie
algebras.

Thanks for inviting me to the Chord Diagrams
Everywhere session / Winter 2019 CMS meeting!

5y
i
While preparing for this talk I realized that I've done it
before, much better, within a book review. So here’s that
review! It has been modified from its original version:
it had been formatted to fit this page, parts were high-
lighted, and commentary had been added in green italics.

[Book] Introduction to Vassiliev
Knot Invariants, by S. Chmutov, S.
Duzhin, and J. Mostovoy, Cambridge
University Press, Cambridge UK,
2012, xvi+504 pp., hardback, $70.00,
ISBN 978-1-10702-083-2.

Merely 30 36 years ago, if you had
asked even the best informed math-
ematician about the relationship be-
tween knots and Lie algebras, she
would have laughed, for there isn’t
and there can’t be. Knots are flexi-
ble; Lie algebras are rigid. Knots are
irregular; Lie algebras are symmet-
ric. The list of knots is a lengthy
mess; the collection of Lie algebras
is well-organized. Knots are useful
for sailors, scouts, and hangmen; Lie

7
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A knot and a Lie algebra, a list of knots and a list of Lie

algebras, and an unusual conference of the symmetric and
the knotted.
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algebras for navigators, engineers, and high energy physicists. Knots are blue collar; Lie algebras are white. They
are as similar as worms and crystals: both well-studied, but hardly ever together.

Then in the 1980s came Jones, and Witten, and
Reshetikhin and Turaev [Jo, Wi, RT] and showed that
if you really are the best informed, and you know
your quantum field theory and conformal field theory
and quantum groups, then you know that the two dis-
joint fields are in fact intricately related. This “quan-
tum” approach remains the most powerful way to get
computable knot invariants out of (certain) Lie algebras
(and representations thereof). Yet shortly later, in the
late 80s and early 90s, an alternative perspective arose,
that of “finite-type” or “Vassiliev-Goussarov” invariants
[Val, Va2, Gol, Go2, BL, Kol, Ko2, BN1], which made
the surprising relationship between knots and Lie alge-
bras appear simple and almost inevitable.

The reviewed [Book] is about that alternative perspec-
tive, the one reasonable sounding but not entirely trivial
theorem that is crucially needed within it (the ‘“Funda-
mental Theorem” or the “Kontsevich integral”), and the

2010 Mathematics Subject Classification. Primary 5TM25.

many threads that begin with that perspective. Let me
start with a brief summary of the mathematics, and even

before, an even briefer summary.
In briefest, a certain space A of chord diagrams is the

dual to the dual of the space of knots, and at the same
time, it is dual to Lie algebras.

The briefer summary is that in some combinatorial
sense it is possible to “differentiate” knot invariants, and
hence it makes sense to talk about “polynomials” on
the space of knots — these are functions on the set of
knots (namely, these are knot invariants) whose suffi-
ciently high derivatives vanish. Such polynomials can
be fairly conjectured to separate knots — elsewhere in
math in lucky cases polynomials separate points, and in
our case, specific computations are encouraging. Also,
such polynomials are determined by their “coefficients”,
and each of these, by the one-side-easy “Fundamental
Theorem”, is a linear functional on some finite space of

Published Bull. Amer. Math. Soc. 50 (2013) 685-690. TgX at http://drorbn.net/AcademicPensieve/2013-01/CDMReview/,
copyleft at http://www.math. toronto.edu/~drorbn/Copyleft/. This review was written while I was a guest at the Newton Institute,
in Cambridge, UK. I wish to thank N. Bar-Natan, I. Halacheva, and P. Lee for comments and suggestions.
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graphs modulo relations. These same graphs turn out to
parameterize formulas that make sense in a wide class of
Lie algebras, and the said relations match exactly with
the relations in the definition of a Lie algebra — anti-
symmetry and the Jacobi identity. Hence what is more
or less dual to knots (invariants), is also, after passing to
the coeflicients, dual to certain graphs which are more or
less dual to Lie algebras. QED, and on to the less brief

summary'.
Let V be an arbitrary invariant of oriented knots in ori-

ented space with values in (say) Q. Extend V to be an
invariant of 1-singular knots, knots that have a single sin-

gularity that locally looks like a double point >< using

the formula
(1) viX) = v - vOND.

Further extend V to the set K™ of m-singular knots (knots
with m such double points) by repeatedly using (1).
Definition 1. We say that V is of type m (or “Vassiliev of
type m”) if its extension V|ym+1 to (m + 1)-singular knots
vanishes identically. We say that V is of finite type (or
“Vassiliev”) if it is of type m for some m.

Repeated differences are similar to repeated derivatives
and hence it is fair to think of the definition of V|~ as
repeated differentiation. With this in mind, the above
definition imitates the definition of polynomials of de-
gree m. Hence finite type invariants can be thought of
as “polynomials” on the space of knots®. It is known
(see e.g. [Book]) that the class of finite type invariants
is large and powerful. Yet the first question on finite type

invariants remains unanswered:
Problem 2. Honest polynomials are dense in the space

of functions. Are finite type invariants dense within the
space of all knot invariants? Do they separate knots?
The top derivatives of a multi-variable polynomial
form a system of constants that determine that polyno-
mial up to polynomials of lower degree. Likewise the

mth derivative® VO = Vg = V(><m>'<) of a type m

invariant V' is a constant in the sense that it does not see
the difference between overcrossings and undercrossings
and so it is blind to 3D topology. Indeed

V(XmXV\)—V(XmXN) = V(Xmﬂ}() _a

Also, clearly V™ determines V up to invariants of
lower type. Hence a primary tool in the study of finite

lPartially self-plagiarized from [BN2].

type invariants is the study of the “top derivative” V™,
also known as “the weight system of V.

Blind to 3D topol-

ogy, V™ only sees the 4 3
combinatorics of the 5 —
circle that parameter- 1

izes an m-singular knot.
On this circle there are m pairs of points that are pairwise
identified in the image; standardly one indicates those by
drawing a circle with m chords marked (an “m-chord di-
agram”) as above. Let D,, denote the space of all formal
linear combinations with rational coefficients of m-chord
diagrams. Thus V™ is a linear functional on D,,.

I leave it for the reader to figure out or read in [Book,
pp- 88] how the following figure easily implies the “47
relations of the “easy side” of the theorem that follows:

}

E% SR

)
{ a
Theorem 3. (The Fundamental Theorem, details in
[Book]). )

e (Easy side) /
G U E e |
rational val-
ued type m invariant then V™ satisfies the “4T” rela-
tions shown above, and hence it descends to a linear
functional on A, := D,,/4T. If in addition V™ = 0,
then V is of type m — 1.

o (Hard side, slightly misstated by avoiding “fram-
ings”) For any linear functional W on ‘A, there is a
rational valued type m invariant V so that V™ = W.

Thus to a large extent the study of finite type invariants
is reduced to the finite (though super-exponential in )
algebraic study of ‘A,,.

Much of the richness of finite type invariants stems
from their relationship with Lie algebras. Theorem 4

below suggests this relationship on an abstract level and
Theorem 5 makes that relationship concrete.

~

_J _J

A T

SR

Ne T NI N

2Keep this apart from invariants of knots whose values are polynomials, such as the Alexander or the Jones polynomial. A posteriori

related, these are a priori entirely different.

3As common in the knot theory literature, in the formulas that follow a picture such as X-"'.>XZ indicates “some knot having m double
points and a further (right-handed) crossing”. Furthermore, when two such pictures appear within the same formula, it is to be understood
that the parts of the knots (or diagrams) involved outside of the displayed pictures are to be taken as the same.
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A Jacobi diagram in a circle

Theorem 4. [BN1] The space A, is isomorphic to the
space A, generated by “Jacobi diagrams in a circle”
(chord diagrams that are also allowed to have oriented
internal trivalent vertices) that have exactly 2m vertices,
modulo the AS, STU and IHX relations. See the figure
above.

The key to
the proof of
Theorem 4 is
the figure above, which shows that the 47 relation is a
consequence of two ST U relations. The rest is more or
less an exercise in induction.

Thinking of internal trivalent vertices as graphical
analogs of the Lie bracket, the AS relation becomes the
anti-commutativity of the bracket, STU becomes the
equation [x,y] = xy — yx and /HX becomes the Jacobi
identity. This analogy is made concrete within the fol-
lowing construction, originally due to Penrose [Pe] and
to Cvitanovi¢ [Cv]. Given a finite dimensional metrized
Lie algebra g (e.g., any semi-simple Lie algebra) and
a finite-dimensional representation p : ¢ — End(V) of g,
choose an orthonormal basis* {Xa}gi:“}g of g and some basis
(vo}imV of V, let £y and rzﬁ be the “structure constants”

a=1

defined by
fabc = ([ Xa, Xp], X))

P e e s

R I

N NG & A S

and

PX)p) = D" 1wy,
Y

Now given a Jacobi diagram D label its circle-arcs with

Greek letters a, 8, ..., and its chords with Latin letters a,

b, ..., and map it to a sum as suggested by the following

example:

4
— fabc”fw Tool cp
a,b,c.a By
(internal vertices go to f ’s,)

circle-vertices to r’s

Theorem 5. This construction is well defined, and the
basic properties of Lie algebras imply that it respects the
AS, STU, and IHX relations. Therefore it defines a lin-
ear functional Wy, : A,, — Q, for any m.

