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Poly-Time Knot Theory and Quantum Algebra Discovery Grant Proposal

Recently, Roland van der Veen and myself, follow-
ing Lev Rozansky and Andrea Overbay [Ro1, Ro2, Ro3,
Ov], presented a methodology [BV2] for the construc-
tion of poly-time computable knot polynomials and con-
structed [BV1] the first poly-time computable knot poly-
nomial since the Alexander polynomial of 1928 [Al].

Why is it exciting, even before the details? Here
and there mathematics has immense philosophical value
or beauty to justify the effort. Yet everyday mathemat-
ics is mostly about, or should be about, “doing useful
things”. Deciding if A has property B, counting how
many C’s satisfy D, computing E. When A and B and
C and D and E are small, we do the computations on
the back of an envelope and publish them as “Example
3.14” in some paper. But these are merely the demos,
and sooner or later we worry (or ought to worry) about
bigger inputs. I’m more aware then most mathemati-
cians (though perhaps less than many computer scien-
tists), how much the complexity of obtaining the solution
as a function of the size of the inputs matters. Hence I
firmly believe that incomputable mathematics is intrin-
sically less valuable than computable mathematics (al-
lowing some exceptions for philosophical value and/or
beauty), and that within computable mathematics, what
can be computed in linear time is generally more valu-
able than what can be computed in polynomial (poly-)
time, which in itself is more valuable than what can be
computed in exponential (exp-) time, which in itself is
more valuable than what can be computed just in theory.

With the exception of the Alexander polynomial,
which has been thoroughly mined1, and with the excep-
tion of the first few finite-type invariants [BN1, BN2],
which are rather weak, until recently [BN8] all known
knot invariants were harder-than-poly-time to compute2.
So clearly, what we have in [BV1, BV2] — a rather
strong poly-time-computable knot polynomial3 and a
methodology for further such — is a priori exciting.

Furthermore, our invariants extend to tangles, and
are well-behaved under the basic tangle-theoretic oper-
ations of “strand stitching” and “strand doubling”, and
hence they carry topological information: a bound on
the genus of a knot [BN9], and what may be the best
chance we have of showing that certain slice knots are not

ribbon [BN11], hence resolving (negatively) the long-
standing “slice=ribbon” conjecture [FM].

Finally, merely our suggestion (starting [BN7]) that
some poly-time knot polynomials beyond the Alexander
polynomial ought to exist is already generating both in-
terest [Fi] and competition [Pr] (both authors do not cite
us explicitly, but were present in our talks [BN12, BN10]
and were clearly influenced).

Our methodology. Since already the 1980s, there
is a standard “quantum algebra” methodology that asso-
ciates a framed knot invariant to certain triples (U,R,C),
where U is a unital algebra and R ∈ U ⊗ U and C ∈ U
are invertible (see e.g. [Oh]). Let us briefly recall the
standard methodology here.
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Draw a given (framed,
oriented) knot K as a long
knot in the plane so that at
each crossing the two cross-
ing strands are oriented up-
ward, and so that the orienta-
tion at two ends of K is up.

Put a copy of R =
∑

ai ⊗

bi on every positive crossing
of K with the “a” side on the
over-strand and the “b” side
on the under-strand, labeling
these a’s and b’s with dis-
tinct indices i, j, k, . . . (sim-
ilarly put copies of R−1 =∑

a′i ⊗ b′i on the negative
crossings; these are absent in our example). Put a copy of
C±1 on every cuap where the tangent to the knot is point-
ing to the right (meaning, a C on every such cup and a
C−1 on every such cap).

Form an expression z(K) in U by multiplying all the
a, b, C letters as they are seen when traveling along K
and then summing over all the indices, as shown.

If R and C satisfy some conditions dictated by the
standard Reidemeister moves of knot theory, especially
the Yang-Baxter Equation (YBE), the resulting z(K) is a
knot invariant.

Abstractly, z(K) is obtained by tensoring together
several copies of R±1 ∈ U⊗2 and C±1 ∈ U to get an in-

1Though newer and better still arises. For example, the techniques of [BNS] lead to the fastest known algorithm for the computation of
the Alexander polynomial.

2Though divide-and-conquer methods reduce the computation time for the Jones and HOMFLY-PT polynomials [Jo, HOMFLY, PT] and
possibly even for Khovanov homology [BN3] to around Cec

√
n where n is the crossing number, and so these invariants can be computed for

surprisingly large knots.
3How strong? As detailed in [BN9], stronger than HOMFLY-PT and Khovanov taken together, at least for knots up to with 12 crossings.

