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Totally by definition, once in a lifetime, a researcher is working on his personal best project. For me this is now, and I'm
very excited about it. Let me explain.

Here and there math has immense philosophical value or beauty to justify the effort. Yet everyday math is mostly about,
or should be about, “doing useful things”. Deciding if A has property B, counting how many C’s satisfy D, computing E.
When A and B and C and D and E are small, we do the computations on the back of an envelope and write them as “Example
3.14” in some paper. But these are merely the demos, and sooner or later we worry (or ought to worry) about bigger inputs.
I’m more aware then most mathematicians (though perhaps less than many computer scientists), how much the complexity of
obtaining the solution as a function of the size of the inputs matters. Hence I firmly believe that incomputable mathematics
is intrinsically less valuable than computable mathematics (allowing some exceptions for philosophical value and/or beauty),
and that within computable mathematics, what can be computed in linear time is generally more valuable than what can be
computed in polynomial (poly-) time, which in itself is more valuable than what can be computed in exponential (exp-) time,
which in itself is more valuable than what can be computed just in theory.

I’ve always been an exp-time mathematician. Almost everything I’ve worked on, finite-type invariants and invariants of
certain 3-manifolds, categorification, matters related to associators and to free Lie algebras, etc., boils down to computable
things, though they are computable in exp-time.

My current project (joint with Roland van der Veen and continuing Lev Rozansky and Andrea Overbay) is poly-time, which
puts it ahead of everything else I have done. IMHO it is also philosophically interesting and beautiful, but I'm biased.

On to content:

There is a standard construction that produces a knot invariant given a certain special element R ("the R-matrix") in the
second tensor power of some algebra U. Roughly speaking, one independent copy of R is placed next to each crossing of
a knot K, yielding an element in some high tensor power of U. Then the edges of K provide ordering instructions for how
to multiply together these tensor factors using the algebra structure of U so as to get a U-valued knot invariant Z. Typically
U is the universal enveloping algebra of some semisimple Lie algebra L (or some completed or quantized variant thereof).
These algebras are infinite dimensional, and so Z is not immediately computable. The standard resolution is to also choose a
finite-dimensional representation V of L and to carry out all computations within V and its tensor powers.

This works incredibly well. In fact, almost all the “knot polynomials” that arose following the work of Jones and Witten, the
Jones and coloured Jones polynomials, the HOMFLY-PT polynomial, the Kauffman polynomial, and more, arise in this way, and
much if not all of “quantum topology” is derived from these seeds. Yet these polynomials take an exponential time to compute:
within the computation high tensor powers of V must be considered, the dimensions of such powers grow exponentially with
the size of the input knot, and computations within exp-sized spaces take at least exp-time. The same criticism applies to almost
everything else in quantum topology: whenever there is a “braided monoidal category” or a “topological quantum field theory”
within some chain of reasoning, at some point high tensor powers of some vector spaces must be considered and the results
become (at least) exp-time.

(An alternative mean to extract computable information from Z is to reduce modulo various “powers of 4” filtrations on
U. This yields the theory of finite type invariants. Individual finite type invariants are poly-time, but each single one is rather
weak, and only when infinite sequences of finite type invariants are considered together, they become strong. Such sequences
reproduce the aforementioned knot polynomials, but they are hard to compute).

Our approach is different. We explain how one can “fade out” roughly a half of a given semisimple Lie algebra L (namely
its lower Borel subalgebra) by appropriately multiplying the structure constants that pertain to that half by some new coupling
constant b. When b = 0, the original L collapses to a solvable Lie algebra inside which the computation of Z is easy (as the
name suggests, solvable algebras are easy to “solve”). Alas at b = 0 the result is always the same — the classical (yet poly-time
and very useful) Alexander polynomial. We find that in a formal neighborhood of b = 0, namely in a ring in which b**! = 0 for
some natural number k, the invariant Z remains poly-time to compute.