The last assertion along with Theorem 3 show that as-
sociated with any g, p and m there is a weight system and

“This requirement can easily be relaxed.

3

hence a knot invariant. Thus knots are indeed linked with
Lie algebras.

The above is of course merely a sketch of the beginning
of a long story. You can read the details, and some of the
rest, in [Book].

What I like about [Book]. Detailed, well thought out,
and carefully written. Lots of pictures! Many excel-
lent exercises! A complete discussion of “the algebra
of chord diagrams”. A nice discussion of the pairing of
diagrams with Lie algebras, including examples aplenty.
The discussion of the Kontsevich integral (meaning, the
proof of the hard side of Theorem 3) is terrific — detailed
and complete and full of pictures and examples, adding
a great deal to the original sources. The subject of “as-
sociators” is huge and worthy of its own book(s); yet in
as much as they are related to Vassiliev invariants, the
discussion in [Book] is excellent. A great many further
topics are touched — multiple {-values, the relationship
of the Hopf link with the Duflo isomorphism, intersec-
tion graphs and other combinatorial aspects of chord di-
agrams, Rozansky’s rationality conjecture, the Melvin-
Morton conjecture, braids, n-equivalence, etc.

For all these, I’d certainly recommend [Book] to any
newcomer to the subject of knot theory, starting with my
own students.

However, some proofs other than that of Theorem 3 are
repeated as they appear in original articles with only a su-
perficial touch-up, or are omitted altogether, thus missing
an opportunity to clarify some mysterious points. This in-
cludes Vogel’s construction of a non-Lie-algebra weight
system and the Goussarov-Polyak-Viro proof of the exis-
tence of “Gauss diagram formulas”.

What I wish there was in the book, but there isn’t.
The relationship with Chern-Simons theory, Feynman di-
agrams, and configuration space integrals, culminating in
an alternative (and more “3D”’) proof of the Fundamental
Theorem. This is a major omission.

Why I hope there will be a continuation book, one
day. There’s much more to the story! There are finite
type invariants of 3-manifolds, and of certain classes of 2-
dimensional knots in R*, and of “virtual knots”, and they
each have their lovely yet non-obvious theories, and these
theories link with each other and with other branches of
Lie theory, algebra, topology, and quantum field theory.
Volume 2 is sorely needed.
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Geography vs. Identity q? \
‘Thanks for inviting me to the Topology session! Eﬁg

Abstract. Which is better, an emphasis on where things happen
or on who are the participants? I can’t tell; there are advantages
bnd disadvantages either way. Yet much of quantum topology
seems to be heavily and unfairly biased in favour of geography.

g S0 xis ¥2.
I Identity view:
3 At xstrand 1 crosses strand 3, so x is o3.
175w The Gold Standard is set by the “T-calculus” Alexan-

seographers care for placement; for them,
braids and tangles have ends at some distin-
lguished pfnms. hence they form categories
hose objects are the placements of these

oints. For them, the basic operation is a binary “stacking of
angles”. They are lead to monoidal categories, braided monoidal
categories, representation theory, and much or most of we call
“‘quantum topology™.

—

der formulas (wef/mac). An S-component tangle 7 has

I[(T) € Ry X Myxs(Rs) = {—’—:’ ‘; } with Ry = Z({T,: a € S)):

ion is a unary stitching operation
n¢”, and one is lead to study meta-monoids, meta-Hopf-algebras,
btc. See wep/reg, wep/kbh.

[dentiters believe that strand ide- of p  mgt [ e
itity persists even if one crosses or -

Lo o T T

is being crossed. The key opera- o

lla b ww S S,
()= @[T 1=T;7  TyuT— " S; [A 0
blo T2 S, |0 A
wla b S »
ala B 0 my
—_—
bly 6 € T,T,>T.
Sl¢ v E

The Gassner Representation of AB, acts on V =

(7|
CI = Rvp,...va) by ﬂ

TV = Vi + Okt = D) = ).
Tk = Vi+ Okt = 1D = vi) Betty Jane|
615 [£.] = £/« Vi Vi 8,5 (£~ 1) (V= Vi) // Expand  Gassner

Braids. < L <
S S S
UAn Y Gl
AT S A N Nk N
[Geography: (better topology!)

GB = <y,>/(%w = yuyi when i — k| > 1) _s
YiYie1Yi = Yie1ViYis1

(captures quantum algebra!)

) - nn

dentity:
. Tijon = oo when [{i, k1| =4

1B := <(r">/(1r,,(r,nr,k = ooy when [(i, . k)| = 3
Theorem. Let S = {r} be the symmetric group. Then 1B is both
PBxS = BxS [(yit =y when i = j, (i + 1) = (j+ 1)

and so AB is “bigger” then B, and hence quantum algebra does-

't see topology very well).

Proof. Going left, y; — oij1(i i + 1). Going right, if i < j

ap oy > (=1 j=2 ... iy i+ ... j)andif i > juse

i G+l iy =1 .. ).

i

B

The Burau Representation of AB, acts on R" :
ZIE') = R(vi, ..., V) by

TV = Vi + Ot = D = vi).
=If[i=3,1,0]; oep/code

R - - Werner
/4 Vi Vs 8,5 (t=1) (V5= Vo) // Expand

\B views of o7;:

deserves
(bas3 // Gy.a 1/ Gris 1/ Gaus) = (baS3 // Gas 1/ Gus 1/ 61.2) e |
[True famous

[S,, acts on R" by permuting the v; and the #;, so the Gassner re-
[presentation extends to B, and then restricts to B, as a Z-linear
leo-dimensional representation. It then descends to PB,, as a finite-
frank R-linear ion, with lengthy local formulas.
(Geographers: Gassner is an obscure partial extension of Burau.
Identiters: Burau is a trivial silly reduction of Gassner.

The Turbo-Gassner Representation. With the same
R and V, TG acts on V& (R"® V) & (S?V ® V*) =
IR(Vi, Vige witt jwie) by

M6: 5 [6 = € /. {

Vi Vi + 8p,5 ((ti=1) (V5= Vi) +Vi,5-Vi,q) +
Sk, (Uj - Ug) Ui Wy, With Roland
Vie » ik (ti-1) van der Veen

(81,5 (Vi3 -Ve,0) + (6L,0- 61,5 t7 1)
(Us + 85,5 (ti=1) (uj-uq)) ugwy),
Up_ = U+ 8,5 (ti=1) (uj-uy),
We_ 3 Wy + (84,5 = 8r,0) (ti*-1) w;} // Expand

Gassner motifs
Adjoint-Gassner

V3,25 V3,35 Ul W, UJ W2, UTWs, U Uz Wy, Up Uz W Uy U2 W3,
U U3 Wy, Us U3 Wa, Uy Uz Wy, U3 W, U3 W, U3 W3, Uz Uz Wy,
Uz U Wz, Uz s s, W, D, U3 )5
(bas3 // TGy,2 // TGy, // TG,3) == (bas3 // T6a,s // TGy,3 // T61,2)
True Like Gassner, TG is also a representation of PB,,.
I have no idea where it belongs!

(bas3 = (vi, V2, Va}) // Bra

(vis Vi -tV tvg, va)

bas3 // 812 // 813 // Bas

[(Va, VitV + Eva, Vi~ tvy s tva vy tvs)

bas3 //Ba2,3// 813 // B2

[vi, vi-tvistvy, vi-tvistvy -t vy« tvs)

[, acts on R" by permuting the v; so the Burau

representation extends to vB,, and restricts to B,,.
ith this, y; maps v; = Vigy, Viep = H1-Hvig,

fand otherwise vy > vy.

My talk tomorrow, at the chord diagrams everywhere session:
-

J#i

More Dror: weB/talks

Picture credits: Rope from “The Project Gutenberg eBook, Knots, Splices and Rope Work, by A. Hyatt Verrill”, http://www.

gutenberg.org/files/13510/13510-h/13510-h.htm.

rotations.html.

Plane from NASA, http://www.grc.nasa.gov/WWW/k-12/airplane/
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Thanks for inviting me to the Topology session!

IAbstract. Which is better, an emphasis on where things happen
or on who are the participants? I can’t tell; there are advantages
and disadvantages either way. Yet much of quantum topology

Geography view:

n=A 11 m=l A1 wm=[ A

Identity view:

SO X 1S 5.
/\,\W X182
3 At x strand 1 crosses strand 3, so x i

S 013.
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seems to be heavily and unfairly biased in favour of geography. %E:h
Geographers care for placement; for them, “
braids and tangles have ends at some distin-
iguished points, hence they form categories

whose objects are the placements of these
points. For them, the basic operation is a binary ‘“stacking of (a
tangles”. They are lead to monoidal categories, braided monoidal
categories, representation theory, and much or most of we call

'(T) € Ry X Mgxs(Rs) =

The Gold Standard is set by the “I'-calculus” Alexan-
der formulas (wef/mac). An S-component tangle 7 has

{%%} with Rg = Z(T,: a € S}):

“quantum topology™.

So 0 A

wla b S
‘ala B 6 m’ ((l—ﬂ)w‘ : 2 Sée\
N ¢ Y+ig e+i5
bly ¢ € 71,7T,>T. S g+l om0
Sl¢o vy = -5 = 1

ntity persists even if one crosses or t T
is being crossed. The key opera-
tion is a unary stitching operation

etc. See wef/reg, wef/kbh.