1

http://drorbn.net/d17/
http://www.math.toronto.edu/~drorbn


ωεβBhttp://drorbn.net/d17/ Dror Bar-Natan

termediate result z0 ∈ U⊗S , where S is a finite set with
two elements for each crossing of K and one element for
each right-pointing cuap. We then multiply the different
tensor factors in z0 in an order dictated by K to get an
output in a single copy of U.

The best algebras with which to apply the standard
methodology, at least as of 2017, are certain completions
U(g) of the universal enveloping algebras of semi-simple
Lie algebras g (or their quantizations). But these algebras
are infinite dimensional and the sum in z(K) is infinite
and not immediately computable.

The dogma solution is to pick a finite dimensional
representation of g and use it to represent all the elements
appearing in z(K), effectively replacing the algebra by
the algebra of endomorphisms of some finite dimensional
vector space. This turns the sum finite; yet if the knot K
has n crossings, our sum becomes a sum over n indices
i1, . . . , in. Thus there are exponentially-many summands
to consider and it takes an exponential amount of time to
compute z(K).2,4

Alternatively, one may extract finite-type [BN1] in-
formation out of z(K) by reducing modulo appropriate
filtrations of U and its tensor powers. As already men-
tioned, the results are computable but weak.

Our approach to the computation of z(K) is differ-
ent. Instead of working directly in U⊗S , we work in rel-
atively small5 spaces F (S ) of “closed-form formulas for
elements of U⊗S ”. For this to work, we need to ensure
that the fundamentals R and C would be described by
“closed-form formulas”, and that the most basic opera-
tions necessary for the computation of z, namely multi-
plication of factors in U⊗S , would be implemented “in
closed form” in F (S ).

In practice, the kind of terms that appear within for-
mulas for R and C are exponentials of the form e

ξx,
where x is a generator of U and ξ is a formal scalar vari-
able, their iterated derivatives (∂ξ)k

e
ξx = xk

e
ξx, and ex-

ponentials of quadratics like eλxy or eλx⊗y, with scalar λ
and x, y ∈ U. We then need to multiply several such ex-
ponentials and differentiated exponentials, and we need
to learn how to bring such products into some pre-chosen
“canonical order”. In the standard U ∼ U(g) case, where
g is semi-simple, this is complicated. Yet if g is solvable,
this is often easy. Wouldn’t it be nice if it was possible
to approximate semi-simple Lie algebras with solvable
ones?

In our work we exploit the little-known fact that this
is (nearly) possible. Precisely, given a semisimple g,
there exists a Lie algebra gε defined over the ring Q[ε]
of polynomials in a formal variable ε (in other words, gε

is a “one-parameter family of Lie algebras”), so that

1. If ε is fixed to be some constant not equal to zero,
then gε is isomorphic to g+ B g ⊕ h, which is the
original g with an extra copy of its own (Abelian)
Cartan subalgebra h added.

2. At ε = 0, g0 is solvable. Furthermore, gε is solv-
able in a formal neighborhood of ε = 0: for any
natural number k ≥ 0 the reduction g≤k of gε to the
ring Q[ε]/(εk+1 = 0) is solvable as a Lie algebra
over Q (whose dimension is (k + 1) dim g).

As k gets larger, the solvable g≤k is closer and closer
to gε , as the reduction modulo εk+1 = 0 means less and
less, and so at least informally, g≤k −−−−→

k→∞
g+ ∼ g.

We sketch why gε exists.
Let g be a semisimple Lie algebra and let b+ and b−

be its upper and lower Borel subalgebras, respectively.
Then (b+)∗ is b−, and as the latter has a Lie bracket, it
follows that b+ has a co-bracket δ. In fact, b+ along with
its bracket [·, ·] and co-bracket δ is a “Lie bialgebra”, and
one may recover g+ = g ⊕ h = b− ⊕ b+ as the “Drinfel’d
double” D(b+, [·, ·], δ) of b+ (see e.g. [ES]). The axioms
of a Lie bialgebra are homogeneous in δ, meaning that
(b+, [·, ·], εδ) is again a Lie bialgebra for any scalar ε, and
one may set gε B D(b+, [·, ·], εδ). The required prop-
erties are easy to check. Perhaps the most interesting is
the solvability of g0: indeed g0 = Ib+ B (b+)∗ o b+ with
(b+)∗ regarded as an Abelian Lie algebra and b+ acting
on (b+)∗ using the co-adjoint action, and then the solv-
ability of Ib+ easily follows from the solvability of b+.
We studied the knot-theoretic significance of b∗ o b for
a general Lie algebra b extensively in the context of “w-
knots” in [BND1, BND2, BND3, BN6, BN5] (supported
by our previous NSERC discovery grant), and these stud-
ies along with the observations in this paragraph were in
some sense the starting points for our current study.