By explicit experimentation with knots in the standard tables, the resulting poly-time invariants are very strong: with just
L = sl, and k = 1, the resulting invariant separates more knots than the exp-time HOMFLY-PT and Khovanov taken together.
By both theory and experimentation, we know that our invariants give genus bounds for knots (hence they “see” some topology),
and we have reasons to suspect that they may give a way to show that certain knots are not-ribbon, potentially assisting with
the long-standing slice=ribbon conjecture.

None of the above is written yet, though I have given many talks on the subject, and most are online with videos and
handouts and running code. See http://www.math.toronto.edu/drorbn/Talks/.

Within the time of the requested grant, I plan to complete my work on these poly-time invariants. Much remains to be
done: writing from several perspectives, implementation for cases beyond s/, at k = 1, a complete analysis of the relationship
with genus and with the ribbon property, an analysis of the relationship with the Melvin-Morton-Rozansky expansion of the
coloured Jones polynomial, and more.
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One of the major triumphs of mathematics in the 1980s, which lead to at least 3 Fields medals (Jones, Drinfel’d,
Witten) was the unexpected realization that low dimensional topology, and in particular knot theory, is closely
related to quantum field theory and to the theory of quantum groups. Knot theory is mundane and ages-old; anything
“quantum” seems hyper-modern. Why would the two have anything to do with each other?

The answer is long and complicated and has a lot to do with the “Yang-Baxter Equation” (YBE). The YBE on
the one hand can be interpreted in knot theory as “the third Reidemeister move”, or as “controlling the most basic
interaction of 3 pieces of string” (this turns out to be a very crucial part of knot theory). On the other hand solutions
of the YBE arise from “quantum” machinery. Hence the quantum is useful to the knotted, and by similar ways, to
the rest of low dimensional topology.

But “quantum” has a caveat, which makes it super-exciting (to some) yet bounds its usefulness (to others). When
quantum systems grow large (as they do when the knot or low-dimensional space we study grows complicated), their
“state space” grows at an exponential rate. “Quantum computers” aim to exploit this fact and make large quantum
systems performs overwhelmingly large computations by utilizing their vast state spaces. But quantum computers
aren’t here yet, may take many years to come, suffer from other limits on what they can do, and much of low-
dimensional topology is anyway outside of these limits. So at least for now and likely forever, many things that have
“quantum” in their description are exponentially-complex to compute, which in practice means that they cannot be
computed beyond a few simple cases.

Recently Van der Veen and myself, following Rozansky and Overbay, found a corner (figuratively speaking)
of the vast state space of the quantum machinery used in knot theory, which can be described in just polynomial
complexity, and which carries enough information to still speak to knot theory. The “knot invariants” constructed
that way seem to be the strongest invariants we know that are computable even for very large knots.

Our approach utilizes the fact that complicated symmetry groups often have much simpler “contractions”. A well
known example is the Lorentz group of relativity theory, which at small velocities contracts to the Galilean group of
classical mechanics. In a similar manner we find that the symmetry algebras underlying the useful solutions of the
Yang-Baxter equation, namely semi-simple algebras such as sl(n), have contractions that are “solvable algebras”,
and that the same operations that are exponentially complex for the original sl(n) symmetry become polynomially-
complex (namely, much simpler) within and near these solvable contractions.

Much remains to be done: implementation, documentation, application, generalization. I hope to achieve all that
over this 5-year grant period.
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Recently, Roland van der Veen and myself, follow-
ing Lev Rozansky and Andrea Overbay [Rol, Ro2, Ro3,
Ov], presented a methodology [BV2] for the construc-
tion of poly-time computable knot polynomials and con-
structed [BV1] the first poly-time computable knot poly-
nomial since the Alexander polynomial of 1928 [Al].