Identiters believe that strand ide- * b me RT c

mgb , and one is lead to study meta-monoids, meta-

t ~ [The Gassner Representation of AB, acts on V = )

R" = Z[tfl,...,t,;—'l]” =R(vi,...,v,) by

Hopf-algebras, TijVk = Vi + Okt = DV = vi). Betty Jane
Gi ,j [£]1:=¢&/eVr »Vp+8g,; (ti-1) (vj-vi) // Expand Gassner

Braids.

Unnu G

BB > S EB*S/()’iTZT)/jWheIlTiZj, T(i +

n’t see topology very well).
IProof. Going left, y; — o1 i + 1). Going

i

vB views of o7

[...

Geography: (better topology!) |co-dimensional representation. It then descends to PB, as a finite-
YiYr = viyi when |[i — k| > 1 rank R-linear representation, with lengthy non-local formulas.
GB = (y;) I =B. G hers: G . b : .
ViYie1Yi = YVise1YiYitl eographers: Gassner is an obscure partial extension of Burau.
Identity: (captures quantum algebra!) [[dentiters: Burau is a trivial silly reduction of Gassner.

— 0jou = ooij when |{i, j,k, [} = 4 _ The Turbo-Gassner Representation. With the same
IB = {0}) D = BB.

Tij0ik0 jk = O jkOik0ij when |{l,j,k
[Theorem. Let § = {7} be the symmetric group. Then B is both  |R{vg, vy, u;u jwi) by

(and so PAB is “bigger” then B, and hence quantum algebra does-

map o;; = (j—1j-2 ... Dy i+1 ... j)andif i > juse

(baS3 // G,z /1 Gu3 /1 Ga,3) = (b33 // Gao,3 /1 Gz /1 Gaz) “pemen”

True famous

IS, acts on R" by permuting the v; and the t;, so the Gassner re-
presentation extends to vB, and then restricts to B, as a Z-linear

J1=3 R and V, TG actson Vo (R"® V) & (S’V ® V*) =

1)=(j+1)) T6: 5 [£] i= £ /. {

4

V/L 3')Vk+5k,j ((ti—l) (Vj—Vi) +Vi,j—Vi,i) + i
Ok,i (Uj = Ui) Uj Wy, With Roland
ot if i < i Vi e Ve + (B -1) van der Veen
nehh e = (6k,5 (Vi,5 - Vi,10) + (61,1 - 81,5t t5)
(U + 81,5 (ti-1) (uj-ui)) uiw), Gassner motifs

uk_ = U + 5;;,_7‘ ('ti - 1) (Uj - Ui) K
We > W + (6k,j = 5;;)1) (t;l = 1) Wj} // Expand

bas3 = {Vn V2, V3, V1,15 V1,25 V1,35 V2,15 V2,25 V2,35 V3,1,

Adjoint-Gassner

Z[r']" = R(vy,...,v,) by
OijVk = Vg + (Skj(t - 1)(Vj - V,‘).

(bas3 = {vi1, vz, v3}) // B2

The Burau Representation of AB, acts on R"

6 /: 6i ,; :=If[1=7,1,0]; wef/code
Bi ,j [£1:=¢&/0Ve 2 Vp+6k,; (t-1) (vj-vi) // Expan

V3,25 V3,3, U% Wi, U% W2, U% W3, Uj Uz W1, Uj Uz Wz, Up U W3,
Uz U3 Wy, Uz U3 Wz, Up U3 W3, U% Wi, U% W2, U% W3, Uz U3z Wy,
Uy Uz Wa, Up Us W3, U3 Wi, USWa, U] W3};
(ba53 // TGLz // TG1,3 // TGZ,3) == (basB // TG2,3 // TGL3 // TGl,z)

d Wemer tpye Like Gassner, TG is also a representation of PB,,.
Burau . .
I have no idea where it belongs!

{Vi, Vi —tvy+tvy, vi}
bas3 // B1,z // B1,3 // 32,3
{vl, vi-tvy+tvsy, vl—tv1+tv2—t2v2+t2v3}

bas3 // Ba,3 // B1,3// Ba,2
{vis vi-tvistvy, vi-tvi+tvy-t?vy+t?vs}

representation extends to vB, and restricts to B,,.
IWith this, y; maps v; B Vi1, Viel B i 1-)vii1,

IS, acts on R" by permuting the v; so the Burau 1:5:'-

and otherwise v; — vy.

My talk tomorrow, at the chord diagrams everywhere session: More Dror: wef/talks
- | i -

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/
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Dror Bar-Natan: Talks: Columbia-191125:

v . ‘With Roland
Some Feynman Diagrams in Pure Algebra van der veen

Thanks for allowing me in Columbia U!
wepB:=http://drorbn.net/col9/
Slides w/ no handout/URL should be banned!

Abstract. I will explain how the computation of compositions
of maps of a certain natural class, from one polynomial ring into
another, naturally leads to a certain composition operation of
quadratics and to Feynman diagrams. I will also explain, with
very little detail, how this is used in the construction of some
very well-behaved poly-time computable knot polynomials.

The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set A, let z4 = {z;j}iea and let
da = {2z = Jiliea. O, b,a,x)" =(.B,a,.&)
The Generating Series G: Hom(Q[z4]— Q[zg]) — QllZa, z51l-
Claim. L € Hom(Q[za] — Qlzg]) —;—> Qlzplll{all > £ via

$hn .
G(L) = zN;A n_/;L(ZA) = L(ezaEA a a) =L= greek'Elatin’
G DOW) = (P, £),_, forpeQlal
Claim. If L € Hom(Q[z4] — Q[zg]), M € Hom(Q[zp] —
Qlzc)). then G(LJM) = (G(L)lz—a, GM), -
Basic Examples. 1. G(id: Q[y, a, x] = Q[y, a, x]) = @W+ea+ex,

2. The standard commutative prod- my!
uct m;’ of polynomials is given by Qlzl; ® Qlzl; — Qlzlk
Hence G(m) = ” ij ”

Zi»Zj ™ Zk- my
Qlzi» zj] —— Qlzx]

m;‘{j(efiZﬁ{ij) = Wi+l

3. The standard co-commutative co- Al
product A;k of polynomials is given Qlz]l: — Qlz]; ® Qlzlk
by zi — zj + z. Hence G(AY) = ” AL ”
Ai_k(efiz,') — ®évi(Z/+zk). Q[Zi] _>Q[Zja Zk]

J

Heisenberg Algebras. Let H = (x,y)/[x,y] = K (with /i a
scalar), let O;: Q[x;,y;] — Hj is the “x before y” PBW order-
ing map and let hmzj be the composition

0i®0; my! o'
Qlxi, yi» xj,y;] — H; @ Hj Hy Qlxk, ykl-
Then G(hm') = e, where Ay = —hniéj+(Ei+E)xi+@i+n,)Y.-
Proof 1. Recall the “Weyl form of the CCR” ePeé* =
e MEREXEY | and compute
g(hmzj) = &XitYitE XY //@i ® O j//mj(j //(O),:1
— (Bf,-xi(Bmy,-efjxj@n,yj-//m;;j//@;l — (Bé?iXkem)’k(ijXk@myk//@;l

= @ i€ p&itéNxe ®(m+77,')yk//©]:1 = M,

Proof 2. We compute in a faithful 3D representation p of H:
e 1680 0 0 0 0 0 1 (wef/hm)
{i: [a 0 a],9= [e D) n],é: [a o e]};
000 000 0 00
(R.9-9.8=ne, R.&=2.%, 9.8 = 2.9}
{True, True, True}

A=-hni&5c+ (Ei+&5) Xk + (N1 +75) Yis
SimplifyeWith[{E = MatrixExp},

E [f( §i] E [9 771] E [)? §j] E [9 T7j] ==
(% 0.] £ [ 0y 8] -2 [2 00, ]

True

[=15[=]
2 i

[=]7%
A Real DoPeGDO Example (DoPeGDO:=Docile Perturbed
Gaussian Differential Operators). Let sl5, = L(y,b,a, x) sub-
jectto [a, x] = x, [b,y] = —€y, [a,b] =0, [a,y] = —y, [b, x] = €x,
and [x,y] = ea + b. Sot = ea — b is central and if e !,
sls, = sb @ (t). Let CU = U(slS,), and let cm;! be the com-
position below, where O;: Qly;, b;, a;, x;] — CU,; be the PBW
ordering map in the order ybax:

my

CU; & CU;, cu;
T@i,.f em! T@’k

Qlyi, bi,ai, xi, ¥}, bj, aj, x;1 —— Qlyi, bi, ax, xi]

Claim. Let (all brawn and no brains)

e~ i=<Pi log (1 + en&)
A= (775 + —— b+
€

j
T+ et )Yk + (ﬁi +Bj+

g—“.f—fﬁjg.
(CYZ‘ + @ + log(l + Enjé:i))ak + (T)]f[ +§j))€k
Jot
Then (Bi],’y,’+ﬁ,‘b,‘+(l,'a,‘+§,‘)€,’+7]_,'y/'+B/'bj+(Yja_,'+§jx_,'//©i’j//cm;cj — (BA//O]{,

and hence Q(cmij ) = el

Proof. We compute in a faithful 2D representation p of CU:

{9-(23):6-(3 %) 8- (52)%-(35)) (el
{ a
b

-

o
€
a.X-X.
b.x - x.
{True, True, True, True, True}
SimplifyeWith[{E = MatrixExp},
E [ni 9] E [B1 B] E [ai 5] E [§1 )’E] E [nj fl] E [B] B] .
E[a;a].E[&5 X] = E[¥ oy, 4] .E [B op A].E[80,,.4].
£ [ 0,,4]]
True
Series[A, {e, 0, 2}]
(ak (oq +03) + Yk (ni+e “iny) +
b (Bi+B5+n38i) +Xk (€73 &1 +&5)) +

1 .
(ak N3 &i - Ebk U% E-eykny (Bi+nj&i) -
e i xx &1 (By+nj 51)) €+
73 2 2 lb 3 3 1 —o§ . 2 . . . 2 2
Sy ANF el S beni el e ey (B3 +2Bing & +2n3&F) +
1 .
367”3 Xk Ei (/332'+23j n3 §i+27’7§§%)) e?+0[e]?