A model result. Let us state the g = sl2 version of
our main result; one of our future directions will be to
extend beyond that case. Let k be a natural number.

One may check that the Lie algebra sl≥k
2 is gener-

ated by generators {t, y, a, x} such that t is central and
[a, x] = x, [a, y] = −y, and [x, y] = 2εa − t; here ε is

4Note that almost any time the phrases “braided monoidal category” or “TQFT” are used within low dimensional topology, some tensor
powers of some vector spaces need to be considered at some point, and dimensions grow exponentially. Thus our criticism applies in these
cases too [BN12].

5Ranks grow polynomially in |S |.
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a scalar for which εk+1 = 0. Let U be the universal en-
veloping algebra of sl≤k

2 (completed, details elsewhere),
and likewise let S be the (similarly completed) symmet-
ric algebra of sl≤k

2 . We write “vi” for “v placed in an i’th
tensor factor”, so e.g., y1x2 = y⊗ x is an element of either
U⊗2 or S⊗2, according to context. We let O : S → U
be the “normal ordering map” which plants the non-
commuting generators {y, a, x} in the “y then a then x”
order. For example, for a scalar λ, O(eλxy) =

∑ λ jy j x j

j!

(and not
∑ λ j(yx) j

j! ).
It turns out that there are suitable R and C elements

for U, constructed using the standard quantum algebra
methodology, and hence there is a corresponding knot
invariant z, which easily extends to some general class of
tangles which we do not specify here other than to say
that it includes all knots.

Model Theorem. If K is an n-crossing S -component
tangle (where S is a finite set) then z(K) ∈ U⊗S and

z(K) = O

ω exp

∑
i, j∈S

λi jtia j +
∑
i, j∈S

qi jyix j +

k∑
d=1

Pdε
d


 ,

where λi j ∈ Z, where ω and qi j are rational functions in
Ti B e

ti with numerators and denominators of degrees
bounded by n, and where the Pd’s are “perturbations”
which are polynomials in variables {yi, ai, xi} of degree
at most 4d, with coefficients rational functions in the Ti’s
with numerators and denominators of degrees bounded
by n.6

The formula for z(K) appears complicated, but in
some technical sense, it is in fact simple. Indeed if all
the Ti are identified (setting Ti = T j for all i, j ∈ S ), then
the space F (S ) of all formulas as in the theorem is of
“poly-size” — such a formula is determined by a finite
number of integer coefficients and the number of coeffi-
cients required is a polynomial in n and in |S |.

The fact that F (S ) is poly-size suggests that the op-
erations one needs to perform on F (S ) to compute z(K)
(mostly, multiplication of different tensor factors) would
take poly-time. We show that this is indeed the case, and
hence z(K) is poly-time computable.

What goes in the proof? Some “classical algebra”
PBW-reordering techniques to carry out the required op-
erations on F (S ), some “quantum algebra” techniques to
find R and C in a certain quantization ofU, and a little bit
of extra work to pull R and C from the quantized world to
the classical one, in which our model theorem is written.

In the case where k = 1, this isn’t just “theory” — the

programs are written and are quite short, and the results
are tabulated and are quite strong; see e.g. [BN10, BV1].
For k > 1 we are very near a complete implementation.
It is not much more complicated, and the results should
be more powerful. The generalization to g other than sl2
is in sight, yet will require more work.

Frequently Asked Questions.

• What is the relationship between this proposal and
the work of Rozansky and Overbay? Our invariants
are the Rozansky-Overbay [Ro1, Ro2, Ro3, Ov]
invariants, and in many ways our work is a contin-
uation of theirs, though we believe our techniques
are cleaner and more easily susceptible to gener-
alization. Rozansky and Overbay did not note that
their invariants are computable in polynomial time,
and did not explain how to generalize them to the
case of tangles. The latter generalization allows for
divide-and-conquer computations which lead to a
significant speedup, and is crucial if one attmpts to
relate invariants to topological properties such as
the genus and the ribbon property (e.g. [BN11]).