Why is it exciting, even before the details? Here
and there mathematics has immense philosophical value
or beauty to justify the effort. Yet everyday mathemat-
ics is mostly about, or should be about, “doing useful
things”. Deciding if A has property B, counting how
many C’s satisfy D, computing £. When A and B and
C and D and E are small, we do the computations on
the back of an envelope and publish them as “Example
3.14” in some paper. But these are merely the demos,
and sooner or later we worry (or ought to worry) about
bigger inputs. I’'m more aware then most mathemati-
cians (though perhaps less than many computer scien-
tists), how much the complexity of obtaining the solution
as a function of the size of the inputs matters. Hence I
firmly believe that incomputable mathematics is intrin-
sically less valuable than computable mathematics (al-
lowing some exceptions for philosophical value and/or
beauty), and that within computable mathematics, what
can be computed in linear time is generally more valu-
able than what can be computed in polynomial (poly-)
time, which in itself is more valuable than what can be
computed in exponential (exp-) time, which in itself is
more valuable than what can be computed just in theory.

With the exception of the Alexander polynomial,
which has been thoroughly mined!, and with the excep-
tion of the first few finite-type invariants [BN1, BN2],
which are rather weak, until recently [BN8] all known
knot invariants were harder-than-poly-time to compute?.
So clearly, what we have in [BV1, BV2] — a rather
strong poly-time-computable knot polynomial® and a
methodology for further such — is a priori exciting.

Furthermore, our invariants extend to tangles, and
are well-behaved under the basic tangle-theoretic oper-
ations of “strand stitching” and “strand doubling”, and
hence they carry topological information: a bound on
the genus of a knot [BN9], and what may be the best
chance we have of showing that certain slice knots are not
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ribbon [BN11], hence resolving (negatively) the long-
standing ““slice=ribbon” conjecture [FM].

Finally, merely our suggestion (starting [BN7]) that
some poly-time knot polynomials beyond the Alexander
polynomial ought to exist is already generating both in-
terest [Fi] and competition [Pr] (both authors do not cite
us explicitly, but were present in our talks [BN12, BN10]
and were clearly influenced).

Our methodology. Since already the 1980s, there
is a standard “quantum algebra” methodology that asso-
ciates a framed knot invariant to certain triples (U, R, C),
where U is a unital algebraand R e UQ U and C € U
are invertible (see e.g. [Oh]). Let us briefly recall the
standard methodology here.

Draw a given (framed,
oriented) knot K as a long
knot in the plane so that at
each crossing the two cross-
ing strands are oriented up-

ward, and so that the orienta- b( aj
tion at two ends of K is up.

Putacopyof R =Y a; ® { C)
b; on every positive crossing Y2

of K with the “a” side on the

over-strand and the “b” side C }\
on the under-strand, labeling

these a’s and b’s with dis- z2(K) =
tinct indices i, jk,... (sim- > babCabja
ilarly put copies of R™! = i,jk

2.a; ® b, on the negative

crossings; these are absent in our example). Put a copy of
C*! on every cuap where the tangent to the knot is point-
ing to the right (meaning, a C on every such cup and a
C~! on every such cap).

Form an expression z(K) in U by multiplying all the
a, b, C letters as they are seen when traveling along K
and then summing over all the indices, as shown.

If R and C satisfy some conditions dictated by the
standard Reidemeister moves of knot theory, especially
the Yang-Baxter Equation (YBE), the resulting z(K) is a
knot invariant.

Abstractly, z(K) is obtained by tensoring together
several copies of R*! € U®? and C*! € U to get an in-

"Though newer and better still arises. For example, the techniques of [BNS] lead to the fastest known algorithm for the computation of

the Alexander polynomial.

2Though divide-and-conquer methods reduce the computation time for the Jones and HOMFLY-PT polynomials [Jo, HOMFLY, PT] and
possibly even for Khovanov homology [BN3] to around Ce®V* where n is the crossing number, and so these invariants can be computed for

surprisingly large knots.

SHow strong? As detailed in [BN9], stronger than HOMFLY-PT and Khovanov taken together, at least for knots up to with 12 crossings.
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termediate result zo € U®S, where S is a finite set with
two elements for each crossing of K and one element for
each right-pointing cuap. We then multiply the different
tensor factors in zp in an order dictated by K to get an
output in a single copy of U.