Note 1. If the lower half of the alphabet (a, b, @, 8) is regarded
as constants, then A = C + Q + > 1> €*P® is a docile perturbed
Gaussian relative to the upper half of the alphabet (x,y,&,n): C
is a scalar, Q is a quadratic, and deg P® < 2k + 2.

Note 2. wt(x,y,&,n5a,b,a,8;¢) =(1,1,1,1;2,0,0,2; -2).

Quadratic Casimirs. If 7 € g ® g is the quadratic Casimir of a
semi-simple Lie algebra g, then &, regarded by PBW as an ele-
ment of S®2 = Hom (S(g)®0 — S(g)®2), has a latin-latin domi-
nant Gaussian factor. Likewise for R-matrices.

(Baby) DoPeGDO := The category with objects finite sets'! and
mor(A — B) = {L = wexp(Q + P)} € Qlla, zs, €ll,
where: o w is a scalar.™ e Q is a “small” e-free quadratic in

ZaUzp. T3 e Pisa“docile perturbation”: P = 3;.; €P®, where

deg P® < 2k+2.7 o Compositions: T® LM := (L|zi_,5(i M){:O.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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So What? If V is a representation, then V®" explodes as a func-
tion of n, while in DoPeGDO up to a fixed power of €, the ranks
of mor(A — B) grow polynomially as a function of |A| and |B|.

Compositions. In mor(A — B),

1 1
0= Z Eijlizj+ 5 Z Fijlilj+ 5 Z Gijzizjs

i€A, jeB i,jEA i,jeB
and so (remember, ¢* = 1 + x + xx/2 + xxx/6 + ...)
A w B . w € A o

o . E\E, +E\F,G\E;
G\ +E\F2G\F,GE;
S+

Vo f syef o
F, G, //)Fz Gz: F

~ P _— T Py, _— ~.__ P

= Z:OEI(FZGl)rEZ

latin

greek

where @ E = E;(I — F2G1) ' E».

e F=F +EFI-G F)El

G =G+ EIGi(I - F2,G)'Es.

o w wlwzdet(l—FzGl)_l.

e P is computed as the solution of a
messy PDE or using “connected Feyn-
man diagrams” (yet we’re still in pure
algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a “weight”’e {0, 1, 2},
and always wtz; + wt{; = 2.

T1. Really, “weight-graded finite sets” A = Ag LI A; LI Aj.

+2. Really, a power series in the weight-0 variables™.

3. The weight of Q must be 2, so it decomposes as Q =
0>0+Q011. The coeflicients of Q¢ are rational numbers while
the coeflicients of Q1; may be weight-0 power series’.
Setting wt e = —2, the weight of P is < 2 (so the powers of
the weight-0 variables are not constrained)>.

In the knot-theoretic case, all weight-O power series are ra-
tional functions of bounded degree in the exponentials of the
weight-0 variables.

There’s also an obvious product

mor(A; — By)Xmor(A; — By) — mor(A| LA, — BjLUB)).

4.

T5.

T6.

Questions. e Are there QFT precedents for “two-step Gaussian
integration”?

e In QFT, one saves even more by considering ‘“‘one-particle-
irreducible” diagrams and “‘effective actions”. Does this mean
anything here?

e Understanding Hom(Q[z4] — Q[zg]) seems like a good cause.
Can you find other applications for the technology here?

QU = Uy(sl5,) = A(y,b,a, x)[[h]] with [a, x] = x, [b,y] = —ey, [a,b] =0,

[a,y] = =y, [b, x] = €x, and xy—qyx = (1-AB)/h, where g = e, A = e,

and B = e. Also A(y,b,a,x) = (y| + B1y2, b1 + by, a; + asz, x; + A1 x2),

SO, b,a,x) = (=B 'y,—b,—a,—A"'x), and R = Y, W/**y*b/ ® a/x*/ jl[k],!.
Theorem. Everything of value regrading U = CU and/or its
quantization U = QU is DoPeGDO:

4 N - A B\
cup  cap
L I
C*leQU m: U U—-U A:U-U®U
B N N ~
. _J - J
tr: U-U/wx=xw deCU*? JeCU® CU

also Cartan’s 6, the Dequantizator, and more, and all of their
compositions.

Solvable Approximation. In 4D Metrized Lie Algebras
sl,, half is enough! Indeed Ivabl
solvable
sly®a,.; = DN, b,6). Now algebras
define sl;, = DN, b,e€d).

Schematically, thisis [, N] = N,
[, N e, and [N,1\]
I + eN. The same process works
for all semi-simple Lie algebras,

the Abelian
algebra

algebras isomorphic

Full DoPeGDO. Compute com- : e
positions in two phases: :
e A 1-1 phase over the ring of
power series in the weight-0 vari-
ables, in which the weight-2 vari-
ables are spectators.

e A (slightly modified) 2-0 phase
over Q, in which the weight-1
variables are spectators.

Analog. Solve 0}
Ax =a, Bx)y=»>b

and at ! = 0 always yields a o sh = sh + 1D
solvable Lie algebra.
EeERNSEE ] () =b: @S > N
~ b 1?11 st b~ s 5 e
Conclusion. There are lots of poly-time-computable well-

behaved near-Alexander knot invariants: e They extend to tan-
gles with appropriate multiplicative behaviour. e They have ca-
bling and strand reversal formulas. wef/akt
The invariant for sl / (€2 0) (prior art: weP/Ov) attains
2,883 distinct values on the 2,978 prime knots with < 12 cross-
ings. HOMFLY-PT and Khovanov homology together attain
only 2,786 distinct values.

knot ny Alexander’s w® genus / ribbon | knot ny Alexander’s w® genus / ribbon | knot ny Alexander’s w® genus / ribbon
diag D" unknotting # / diag (M unknotting # / diag D" unknotting # /
) ) 3
oy 1 0/v 30 T-1 1/% 4¢ 3-T 1/%X
© 0 0/ @ T 1/X%X @ 0 1/
0 3731272 +26T-38 74373 1572 +74T 110
@ 59 T?-T+1 2/ X% @ 55 2T-3 1/X% @ 6{ 5-2T 1/v
273 +3T 2/% 5T-4 1/X% T-4 1/X%
ST7—2070+5575 — 1207 +21773 ~33872 +4507-510 —107%+12073 —48772 + 10547 — 1362 1474~ 1673 ~29372 +10987 — 1598
65 T?+3T-3 2/X 64 T?-3T+5 2/X 7 T3-T*+T—1 3/X
@ T3 —4T?>+4T -4 1/% @ 0 1/ @ 373 +5T3+6T 3/%
3782177 +49TC+ 1575 —433T* + 154373 ~343172 +5482T —6410 4783377 4121702037~ 1117*+ 149973 —421072 +7186T —8510 771 28710 47779 — 16878 +32277 —5607° +89175 — 13107 +
177773 ~223872 +2604T —2772

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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Dror Bar-Natan: Talks: Macquarie-191016:

Algebraic Knot Theory ]

wef:=http://drorbn.net/mac19/ El [=]

Strand Doubling and Reversal.

Abstract. This will be a very “light” talk: I will explain why
about 13 years ago, in order to have a say on some problems in
knot theory, I’ve set out to find tangle invariants with some nice
compositional properties. In other talks in Sydney (wef/talks) I
have explained / will explain how such invariants were found -

x w | b c N
w ‘ a S
7o o b | (ca—ala—vTd)/u Ty — DTev/p Ty = DTeO/p
Sle = c (T. — yv/u (@—0,T,—vT)/p (Te—1)0/pu
S ¢ ¢ =
ds"lr‘ﬁr;'
aw/o, ‘ a S Where o assigns to every a € S a Laurent mono-
a 1/ 0/« mial o, in {#,}pes subject to o’(a‘/lb,bxa) = (a —
N —¢/a (@B — ¢0)/a 1,b — tj'), o(T) U Ty) = o(T)) U o(T>), and

ofmi® = (o \{a, b)) U (c = Tuop)l;, 1, -

though they are yet to be explored and utilized.
(v-)Tangles.
(meta-associativity:

\/\\ \
mab mféb//m;fc = mﬁ’(r//mﬁfx)

1 {,’
( E “stite chi>n = (tangles are generated

by > and )
[Strand b -~ Strand a
doubling: ¢ . reversal:

a
Abc

Genus. Every knot is the boundary of an orie-
ntable “Seifert Surface” (wef3/SS), and the least
of their genera is the “genus” of the knot.