• What is the relationship between these invariants
and the coloured Jones polynomial? The total-
ity of all sl≤k

2 invariants is most likely equiva-
lent to the coloured Jones polynomial; increment-
ing k by one should correspond to the considera-
tion of one further diagonal in the Melvin-Morton-
Rozansky expansion of the coloured Jones poly-
nomial [MM, BNG]. In some sense, as indicated
already in the “summary” section of this proposal,
we merely find a computable “corner” of a known
and very-difficult-to-compute theory. We believe
computability makes a huge difference! Note also
that there isn’t a good Melvin-Morton-Rozansky
expansion for tangles, and tangles are crucial from
our perspective.

• What is the relationship between this proposal
and the “loop expansion” of the Kontsevich inte-
gral? The “loop expansion” [GR] of the Kontse-
vich integral is an all-Lie-algebra universal version
of the Melvin-Morton-Rozansky expansion, and it
should relate to the invariants we discuss in accor-
dance with that — for any semi-simple g, the g≤k

should be “k-loop invariants”. Yet again, the “loop
expansion” is nearly impossible to compute and its

6The actual degree bounds we have are stronger than indicated here, though a bit harder to state. Stronger degree bounds imply faster
computations.
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generalization to tangles depends on a choice of
a Drinfel’d associator, which is another hard-to-
compute object.

Our proposed research. Much remains to be done, and
I plan to do it over the grant period:

• Our present implementation of the algorithm for
the sl≤1

2 invariant is pathetic; it has the right asymp-
totic behavior, but the constants are all wrong, by
factors of thousands. This should be improved.

• The implementation work in the case of k > 1 has
to be completed.

• An excellent exposition for the case g = sl2 and for
general k should be written.

• Everything should be generalized and imple-
mented for Lie algebras beyond sl2. If g is of
rank r, meaning its Cartan subalgebra h is r-
dimensional, then our invariants should become a
(computable) polynomials in r variables!

• Our tabulations so far (e.g. [BN10]) show that the
k = 1 invariant for sl2, ρ1(K), yields a bound
on the genus g(K) of K: it seems that always
deg ρ1(K) ≤ 2g(K) − 1, and that that bound is in-
dependent of the bound obtained from the Alexan-
der polynomial. I think I know why this is so, and
why there should be a “Seifert surface formula” for
ρ1(K), but this has to be rigorously confirmed.

• As indicated in [BN11], there is a potential for a
relationship between these invariants, in particular
ρ1, and ribbon knots and the ribbon=slice conjec-
ture. This should be pursued.

• There is some tension within our work between
classical universal enveloping algebras and quan-
tized ones: operations of F (S ) are easier to de-
scribe in classical language, yet the crucial ele-
ments R and C are easier to describe in the quan-
tum language. Our current solution is to use an iso-
morphism between the two languages (an analog
of the non-canonical algebra-structure-only iso-
morphism U(g)~~� ' U~(g)) to push/pull struc-
tures from one side to the other. We expect that a
better understanding of this tension will eventually
arise, and with it a better understanding of quan-
tum groups as they appear in knot theory.7

• The relationship between the story presented here
and the “loop expansion” of the Kontsevich inte-
gral (e.g. [GR]) should be studied.

• More generally, there may be more to say about
poly-time computations in knot theory (e.g. [Pr,
Fi]). I intend to contribute in these directions as
well.

• While these topics are largely untouched within
this proposal, I intend to continue working as
time will allow on the topics of my previous
NSERC research proposal, “Knot Theory, Al-
gebra, and Higher Algebra”, [BN4, BNS, BN5,
BND1, BND2, BND3, BN6].

7Perhaps a footnote isn’t the right place to raise a major issue, yet I believe we don’t genuinely understand the relationship between
quantum groups and knot theory: if we know quantum groups we know how to make knot invariants, but the relationship should also go the
other way. One has to be able to start with “we want knot invariants” and be lead to the specific formulas appearing in the quantizations of
semi-simple Lie algebras. The narrative for the latter direction, as it stands now, is far from complete. It is hard to expect that our work in
itself will change this situation. Yet we must hover around these issues if we ever want to fully understand them, and this we do.
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