The best algebras with which to apply the standard
methodology, at least as of 2017, are certain completions
U(g) of the universal enveloping algebras of semi-simple
Lie algebras g (or their quantizations). But these algebras
are infinite dimensional and the sum in z(K) is infinite
and not immediately computable.

The dogma solution is to pick a finite dimensional
representation of g and use it to represent all the elements
appearing in z(K), effectively replacing the algebra by
the algebra of endomorphisms of some finite dimensional
vector space. This turns the sum finite; yet if the knot K
has n crossings, our sum becomes a sum over n indices
i1,...,in. Thus there are exponentially-many summands
to consider and it takes an exponential amount of time to
compute z(K).>*

Alternatively, one may extract finite-type [BN1] in-
formation out of z(K) by reducing modulo appropriate
filtrations of U and its tensor powers. As already men-
tioned, the results are computable but weak.

Our approach to the computation of z(K) is differ-
ent. Instead of working directly in U®S, we work in rel-
atively small® spaces 7 (S) of “closed-form formulas for
elements of U®S”. For this to work, we need to ensure
that the fundamentals R and C would be described by
“closed-form formulas”, and that the most basic opera-
tions necessary for the computation of z, namely multi-
plication of factors in U®S, would be implemented “in
closed form” in F(S).

In practice, the kind of terms that appear within for-
mulas for R and C are exponentials of the form &f,
where x is a generator of U and £ is a formal scalar vari-
able, their iterated derivatives (9¢)fef* = xfef*, and ex-
ponentials of quadratics like ' or e**®, with scalar A
and x,y € U. We then need to multiply several such ex-
ponentials and differentiated exponentials, and we need
to learn how to bring such products into some pre-chosen
“canonical order”. In the standard U ~ U(g) case, where
g is semi-simple, this is complicated. Yet if g is solvable,
this is often easy. Wouldn’t it be nice if it was possible
to approximate semi-simple Lie algebras with solvable
ones?

Dror Bar-Natan

In our work we exploit the little-known fact that this
is (nearly) possible. Precisely, given a semisimple g,
there exists a Lie algebra g defined over the ring Q[e]
of polynomials in a formal variable € (in other words, g*
is a “one-parameter family of Lie algebras™), so that

1. If € is fixed to be some constant not equal to zero,
then g€ is isomorphic to g* := g & b, which is the
original g with an extra copy of its own (Abelian)
Cartan subalgebra ) added.

2. Ate = 0, ¥ is solvable. Furthermore, g€ is solv-
able in a formal neighborhood of € = 0: for any
natural number k > 0 the reduction g=¥ of g€ to the
ring Q[ef]/(el“rl = 0) is solvable as a Lie algebra
over Q (whose dimension is (k + 1) dim g).

As k gets larger, the solvable g=* is closer and closer
to g¢, as the reduction modulo €' = 0 means less and
less, and so at least informally, g=k k—> gt ~aq.

—00

We sketch why g€ exists.

Let g be a semisimple Lie algebra and let b* and b~
be its upper and lower Borel subalgebras, respectively.
Then (b*)* is b~, and as the latter has a Lie bracket, it
follows that b* has a co-bracket ¢. In fact, b* along with
its bracket [+, -] and co-bracket ¢ is a “Lie bialgebra”, and
one may recover gt = g®h = b~ @ b* as the “Drinfel’d
double” D(b*, [-,-],8) of b* (see e.g. [ES]). The axioms
of a Lie bialgebra are homogeneous in §, meaning that
(%, [+, 1, €6) is again a Lie bialgebra for any scalar €, and
one may set g¢ = D(b*, [, ],e5). The required prop-
erties are easy to check. Perhaps the most interesting is
the solvability of ¢°: indeed ¢° = Ib* := (b™)* = b* with
(0%)* regarded as an Abelian Lie algebra and b* acting
on (b*)* using the co-adjoint action, and then the solv-
ability of /b* easily follows from the solvability of b*.
We studied the knot-theoretic significance of b* < b for
a general Lie algebra b extensively in the context of “w-
knots” in [BND1, BND2, BND3, BN6, BN5] (supported
by our previous NSERC discovery grant), and these stud-
ies along with the observations in this paragraph were in
some sense the starting points for our current study.