Claim. The knots of genus < 2 are precisely the p.
images of 4-component tangles via

YN T mﬁu

P e et S R P e =]

eta-Associativity L Fix By ) Runs,
' . zy X2z K3y H:

N - Tw. it B2y B Bt : R B Bsy Tl ]
o R L T -
¥ ds @3 B

. TR, SERRITIN S N PR  TES

S PR SRR R, -

i R R3 .. divide and conquer!

'Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for
ribbon knots using this technology (and more).
Implementation key idea:
(W, A = (aw)) ©

(W, A = 3 aaptahy)

|
wefl/AlexDemo

TEma1 Bog: BFag & Madea S Mszge ©F Magaas

N

€X

*\/ X ‘ =

a ribbon singularity  a clasp singularity

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be |’
presented as the boundary of a disk that has “ribbon singularities”,

but no “clasp singularities”. A “slice knot” is a knot in S3 = dB*
which is the boundary of a non-singular disk in B*. Every ribbon
knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

I[Fox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(¢) = f(£)f(1/1). (also for slice)

APy Bz Amay JA ooy F Rz S ot

1 Iy 1

l'E-ll. J.:F-n.i Eﬂ'{.-m ='I'|*1Fmr1{5-5'-l'ml1“|

Colm - o= S Py, ik, 2 146}

+
e
[ B S T

Fact. I is better viewed as an invariant of

Theorem. K is ribbon iff it is k7" for a tangle 7 for which 77 is
the untangle U.

MM Lobdd L Gompf, Schar-
Poipt i o=— i b == il .Elemannm
RN R RS B o S O AR mpson [GST)
UeT, le A,
7 . z . ._ \ T —[
T on —= A, Wltll;Rl._ ‘ ‘ ‘
N S K@)
ribbon K € 77 z(K) e RC A, l

Faster is better, leaner is meaner!

a certain class of 2D knotted objects in R*
[BND, BN].

Fact. I is the “O-loop” part of an inva-
riant that generalizes to “n-loops” (1D tangles
only, see further talks and future publications
with van der Veen).

Speculation. Stepping stones to categorifica-
tion?

M. Polyak & T. Ohtsuki
@ Heian Shrine, Kyoto

Ask me about geography vs. identity!

[BN] D. Bar-Natan, Balloons and Hoops and their Universal References.

The Gold Standard is set by the “I'-calculus” Alexan-
der formulas [BNS, BN]. An S-component tangle 7 has

{%%} with Rs = Z({T,: a € S)):

[(T) € Rs X Msxs(Rs) =

wla)z‘Sl S2

TiUuT, > S Ay 0

AP 0 A

(U-Pw| ¢ ] 569 \

- c 7+l"TB €+ 15
T, Ty > T, S ¢+1Q_‘/’ = %

[For long knots, w is Alexander, and that’s the fastest
lAlexander algorithm I know!  Dunfield: 1000-crossing fast.

Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, o-
eB/KBH, arXiv:1308.1721.

[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Ob-
jects I: w-Knots and the Alexander Polynomial, Alg. and Geom. Top. 16-2
(2016) 1063—-1133, arXiv:1405.1956, weB/WKOI.

[BNS] D.Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products,
and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10
(2013), arXiv:1302.5689.

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and

Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures,

Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.

[Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of To-

ronto Ph.D. thesis, wef3/Vo.

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org rir.rm= i

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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Proof of the Tangle Characterization of Ribbon Knots

o M e il s 1‘%/"5424
B ST, o e g TEECERRE, i o R i Al
o I S B e % SRR n=

Theorem. A knot K is ribbon iff there exists a tangle T whose 7 closure is the untangle and whose
K closure is K.

Proof. The backward < implication is easy:
Y T snpradtep

:::E:dﬂ"'\*
] B || LSO i

\f

For the forward implication, follow the following 5 steps:

jmnge

Step I: In-situ cosmetics. ,
At end: D is a tree of chord-and-arc polygons. 3

Sioe

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides. 3
At end: D is a linear-band-sum of n unknotted disks.

25 0=y
Step 4: Exposure!

The green domain is contractible - so it can be shrank,
moved at will (with the blue membrane following along),
and expanded back again.

At end: D has (n-1) exposed bridges which when turned,
make D a union of n unknotted disks.

Step 5: Pulling bottom handles
avoiding the obstacles.
At end: Theorem is proven.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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Dror Bar-Natan: Talks: UCLA-191101:

Everything around s/, is DoPeGDO. So what?

Thanks for inviting me to UCLA! [u]

[w] Continues Rozansky [Rol,
Ro2, Ro3] and Overbay [Ov],
joint with van der Veen [BV].

wef:=http://drorbn.net/l1al9/
More at wef3/talks

And what sI5, means:
simple Lie algebra s/;.

a solvable approximation of the semi-

Abstract. I’ll explain what “everything around” means: classical | Knot theorists should rejoice because all this leads to very po-
and quantum m, A, S, tr, R, C, and 6, as well as P, ®, J, D, | werful and well-behaved poly-time-computable knot invariants.
land more, and all of their compositions. What DoPeGDO means: |
the category of Docile Perturbed Gaussian Differential Operators. | ground for testing complicated equations and theories.

Quantum algebraists should rejoice because it’s a realistic play-

Conventions. 1.

Ga =1z = Giea ™

For a set A, let zy
2. Everything converges!

{zi}ica and let

[b,y] = —ey, la,b] = 0, [a,y] = -y, [b,x] = ex, and [x,y] =
ea + b. So t := ea — b is central and if !, sls /<ty = sbp.
U is either CU U(sIE )R] or QU Un(sls,)

—y, [b,x] = ex, and xy — gyx = (1 — AB)/h, where g =
A =ce" and B=e". SetalsoT = A™'B = ¢™.
[The Quantum Leap. Also decree that in QU,

A(y,b,a,x) = (y1 + B1y2, by + by, a1 + az, x1 + A1x2),

wep/oa A

Ay, b, a, x)[h] with [a, x] = x, [b,y] = —€y, [a,b] = 0, [a,y] =

& [ | | Less Abstract DoPeGDO := The category with objects finite
+\4’ ™ sets™? and mor(A — B):

& ) Z) {F = wexp(Q + P)} € Qllda zp €ll
m:U®U—-U A:U—-U®U S:U—-U Where: o w is a scalar.™ e Q is a “small” e-free
(9 (camme.) A 4D Metrized Lie Algebras quadratic in 4 U z3.™ e P is a “docile perturba-

e AR \/ /\ tion”: P = Y5, €P®, where deg P® < 2k+2.7
R e o cap Z?;‘éﬁtr’;: e Compositions:®
tr: U—U/wx=xw KRGQU@ QUJ > C*eQU g FIG = GF = (g |.4'*5zi7j)z,.:o: (T|Zf—>ﬁzig)g[:o'
(. f N\ ( carans o, Cool! (V*)®= ® V®5 explodes; the ranks of qua-
the dratics and bounded-degree polynomials grow
Hz?duzlélr?tf?r’ ) ) slowly!™”  Representation theory is over-rated!
~ DeCU® \Jec UeC UJ llt%egrzis:(i?;(iplh [I)C Cool! How often do you see a computational to-
olbox so successful?
Our Algebras. Let slS, = L(y,b,a,x) subject to [a,x] = x, Compositions (1). Inmor(4— B), 0= ZEué“,Zﬁ ZFlfcz[/+ ZGUZ Zj

i€A,jeB

A /J@ [

e Relations with prior art.
e The rest of the “compositions” story.

S(.b,a,x) = (~B'y,~b,~a,~A""x), Where o E < (1~ FaG1 ) IIEZ‘T
bnd R = X 15k bT @ alxk/ 1Tk, . oo F=hir B = GiFy) E,
o G =G+ E2G1(1 - F,G) ' E>.
Mid-Talk Debts. ¢ What is this good for in quantum algebra? |g°7, = , Lws det(I — F2Gy)™ L.
e In knot theory? ‘ . . " e P is computed using “connected Feyn-
e How does the “inclusion” D: Hom(U®™* — U®") ~ inan diagrams” or as the solution of a messy
DoPeGDO work? PDE (yet we’re still in algebra!).
® Proofs that everything around s/ really is DoPeGDO.

IDoPeGDO Footnotes. {1. Each variable has a “weight”e {0, 1,2}, and
always wtz; + wt; = 2.
2. Really, “weight-graded finite sets” A = Ag LU A LI A;.

Melvin,
Morton,

Theorem ([BG], conjectured [MM],
elucidated [Rol]). Let J,K) be
the coloured Jones polynomial of K,
representation of sl,. Writing
(q'2 = g7 Ja(K)
g2 — gdi2

Rl

= > a(Kdin",

Jj,m=0

g=et
“below diagonal” coeflicients vanish, a;,(K) =
0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:
Yo amm(KY™) - w(K)(eM) = 1.

“Above diagonal” we have Rozan%ky’% Theorem [Ro3, (1.2)]:

' -q [ Z(q—l)"pkao(qd))
(@ — e Hw(K)(g?) W (K)(g%)

Ja(K)(q) =

Garoufalidis|
in the d-dimensional

3. Really, a power series in the weight-0 variables .

4. The weight of Q must be 2, so it decomposes as Q = Oz + Qj1. The
coefficients of Q¢ are rational numbers while the coefficients of Qy;
may be weight-0 power series™.