A model result. Let us state the g = s/, version of
our main result; one of our future directions will be to
extend beyond that case. Let k be a natural number.

One may check that the Lie algebra sl%k is gener-
ated by generators {z,y,a, x} such that ¢ is central and
la,x] = x, [a,y] = —y, and [x,y] = 2ea — t; here € is

“Note that almost any time the phrases “braided monoidal category” or “TQFT” are used within low dimensional topology, some tensor
powers of some vector spaces need to be considered at some point, and dimensions grow exponentially. Thus our criticism applies in these

cases too [BN12].
SRanks grow polynomially in |S]|.
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a scalar for which €¥*! = 0. Let U be the universal en-
veloping algebra of sl§k (completed, details elsewhere),
and likewise let S be the (similarly completed) symmet-
ric algebra of slik. We write “v;” for “v placed in an i’th
tensor factor”, so e.g., y1 x» = y®x is an element of either
U®? or 8*2, according to context. We let 0: S — U
be the “normal ordering map” which plants the non-

commuting generators {y, a, x} in the “y then a then x”
order. For example, for a scalar 1, O(e™) = 3 %
(and not /U(j}.'!x)] ).

It turns out that there are suitable R and C elements
for U, constructed using the standard quantum algebra
methodology, and hence there is a corresponding knot
invariant z, which easily extends to some general class of
tangles which we do not specify here other than to say
that it includes all knots.

Model Theorem. If K is an n-crossing S -component

tangle (where S is a finite set) then z(K) € U®S and

k

2(K) =0O|wexp Z /L'jtiaj + Z qijyixj + ZPdéd s

i,jes i,jes d=1

where A;; € Z, where w and q;; are rational functions in
T; := &' with numerators and denominators of degrees
bounded by n, and where the Py’s are “perturbations”
which are polynomials in variables {y;, a;, x;} of degree
at most 4d, with coefficients rational functions in the T;’s
with numerators and denominators of degrees bounded
by n.%

The formula for z(K) appears complicated, but in
some technical sense, it is in fact simple. Indeed if all
the 7; are identified (setting 7; = T; for all i, j € §), then
the space 7 (S) of all formulas as in the theorem is of
“poly-size” — such a formula is determined by a finite
number of integer coefficients and the number of coeffi-
cients required is a polynomial in 7 and in |S|.

The fact that 7(S) is poly-size suggests that the op-
erations one needs to perform on 7 (§) to compute z(K)
(mostly, multiplication of different tensor factors) would
take poly-time. We show that this is indeed the case, and
hence z(K) is poly-time computable.

What goes in the proof? Some “classical algebra”
PBW-reordering techniques to carry out the required op-
erations on ¥ (S ), some “quantum algebra” techniques to
find R and C in a certain quantization of U, and a little bit
of extra work to pull R and C from the quantized world to
the classical one, in which our model theorem is written.

In the case where k = 1, this isn’t just “theory” — the
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programs are written and are quite short, and the results
are tabulated and are quite strong; see e.g. [BN10, BV1].
For k > 1 we are very near a complete implementation.
It is not much more complicated, and the results should
be more powerful. The generalization to g other than s/
is in sight, yet will require more work.

Frequently Asked Questions.

o What is the relationship between this proposal and
the work of Rozansky and Overbay? Our invariants
are the Rozansky-Overbay [Rol, Ro2, Ro3, Ov]
invariants, and in many ways our work is a contin-
uation of theirs, though we believe our techniques
are cleaner and more easily susceptible to gener-
alization. Rozansky and Overbay did not note that
their invariants are computable in polynomial time,
and did not explain how to generalize them to the
case of tangles. The latter generalization allows for
divide-and-conquer computations which lead to a
significant speedup, and is crucial if one attmpts to
relate invariants to topological properties such as
the genus and the ribbon property (e.g. [BN11]).

o What is the relationship between these invariants
and the coloured Jones polynomial? The total-
ity of all slik invariants is most likely equiva-
lent to the coloured Jones polynomial; increment-
ing k by one should correspond to the considera-
tion of one further diagonal in the Melvin-Morton-
Rozansky expansion of the coloured Jones poly-
nomial [MM, BNG]. In some sense, as indicated
already in the “summary” section of this proposal,
we merely find a computable “corner” of a known
and very-difficult-to-compute theory. We believe
computability makes a huge difference! Note also
that there isn’t a good Melvin-Morton-Rozansky
expansion for tangles, and tangles are crucial from
our perspective.

o What is the relationship between this proposal
and the “loop expansion” of the Kontsevich inte-
gral? The “loop expansion” [GR] of the Kontse-
vich integral is an all-Lie-algebra universal version
of the Melvin-Morton-Rozansky expansion, and it
should relate to the invariants we discuss in accor-
dance with that — for any semi-simple g, the g=
should be “k-loop invariants”. Yet again, the “loop
expansion” is nearly impossible to compute and its

The actual degree bounds we have are stronger than indicated here, though a bit harder to state. Stronger degree bounds imply faster

computations.


http://drorbn.net/d17/
http://www.math.toronto.edu/~drorbn

weP:=http://drorbn.net/d17/

generalization to tangles depends on a choice of
a Drinfel’d associator, which is another hard-to-
compute object.

Our proposed research. Much remains to be done, and
I plan to do it over the grant period:

Our present implementation of the algorithm for
the sl§l invariant is pathetic; it has the right asymp-
totic behavior, but the constants are all wrong, by
factors of thousands. This should be improved.

The implementation work in the case of k£ > 1 has
to be completed.

An excellent exposition for the case g = s/, and for
general k should be written.

Everything should be generalized and imple-
mented for Lie algebras beyond sl;. If g is of
rank r, meaning its Cartan subalgebra b is r-
dimensional, then our invariants should become a
(computable) polynomials in r variables!

Our tabulations so far (e.g. [BN10]) show that the
k = 1 invariant for sk, p;(K), yields a bound
on the genus g(K) of K: it seems that always
degp(K) < 2g(K) — 1, and that that bound is in-
dependent of the bound obtained from the Alexan-
der polynomial. I think I know why this is so, and
why there should be a “Seifert surface formula” for
p1(K), but this has to be rigorously confirmed.
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e As indicated in [BN11], there is a potential for a
relationship between these invariants, in particular
p1, and ribbon knots and the ribbon=slice conjec-
ture. This should be pursued.

o There is some tension within our work between
classical universal enveloping algebras and quan-
tized ones: operations of ¥ (S) are easier to de-
scribe in classical language, yet the crucial ele-
ments R and C are easier to describe in the quan-
tum language. Our current solution is to use an iso-
morphism between the two languages (an analog
of the non-canonical algebra-structure-only iso-
morphism U(g)[7] ~ Un(g)) to push/pull struc-
tures from one side to the other. We expect that a
better understanding of this tension will eventually
arise, and with it a better understanding of quan-
tum groups as they appear in knot theory.’

o The relationship between the story presented here
and the “loop expansion” of the Kontsevich inte-
gral (e.g. [GR]) should be studied.

e More generally, there may be more to say about
poly-time computations in knot theory (e.g. [Pr,
Fi]). I intend to contribute in these directions as
well.

e While these topics are largely untouched within
this proposal, I intend to continue working as
time will allow on the topics of my previous
NSERC research proposal, “Knot Theory, Al-
gebra, and Higher Algebra”, [BN4, BNS, BNS,
BND1, BND2, BND3, BN6].