. Setting wte = -2, the weight of P is < 2 (so the powers of the
weight-0 variables are not constrained™).

. There’s also an obvious product

mor(A; — Bj) X mor(A; — B;) = mor(A; LI A, — B; U By).

. That is, if the weight-0 variables are ignored. Otherwise more care
is needed yet the conclusion remains.

. Hom(U®* — U®) ~> mor({n;, Bi, 7., Eties. = {¥i bis 11,04, Xilies ),
where wt(n;, &, yi, x;) = 1 and wt(B;, 7..a;; bi, 11, a;) = (2,2,0;0,0,2).

. For tangle invariants the wt-O power series are always rational fu-
nctions in the exponentials of the wt-0 variables (for knots: just one
variable), with degrees bounded linearly by the crossing number.

=

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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Dror Bar-Natan: Talks: Ohio-1901:

Computation without Representation

Thanks for inviting me to Ohio!
wef:=http://drorbn.net/o19/ [mjrgk

=]

[=

Follows Rozansky [Rol, Ro2, Ro3] and
Overbay [Ov], joint with van der Veen.
More at [BV] and at wef/talks.

IAbstract. A major part of “quantum topology” is the defini-
tion and computation of various knot invariants by carrying out
computations in quantum groups. Traditionally these computa-
tions are carried out “in a representation”, but this is very slow:
one has to use tensor powers of these representations, and the
dimensions of powers grow exponentially fast.

n my talk, I will describe a direct method for carrying out such
computations without having to choose a representation and ex-
plain why in many ways the results are better and faster. The two
key points we use are a technique for composing infinite-order
“perturbed Gaussian” differential operators, and the little-known
fact that every semi-simple Lie algebra can be approximated by
solvable Lie algebras, where computations are easier.

The (fake) moduli of Lie alge-
bras on V, a quadratic variety in
(V*)®2®V is on the right. We ca-
re about s/t = sI¢, /(€' = 0).
Solvable Approximation. In gl,, half is enough! Indeed g/, ®
a, = DN, b, 0):

b(N)=b: NN — N

i ] b.5 b))~ §: N - NN
Now define gl := Z)(ﬂ b, €0). Schematlcally, thisis [\, N] =

[N, N] = b, and [N, D] = N\ + eN. The same process works for
all semi-simple Lie algebras, and at €*! = 0 always yields a
solvable Lie algebra.

~>

KiW 43 Abstract (wef/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot

invariant we know. (experimental analysis @ wef/kiw)

CU and QU. Starting from sl,, get CU, = (y,a,x,t)/([t,—] =
0, [a,y] = =y, la,x] = x, [x,y] = 2ea — t). Quantize using

standard tools (I'm sorry) and get QU. = (y,a,x,t)/([t,—] =

Knotted Candies wsB/kc

f i[‘ordering monomials” to some fixed y, x,

, la,y] = =y, [a,x] = x, xy — ehfyx = (1 — Te 2 /).

BW Bases. The U’s we care about always have “Poincaré-
irkhoff-Witt” bases; there is some finite set B = {y,x,...} of
“generators” and isomorphisms Oy, : S(B) — U defined by
.. order. The quantum
roup portfolio now becomes a “symmetric algebra” portfolio, or
a “power series” portfolio.

Operations are Objects. F € Homg(S(B) = S (B)

The Dogma. Use representation theory. In
\ C principle finite, but slow.

:q,‘rF m = x B* :={z; =i zi € B}, I
1 m  en\ __ |
(%L %’% e = Omnt S(BY @S (B))
C_ 3 The Yang-Baxter Technique. Given an al— <1_[ A l_[ g > = 1_[ ;i I
bi, Ji gebra U (typically U(g) or U,(a)) and ele- fin general, for f € S(z;) and g € S(£)), S(B)®S(B')
ments (f.8) = f@r)g],_, = 8@.)f] !
\ _ ol=0 @ =0 S(B*UB
b 4 R= Zai ®bieU®U and CeU, e Composltlon Law. If ( I )
_ 2 ~
\ form Z = Z Caibjakc biajbkc. S(B) S(Bl) 8 S(BH) f IS Q[é‘i’ Z:]
i,j.k feQlgizl geQllZy.z 1
b/{ 9k Problem. Extract information from Z.

then (%)=(§?J/”)=(§|g;_>az} f) » (flz 0, )

A Knot Theory Portfolio. L]“anglmds and Operations

C#!
Has operations LI, mk, Al | stitching ~\ cuap
1]
| mk
doubling
Al

S

Jjk’
All tangloids are generated by

AN

y

A\

R*! and C*! (so “easy” to pro-
i ~ +1
crossing Ry cuap C;

°
strand

o

Makes some knot properties
(“genus”, “ribbon”) become
“definable”.

reversal S;

1. The 1-variable identity map I: S(z) — S(z) is Examples
given by I} = @ and the n-variable one by [, = @351+ +aén:
2. The arche&bél mﬁrlrﬁphcatlorﬁ 777777 S(Z,, zj) — Sz)”

has m — ezk(é’l"’{j).

duce invariants).
A “Quantum Group” Portfolio consists of a vector space U

along with maps m

(and some axioms...)

3. The “archetypal coproduct A;k: S(zi) — S(zj,z)”, given by

Zi—>zj+zorAz=z®1 +1®z has A = @@t

U—-® AL i
Q= 0 el LA [k L= e 4. R-matrices tend to have terms of the form eZ’ e U, @ U,.
T The “baby R-matrix” is R = &* € S(y, x).
b X i OX Ve X oee 13 . : . 2"
]QO [@)""" A T Sk ](@0 5. The “Weyl form of the canonical commutation relations” sta-
i : ) - .
A A SN R A tes that if [y,x] = #I then e®*e® = ePef e’ So with
NO) S(B) S(Bj. B)~——3(0) b, ] N
Jk Our Way. For certain algebras, — _
m! work in a homomorphic poly- CS(y X) "Ll(y x) we have SW = pWHéxnét
U—-- Si dimensional “space of formulas”. @w

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ohio-1901
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Do Not Turn Over

Until Instructed [=]:¢ [=]

Dror Bar-Natan: Talks: MAASeaway-1810:
My Favourite First-Year Analysis Theorem

Thanks for inviting me to the fall 2018 MAA Seaway Section meeting!

[=]

Handout, video, links at wef:=http://drorbn.net/maal8/

\Abstract. Whatever it may be, it should say something useful
and exciting and it should not be *about* rigour, yet it should
*demand* rigour. You can’t guess. You probably think it the
dreariest. You are wrong.

14 The Fundamental Theorem of Calculus.

If f is integrable on [a, b] and f = g’ for some function g, then

Several excerpts here are from

Contents ®

Spivak’s “Calculus” ®. I believe
Prologue they fall under “fair use”.
1 Basic Properties of Numbers 3
2 Numbers of Various Sorts 21 CALGTLILT f'|i.11
Foundations P T R T T R b Y S
3 Functions 39 e | B AR TR
4  Graphs 56 ’
5 Limits 90 5
6 Continuous Functions 113 e
7 Three Hard Theorems 120
8 Least Upper Bounds 142
Derivatives and Integrals
9 Derivatives 147
10 Differentiation 166
11 Significance of the Derivative 185
12 Inverse Functions 227
13 Integrals 250
14 The Fundamental Theorem of Calculus 282
15 The Trigonometric Functions 300
%16 o is Irrational 321 _—ﬁ
«17 Planetary Motion 327
18 The Logarithm and Exponential Functions 336
19 Integration in Elementary Terms 359
Infinite Sequences and Infinite Series
20 Approximation by Polynomial Functions 405

b
f =g —g@.
® J
Tweets  Tweets & replies *16 mis Irrational.
Oror Bar-Matan droberizan - 2ope 2000
Al el et Dt adnl ol = e = [0 a s fasea | Repeae:
regRab oo parts & =T k) <0 Vo E Eaon s ekl

= H o
[} i
1 " "

20 Approximation by Polynomial Functions.

Suppose that f is a function for which : For example for f(x) = sin(x)

for every ¢ > 0 there is § > 0 such that, for all x,
if 0 <|x—al <3$,then |f(x)— f(a)| <e.

If f and g are continuous at a, then

®

(1) f + g is continuous at a,
(2) f-gis continuous at a.

6 Continuous Functions]

f@,.... f®@ rata =0, f® =sin, cos, — sin,
. I .
pll exist. Let - | —COs, sin, ..., SO
a = @ O<k<n I (=1)*k-D/2
ko i I — k odd
and define : ag = ’
P.a(x) = ao +a1(x — @) + - + an(x — a)". 0 k even
Then I
. fx) = Pralx) !
lim ————>2""~ = (. |
x—a (x —a)" @ i
7
iil= ak =={ A e
[} EvenQ[r]
Plot [Evaluate@Append [
Table[Labeled [Za‘ X<, n] > {n, {1, 3,5, 7)}]:
k=@
Labeled[Sin[x], Sin]
], (x, -27, 27}, PlotRange - {-1.5, 1.5)]
5
.
t[2)= Sin

[f f is continuous on [a, b] and f(a) < 0 < f(b), then there 1s some x in [a, b]
such that f(x) =0. ®

2

7 Three Hard Theorems.

H o= ColumneTable[k - N[a 157*], {k, {@, 3,9, 13, 29, 35, 157, 223, 457} } ]

Q0.

3 -644982.

9 »1.59711x 18
13 - 5.65477 x 10'®

Some sizes (in multiples of the diameter of
a Hydrogen atom:

1<€Q | 1743 Vs

f increasing | f decreasing ‘|‘ f increasing
| — P
I

[?o X<~z

/

11 Significance of the Derivative. ouga 29 > 5.42689 x 102 A red blood cell 1.56 % 1?2
N 35 . 6.95433 x 10% The CN Tower 1.11 x 10

q=X"-x 157 > 4.86366 x 1055 The rings of Saturn 5.6 x 10"
/ I‘L 223 -5 -1.94045 x 195! The Mllky Way galaxy 1.89 x 1031
Y'=3 =l ! 457 - 4.87404x 10 16 The observable universe | 1.76 x 10%7

= (ﬁx*’l)(ﬁx—l) - % J; 457 457 ‘”1'

- ; 0 ' )= {N[Zak 157“] s Y IN[a 157*]} e
>0 X>\7/3° | | ke kee
- ‘i; e i ! bu | -0.0795485, 5.10624 x 10°°)
R CXC I '

)= N@Sin[157]

ouis= ~@.8795485

Do Not Turn Over Until Instructed

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
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e What’s “solvable approximation”? What’s “continuously”?
e What are “docile perturbed Gaussians™?

Faster is better, leaner is meaner!

Dror Bar-Natan: Talks: Matemale-1804: See also [BV] With Roland van der Veen E E Al %D .,_.' ' SEP

Solvable Approximations of the Quantum s/, Portfolio | weB:=http://drorbn.net/mm18/ [a]\ =S g{g%
(Our Main Theorem (loosely stated). Everything that matters in| - M ‘ . i Gompt. Schar-
the quantum s/, portfolio can be continuously expressed in terms | 1| ' i T i K L mpson [GST]
of docile perturbed Gaussians using solvable approximations. O UeT, 1 €A, '
Our Main Points. . I LR KJ—\ | ﬂ

s 3 e wit = b L
e What’s the “quantum s/, portfolio”? Ton S —= A, L K1) N
e What in it “matters” and why? (the most important question) ribbon K € 77 2(K) € R C A, { |
! [

e Why do they matter?
e How proven? (docile)

(2" most important)
e How implemented? (sacred; the work of unsung heroes)
e Some context and background.

e What’s next?

The quantum s/, Portfolio ®uml NS0 ®umil NS 10
includes a classical universal m
enveloping algebra CU, its

AD,SD
quantization QU, their tensor K. S € {QU®S} —— {CU®%}

powers CU® and QU®5 with the “tensor operations” ®, their
products m;(j , coproducts Al‘k and antipodes S;, their Cartan auto-

IPBW basis, and change of basis maps are included.

&

§i | formulas [BNS, BN1].
w
I(T) € Rg X Mgxs(Rs) = {

b
B
5

» The Gold Standard is set by the “I'-calculus” Alexander
An S-component tangle 7" has

s } with Rs == Z({t.: a € S}):

S A

wlwz\Sl S2
T\uT, — S ‘Al 0

mab ( (1

c

e
ty, tp — 1,

(Roland: “add to A the product of column b and row a, divide by (1 — Au),
mophisms C6: CU — CU and 0 : U — U, the “dequanti— elete col r )
P

zators” AD: QU — CU and SD: QU — CU, and most impor- [FOr long knots, w is Alexander, and that’s the fastest
tantly, the R-matrix R and the Drinfel’d element s. All this in any {Alexander algorithm I know!

Dunfield: 1000-crossing fast.

So 0 A
—,B)w‘ c S
ad 06
c y+§f E+I«Z5J
S ¢+q L+q

(v-)T: les.
T [y B = o
b -

(meta-associativity:
— | mab
" L b
g 3 “stitching”

me e = mle sy
(tangles are generated
by > and X)

wla S w | b c S

a o o b | (0a—aTa—vTo/u  (Tp—DTovju Ty — DT0/u

sle 2 Fra | < Te=Vyvju  (@=0Tq~vTd/p  (Te=D/u

= T Tyte S p % =

dS“JvT‘,—>TU"

aw/o, ‘ a S Where o assigns to every a € S a Laurent mono-
a 1/a 0/a ] mial o, in {f}pes subject to o—(a‘/Zb,bZ\'a) = (a —
N —pla (@E-¢O)/a ) 1,b — 1), o(T) U Ty) = o(Ty) U o(T2), and

ofm® = (o \ {a. b)) U (¢ = 0a0 )l 1y

doubling: ¢ _ reversal:

lStrand a Az b Strand a Sa « |Vo’s Thesis [Vol. A proof of the Fox-Milnor theorem for =
= ribbon knots using this technology (and more).

Genus. Every knot is the boundary of an orie- s :
ntable “Seifert Surface” (wef/SS), and the least y 'ﬁ
of their genera is the “genus” of the knot. 2o i
Claim. The knots of genus < 2 are precisely the g
images of 4-component tangles via ] *

L S R B

(w, A =

Z a’abtahb)

i
B@lmplementation key idea: o 813 { 51?751?65@9
(W, A = (aw)) & ‘r "_'f'rl_ R PO,

[T PP S P L PO R R R | |

L ..-‘.'==|il--.I!

o - (GEREERL

l \/ X . example [BN2]

la ribbon singularity  a clasp singularity

presented as the boundary of a disk that has “ribbon singularities”,
but no “clasp singularities”. A “slice knot” is a knot in S = 9B*
which is the boundary of a non-singular disk in B*. Every ribbon
knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon. ]
IFox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(¢) = f(t)f(1/1). (also for slice)

- “God created the knots, all else in ?i“' “"_"’
topology is the work of mortals.” ‘;}5_“ =i

Leopold Kronecker (modified) www.katlas.org :.- Wr 1My

Ll (LR S U ST TR | M I

. . o vy - (et Hil 3
A Bit about Ribbon Knots. A “ribbon knot™ is a knot that can be [~ e # ¢ Tades &4 Myzaz £ M3gaa.

Apyy Bz Bmay JA ooy F Rz S maat

L3 ]

TR N R = | .-||

Meta-Associativity POl Ty Wiy ) Runs,
&= I."[n:“. 1B, Ta, Enl Bl

R3

g ey B |

W31 <faz WKz ®Ho
TR O ¢

... divide and conquer!

Iy g

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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Dror Bar-Natan: Talks: LesDiablerets-1708: Follows Rozansky [Rol, Ro2, Ro3] and Overbay [Ov],

Happy Birthday Anton! EEHE' [=

: joint with van der Veen. Preliminary writeup [BV1],
The Dogma is Wrong fuller writeup [BV2]. More at we/talks, wep:=http://drorbn.net/1d17/
|Abstract. It has long been known that there are knot invariants Theorem [BNG] conjectured [MM], e- Melvin,
g J Morton

associated to semi-simple Lie algebras, and there has long been [lucidated [Rol]). Let J4(K) be the co- ; Garoufalidis
a dogma as for how to extract them: “quantize and use repre- loured Jones polynomial of K, in the d-dimensional representa-
sentation theory”. We present an alternative and better procedu- tion of sl,. Writing

re: “centrally extend, approximate by solvable, and learn how to q'"? = g V) J4(K)
re-order exponentials in a universal enveloping algebra”. While g2 — gar
equivalent to the old invariants via a complicated process, our i-
mvariants are in practice stronger, faster to compute (poly-time vs.
exp-time), and clearly carry topological information.

KiW 43 Abstract (wefi/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot
invariant we know.

= Z am(K)d’R",
g=e"  jm>0
“below diagonal” coefficients vanish, a;,(K) =
0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:
(S0 @mm(KOR™) - w(K)(e") = 1.
“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

d _ _ 1) d
Experimental Analysis (wef3/Exp). Log-log plots of computation | J,(K)(g) = q - v ( Z (4 ;]z P k(Kj (") .
time (sec) vs. crossing number, for all knots with up to 12 cros- (G-q )“’(K)(q ) w(K)(g)
sings (mean times) and for all torus knots with up to 48 crossings: c _C_ The Yang-Baxter Technique. Given an alge-
o L e, \b,-‘ a;i ” bra U (typically U(g) or U, ,(9)) and elements
o - \ R=> a®hecUsU and Cel,

100

by aj form

) -7 '“:3‘. J Z = Z Ca[bjakczbiajbkC.
, 10 L \ ik

. . P —— - - = Problem. Extract information from Z.
IPower. On the 250 knots with at most 10 crossings, the pair \ The Dogma. Use representation theory. In
(w, p1) attains 250 distinct values, while (Khovanov, HOMFLY- c C  principle finite, but slow.
IPT) attains only 249 distinct values. To 11 crossings the numbers [The Loyal Opposition. For certain algebras, work in a homomor-
are (802, 788, 772) and to 12 they are (2978, 2883, 2786). phic poly-dimensional s
Genus. Up to 12 xings, always p; is symmetric under ¢ < ¢!, [‘space of formulas”. m <> (Fs) ———={U) @m
With p} denoting the positive-degree part of p;, always deg p| < [The (fake) moduli of Lie alge-
2g — 1, where g is the 3-genus of K (equality for 2530 knots). bras on V, a quadratic variety in
This gives a lower bound on g in terms of p; (conjectural, but (V*)®2®V is on the right. We ca-
undoubtedly true). This bound is often weaker than the Alexander re about slk = sl / (1 = 0).
bound, yet for 10 of the 12-xing Alexander failurES_ blé do%s gitve Recompoglng gl,. Half is enough! gl, ® a, = D(N, b, 6):