"Perhaps a footnote isn’t the right place to raise a major issue, yet I believe we don’t genuinely understand the relationship between
quantum groups and knot theory: if we know quantum groups we know how to make knot invariants, but the relationship should also go the
other way. One has to be able to start with “we want knot invariants” and be lead to the specific formulas appearing in the quantizations of
semi-simple Lie algebras. The narrative for the latter direction, as it stands now, is far from complete. It is hard to expect that our work in
itself will change this situation. Yet we must hover around these issues if we ever want to fully understand them, and this we do.
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Salaries and Benefits. Since 2011 I have gradu-
ated 5 PhD students (Peter Lee, Karene Chu, Zsuzsanna
Dancso, Oleg Chterental, and Iva Halacheva). I am
presently working with three more (Huan Vo, Travis Ens,
and Robin Gaudreau). I plan to support each of those at
around $8,000 per year. In addition I’ve had a number
of master’s students, I expect to have about two more
per year, and to support each at about $4,000 per year.
Likewise I’ve taken a number of undergraduate “summer
project” students, and I hope to support about two such
students per year, at about $2,000 each.

I hope to be able to support a postdoctoral fellow
throughout the grant period, at about $40,000 per year.

Equipment or Facility. Many of my past projects re-
quired massive computations, often running for months
at a time (e.g., the calculation of all the invariants ap-
pearing on the Knot Atlas, http://katlas.org), and
many of the results are made available by means of a
dedicated web server, http://drorbn.net, especially
http://drorbn.net/ap. My current proposal will
clearly lead me to continue using computers in a simi-
lar way. This will be a lot more effective if I would be
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Discovery Grant Proposal Budget Justification

able to purchase and maintain current hardware. Hence
the $2,500 allocated per year for purchase or rental of
computers and peripherals, and the $500 allocated per
year for the maintenance of those. Also, I will have to
pay user fees for some of the programs I will be using
(Mathematica, for example) and also to some shared fa-
cilities to be provided by my university — internet con-
nection, backup services, etc. I am requesting an amount
of $1,500 per year for these purposes.

Materials and Supplies. This amount of $500 per
year will be used primarily to purchase office supplies
and printer paper and ink.

Travel. In the past I have traveled extensively and
gave presentations on my work in a large number of do-
mestic and foreign universities and in many international
conferences. I presume this will continue throughout the
years of my contract. In addition I hope to support some
travel by my graduate students and postdoctoral fellows,
and to support visits by my scientific collaborators to
Toronto. T am requesting an amount of $8,000 per year
for these purposes.

Books. Needs no explain.
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Poly-Time Knot Theory and Quantum Algebra Discovery Grant Proposal HQP Training Plan

My project can be naturally broken into several parts, and there are many offshoot directions starting from my
main proposal. This means that there is ample room for advanced undergraduate students, for graduate students, and
for postdoctoral fellows to take part in the research outlined in my proposal and/or in closely related research. This
allowed me to participate in the training of many students and fellows in the past, and will continue to allow me to
do the same in the future.

I share my significant use of computers as a tool for research, presentation and dissemination of knowledge with
my students and postdoctoral fellows. I believe this adds major further quality to the training they receive.

Though frankly, I still don’t know how to do the thing I’d really want to do.

For me, the best mathematics is the math that can be implemented on a computer. This ranges from the simplest,
say Gaussian elimination or the Fibonacci sequence, and continues all the way to the fanciest and most abstract, be
it a planar-algebra category-theory ultra-fast computation of Khovanov homology or a free-Lie-algebra meta-group-
action-based computation of a non-commutative generalization of the Alexander polynomial. I’ve implemented
these, as well as a dozen other versions of the Alexander polynomial, and a dozen other knot invariants, and a very
large number of other little things within knot theory, and a computer solution of the Rubik’s cube, and a hyperbolic-
geometry based algorithm for optimal camera motion, and I made computer generated pictures of various fancy links
and surfaces and of steps within Arnold’s resolution of Hilbert’s 13th problem, and very many other things, big and
small. (And most are on my web site).

For me, that’s what keeps mathematics alive and sincere and believable (and when it comes to the graphics,
sometimes also visually beautiful).