: ibbon Knots -
the right answer. o i B = b: o< - <

X . example [BN] ~ ?ﬁ EBLL;T ~ pass b))~ 6: N - NN

1 b,6 1
a ribbon smgularlty a clasp singularity

Now define gl := D(N, b, €6). Schematically, thisis [N, N] = N
[N,N] = el and [N,\] =\ + e\. In detail, it is

\ \ \ f\ l Gompf, Schar- i J
L Sl L AT lemann, Tho- Xii X 26')(‘ _6.x . .. :6—6. . _66' |
i i i i S i i Eﬂn fomann,_Th [xij» Xl =6 juxis — Oixij  [yij» Yl = €6 iyl 1iYk;j

. il SNl x| DX Ykl =0 u(€6 jarxin + 6i(bi + €ai)[2 + Si>ryin)
UeTn € Ay —0i(€0k<jxyj + Ok j(bj + €a;)[2 + Ois jyij)

T T 7 .. . N N
T s Ao, ~ ‘ m ] T N s xje] = (61 = 6 [Di, xji] = €(6i — Sir) X ju
PN PN ( [ai, y ] =(0i; — i)y jk [bi,yjul=€(6ij — Sy jx

ribbon K € 77 z(K) e RC A, [The Main sl, Theorem. Let g¢ = {t,y,a,x)/([t,-] = 0, [a,x] =
[Vol: Works E with R := K(T‘l(l)) x, [a,y] = —y, [x,y] = 1—2€a) and let g; = g/(e*! = 0). The g¢-
ffor Alexander! AT =8 420 — 10 - 21" + 5t3 -2 =7t + 13 finvariant of any S -component tangle K can be written in the form

+ 15 _ 14 13 _ 12 11 10 _ 9 _ 48 7 _ 6 . .
ol = 5t‘ 181" + 33t . 326 + 2t + 42t 642t 8t 3+ 1661 , 2421+ 7(K) = O (w(BL+Q+P: ® " yiaixi) , where w is a scalar (a ratio-

Faster is better, leaner is meaner! 1087 + 132¢* — 226¢° + 148> — 11— 36 . . s . .

nal function in the variables #; and their exponentials 7; =

where L = ) [;;tia; is a quadratic in #; and a; with integer coef-
s X 0 3 ficients /;;, where Q = 3’ g;;y;x; is a quadratic in the variables y;
0 (a1y102€y3x3 | x3a; ® y1y3a2) =xa ®@ye'a€ U ®U) @and x; with scalar coefficients ¢;;, and where P is a polynomial in
(€, vi, a;, x;} (with scalar coefficients) whose €?-term is of degree
at most 2d + 2 in {y;, +/a;, x;}. Furthermore, after setting #; = r and
T; = T for all i, the invariant Z(K) is poly-time computable.

Ordering Symbols. O (poly | specs) plants the variables of poly in
S(@;g) on several tensor copies of U(g) according to specs. E.g.,

This enables the description of elements of T/(q)®® using com-
mutative polynomials / power series.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1708/
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Dror Bar-Natan: Talks: McGill-1702: Joint with Roland van der

What else can you do with solvable approximation

Veen

s?

wef:=http://drorbn.net/McGill-1702/
Thanks for the invitation! [m]J3

|

|Abstract. Recently, Roland van der Veen and myself found that
there are sequences of solvable Lie algebras “converging” to any
given semi-simple Lie algebra (such as sl, or sl3 or ES). Certain
computations are much easier in solvable Lie algebras; in particu-
lar, using solvable approximations we can compute in polynomial
time certain projections (originally discussed by Rozansky) of the
knot invariants arising from the Chern-Simons-Witten topologi-
cal quantum field theory. This provides us with the first strong
knot invariants that are computable for truly large knots.

But s/, and s/3 and similar algebras occur in physics (and in
mathematics) in many other places, beyond the Chern-Simons-
Witten theory. Do solvable approximations have further applica-
tions?

Chern-Simons-Witten. Given a knot y(¢) in
[R? and a metrized Lie algebra g, set Z(y) :=

Recomposing gl,,. Half is enough! g, ® a, = D(N, b, 9):

[ b() =b: V@Y - N
b(N) ~ 6: N - NN

Cxa

i
b,6
Now define glf, := D(N, b, €6). Schematically, thisis [N, N] = N,
[N, D] = e, and [N,N] = N\ + €\. In detail, it is

~> ~>

: / leij, ex] =0 jrei — duiex;  Lfij» frul = €0 jufiu — €61 fij
i| N ey | L€ Jul =6 (€6 jaken + Su(hi + €81)/2 + 6i>1 fin)
) —0ji(€dk<jexj + Ok j(h; + €87)/2 + O jifi))
I N[ g enl =@~ dwe el =e(6i; — e

Lgi> fir]=(6ij — i) fix [hi, fix]=€(6ij — 6i) fix

f DA (Bik CS(A)PExpy(A), Ril
AQ!(R3,9)
where cs(A) = & [, tr(AdA + 24%) and 'St \
1
PExp,(A) = [_[ exp(y*A) € U = U(g), R*!
0 Cil Cil
and U(g) = (words in g)/(xy — yx = [x,y]). \/
n a favourable gauge, one may hope that this ¢
computation will localize near the crossings C . c
and the bends, and all will depend on just two bi i
quantities, /\
R:Zait@bieﬂ@ﬂ and CeU. b aj
This was never done formally, yet R and C
can be “guessed” and all “quantum knot inva- I \
riants” arise in this way. So for the trefoil, Ko
7= CabjarChiabC. <
Z JCk J%k c \ c

i,j.k

But Z lives in U, a complicated space. How do you extract infor-
mation out of it?

Solution 1, Representation Theory. Choose a finite dimensional
representation p of g in some vector space V. By luck and the

Solvable Approximation. At € = 1 and modulo & = g, the above
is just gl,. By rescaling at € # 0, gl is independent of €. We
let glX be gl¢ regarded as an algebra over Q[e]/€*! = 0. It is the
“k-smidgen solvable approximation” of gl,,!

Recall that g is “solvable” if iterated commutators in it ultimately
vanish: g, = [g, a], 93 == [92,82], ..., 94 = 0. Equivalently, if it
is a subalgebra of some large-size N algebra.

INote. This whole process makes sense for arbitrary semi-simple
LLie algebras.

wisdom of Drinfel’d and Jimbo, p(R) € V@ V*® V® V and
p(C) € V* ® V are computable, so Z is computable too. But in

exponential time! j

mon- L

Solution 2, Solvable Approximation. Work directly in T/(g;), w-

Gompf, Schar-
lemann, Tho-
mpson

Why are “solvable algebras” any good? Contrary to common
beliefs, computations in semi-simple Lie algebras are just awful:

here g slg (or a similar algebra); everything is expressible
using low-degree polynomials in a small number of variables, h-
ence everything is poly-time computable!

Hi‘rilFl'l[l * 5| S8 Fullbimplify ;¢ AstrixFemn Enter
o B [

'Yet in solvable algebras, exponentiation is fine and even BCH,
z = log(e*e”), is bearable:

. 1 1 el !
H.rlrilF:.p[l ; h |] £ & MatrizFom | a* a-r
: i 4] s
' .y .
Hd‘lrilF:.pl.lI:; l::::.l-."lull-ilFx[l I.T: E:: iy
Matrivlag ;¢ PewerExpand ;¢ Sinplify /0
MatrawFnarm

Example 0. Take gp = slg = Q(h,e,l, f), with h central and
[f.1] = f.le, 1] = —e, [e, f] = h. In it, using normal orderings,

h—1
® ef)|€®lf)’ and,
@(eﬁe.f |fe) =0 (V®V6ef.| €f) withv = (1 + h6)_1‘

R= @(exp (hl +

[Example 1. Take R = Qlel/(e? = 0) and g; = slé = R{h,e,l, f),
with A central and [f,I] = f, [e,l] = —e, [e, f] = h — 2€l. In it,

2 =2 =

Question. What else can you do with solvable approximation?
Chern-Simons-Witten theory is often “solved” using ideas from
conformal field theory and using quantization of various moduli
spaces. Does it make sense to use solvable approximation there
too? Elsewhere in physics? Elsewhere in mathematics?

See Also. Talks at George Washington University [wep/gwu],
[ndiana [wef/ind], and Les Diablerets [wef/1d], and a University
of Toronto “Algebraic Knot Theory” class [wef/akt].

0(e™ | fe) = O (v(1 + evoA/2)e™ | elf), where A is

135262 2+ 3V he? f2 + 8V2e f + 4262 he f +4vSelf —2vSh +4l.
IFact. Setting h; = h (for all i) and ¢ = e”, the g, invariant of any
tangle 7 can be written in the form

Z,(T)=0 (w-le”LW‘Q(l +ew™P) | X eil; f)

where L is linear, Q quadratic, and P quartic in the {e;, ;, f;} with
w and all coefficients polynomials in z. Furthermore, everything
is poly-time computable.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/
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