I wish I knew how to teach my students to actually compute (and draw!) what they are talking about, and gain
the benefit that that entails, and pass it on to their students later on. I wish they would do it routinely and often, and
with joy. I think I’ve contributed some, and I hope to contribute further, to my students by sharing with them my
love of the implementable (and teaching a bit of the how-to). In 5-10 years I will know how many have become truly
passionate.

Poly-Time Knot Theory and Quantum Algebra  Discovery Grant Relationship to Other Research Support

I currently receive no other research support.

Along with Thomas Fiedler of the University of Toulouse I am applying for a small France-Canada Research
Fund (FCRF) grant ($14,800 over two years, split between the two of us). If approved the money will mostly be
used for travel between Toulouse and Toronto for Fiedler and myself and our students, to collaborate on a computer
implementation of Fiedler’s theory of “1-cocycle invariants” (arXiv:1709:1033). It is not known if his invariants are
related to the ones outlined in this proposal.
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Poly-Time Knot Theory and Quantum Algebra Discovery Grant Most Significant Contributions

My paper Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate
Alexander Invariant (attached and Acta Mathematica Vietnamica 40-2 (2015) 271-329, arXiv:1308.1721) explains
how to turn knotted objects in 3 dimensions, namely ordinary knots and tangles, into knotted objects in 4 dimensions,
namely knotted 2-spheres (“balloons”) with 1-dimensional circles (“hoops”) knotted among them. The paper then
constructs a universal invariant Z (in the finite type sense) of such “knotted balloons and hoops” and finds that it
is valued in a certain space whose components are free Lie algebras and spaces of cyclic words. The paper gives
complete computational techniques for the computation of Z, along with the sophisticated mathematics that leads
there and along with a complete implementation. As explained in the paper, the resulting invariant Z is related to
the 4-dimensional BF topological quantum field theory, and it has a reduction which in itself is a generalization of
the Alexander polynomial to tangles which, as explained in the paper, yields the “best” formulas we have for the
Alexander polynomial.

My paper Finite Type Invariants of W-Knotted Objects II: Tangles and the Kashiwara-Vergne Problem
(joint with my former student Zsuzsanna Dancso, attached and Mathematische Annalen 367 (2017) 1517-1586,
arXiv:1405.1955) explains how the construction of a universal finite type invariant of certain “knotted foams in
4-dimensional space” is equivalent to the solution of the Kashiwara-Vergne conjecture, which in itself is about the
relationship between the convolution algebra of functions on a Lie group and the convolution algebra of functions on
its Le algebra. This equivalence, along with the Satoh “tube map” from 3-dimensional knot theory to 4-dimensional
knot theory, gives a topological explanation for the relationship between Drinfel’d associators and solutions of the
Kashiwara-Vergne equations, as discovered earlier by Alekseev-Torossian and Alekseev-Enriquez-Torossian.

My preprint Finite Type Invariants of w-Knotted Objects IV: Some Computations (attached and arXiv:1511.05624
presents a complete framework for computations in free Lie algebras and related algebraic spaces, leading in par-
ticular to a computation of the BCH formula to the highest degree known, of a Drinfel’d associator to the highest
degree known, and of a solution of the Kashiwara-Vergne problem to the highest degree known.

I see lecturing and the assimilation of mathematical knowledge and the exposition of its beauty as one of my
primary goals. I aim to polish my lectures to perfection; almost every lecture I give comes with a colourful handout
summarizing the information in it, and with a web space with links to said handout, to relevant papers and programs,
and almost always, with a link to a video recording of the talk itself. My 4th attached contribution is merely a
reminder of that — an abridged version of my Handout Portfolio (the full version is at http://drorbn.net/hp).

Poly-Time Knot Theory and Quantum Algebra Discovery Grant 4 Samples of Research Contributions

See wef/kbh, wef/wko2, wef/wko4, and wef3/hp.
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o Clear this list and remove this page.

Is there some big-name-quote along the lines of “computable better than not”?

Additional Information on Contributions (2500 characters, TXT).

Attach CCV.

Reread instructions pages.
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