
A PERTURBED-ALEXANDER INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

Abstract. In this research announcement we give concise formulas, which lead to a simple
and fast computer program, which computes a powerful knot invariant. This invariant ρ1 is
not new, yet our formulas are by far the simplest and fastest: given a knot K we write one of
the standard matrices A whose determinant is the Alexander polynomial of K, yet instead
of computing its determinant we consider a certain quadratic expression in the entries of
A�1. The proximity of our formulas to the Alexander polynomial suggest that they should
have a topological explanation. This we don’t have yet.

1. The Formulas

The selling point for this article is that the formulas in it are concise. Thus we start by
running through these formulas for a knot invariant ρ1 as quickly as we can. In Section 2 we
turn the formulas into a short yet very fast computer program, and in Section 3 we quickly
sketch the context: Alexander, Burau, Jones, Melvin, Morton, Rozansky, Overbay, Ohtsuki,
and our own prior work.
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Given an oriented n-crossing knot K, we draw it in the plane as a long
knot diagram D in such a way that the two strands intersecting at each
crossing are pointed up (that’s always possible because we can always rotate
crossings as needed), and so that at its beginning and at it’s end the knot
is oriented upward. An example is here on the right. We then label each
edge of the resulting diagram with two integer labels: a running index k
which runs from 1 to 2n � 1, and a “rotation number” rk, which counts
how many times the geometric rotation number of that edge (the signed
number of times the tangent to the edge is horizontal and heading right,
with cups counted with �1 signs and cups with �1; this number is well
defined because at their ends, all edges are headed up). On the right the
running index runs from 1 to 7, and the rotation numbers for all edges is
0 except for r4, for which it is �1.
Next, we form a p2nq � p2n � 1q matrix B of Laurent polynomials in a

formal variable T as follows. Every crossing c of K has a sign s P t�1u and is surrounded
by four edges, with labels i and j below the crossing (where the label i belongs to the over
strand and j to the under strand) and labels k � i � 1 and l � j � 1 above the crossing.
Such a crossing defines rows i and j and columns i, j, k and l of B as below, with the rest
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of B set to be 0:

i ij

s � �1 s � �1

j

l k k l

ÝÑ
B col i col j col k col l

row i 1 0 �1 0
row j 0 1 T s � 1 �T s

(1)

G �

�
���

0 � � � 0

A�1

�
��

We then remove the first column of B and call the result A (so
B � pϕ|Aq, with ϕ a single column), we invert A and prepend to it a
row of 0’s, and we call the resulting p2n�1q�p2nq matrix G � pgαβq,
as on the right. In the case of the trefoil knot as shown above, the
matrices B and G are

�
���

1 �1 0 0 0 0 0

0 1 �T 0 0 T � 1 0
0 0 1 �1 0 0 0

0 T � 1 0 1 �T 0 0

0 0 0 0 1 �1 0
0 0 0 T � 1 0 1 �T

�
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�
������
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We note without supplying details that the matrix B comes in a straightforward way from
Fox calculus as it is applied to the Wirtinger presentation of the fundamental group of the
complement of K (using the diagram D), and hence the determinant of A is equal up to a
unit to the Alexander polynomial of K. In fact, we have that

∆ � T prpDq�wpDqq{2 detpAq, (2)

where rpDq :�
°

k rk is the total rotation number of D, where wpDq �
°

c sc is the writhe
of D, namely the sum of the signs sc of all the crossings c in D, and where ∆ is the
normalized Alexander polynomial of K, so ∆pT q � ∆pT�1q and ∆p1q � 1. In our example
detpAq � T 3�T 2�T , rpDq � �1, and wpDq � 3, so ∆ � T p�1�3q{2pT 3�T 2�T q � T�1�T�1,
as expected for the trefoil knot.

We can now define our invariant ρ1. It is the sum of two sums. The first is over all crossings
c in D, and for such a crossing we let s denote its sign and we let i and j denote the edge
labels of the incoming over- and under-strands, respectively. The second is a sum over the
edges k of D of a correction term dependent on the rotation number rk. We multiply both
of these summands by ∆2 to “clear the denominators”1:

ρ1 :� ∆2
¸
c

s pp1� T sq gij pgij � gjjq � 2giigij � gijgji � giigjj � gij � gjj � 1{2q

�∆2
¸
k

rk pgkk � 1{2q .
(3)

A direct calculation shows that in our example ρ1 � �T 2 � 2T � 2� 2{T � 1{T 2.

Theorem 1. The quantity ρ1 is a knot invariant.

This is a research announcement, so we will not prove Theorem 1 here. We merely comment
that ρ1 has more separation power than the Jones polynomial, yet it is closer to the more
topologically-meaningful Alexander polynomial ∆: it is cooked up from the same matrix A

1The first summand is quadratic in the entries of G and hence it has denominators proportional to ∆2.
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and in terms of computational complexity, computing ρ1 is not very different from computing
∆. In order to compute ∆ we need to compute the determinant of A, while to compute ρ1
we need to invert A and then compute a sum of Opnq terms that are quadratic in the entries
of A�1. We have computed ρ1 for knots with over 200 crossings using the unsophisticated
implementation presented in Section 2.

Topologists should be intrigued! ρ1 is cooked from the same matrix as the Alexander
polynomial ∆, yet we have no topological interpretation for ρ1.

2. Implementation

Two of the main reasons we like ρ1 is that it is very easy to implement and even an
unsophisticated implementation runs very fast. To highlight these points we include a full
implementation here, a step-by-step run-through, and a demo run. We write in Mathemat-
ica [Wo], and you can find the notebook displayed here at [BDV, APAI.nb].

We start by loading the library KnotTheory‘ [BM] (it is used here only for the list of
knots that it contains, and to compute other invariants for comparisons). We also load
minor conversion routine [BDV, RVK.nb / RVK.m] whose internal workings are simple and
yet irrelevant here.

Once[<< KnotTheory`; << RVK.m];

Loading KnotTheory` version of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

2.1. The Program. This done, here is the full ρ1 program:

ρ[K_] := Module{Cs, r, n, B, A, c, s, i, j, Δ, G, g, ρ1},

{Cs, r} = List @@ RVK[K]; n = Length[Cs]; B = Table[0, 2 n, 2 n + 1];

Do{s, i, j} = c;

B〚{i, j}, {i, j, i + 1, j + 1}〛 =
1 0 -1 0

0 1 Ts - 1 -Ts
, {c, Cs};

A = B〚All, 2 ;;〛;

Δ = T(Total[r]-Total[First/@Cs])/2 Det[A];

G = Prepend[Table[0, 2 n]][Inverse[A]]; gα_,β_ := G〚α, β〛;

ρ1 = Δ
2 Sum{s, i, j} = c;

s 1 - Ts gij (gij - gjj) + 2 gii gij - gij gji - gii gjj - gij + gjj - 1/2, {c, Cs};

ρ1 += Δ
2 Sum[r〚k〛 (gkk - 1/2), {k, 2 n}] ;

Factor@{Δ, ρ1};

The program uses mostly the same symbols as the text, so even without any knowledge
of Mathematica, the reader should be able to recognize at least formulas (1), (2), and (3)
within it. As a further hint we add that the variables Cs ends up storing the list of crossing
in a knot K, where each crossing is stored as a triple ts, i, ju, where s, i, and j have the same
meaning as in (1). The conversion routine RVK automatically produces Cs, as well as a list r
of rotation numbers, given any other knot presentation known to the package KnotTheory‘.
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Note that the program outputs the ordered pair p∆, ρ1q. The Alexander polynomial ∆ is
anyway computed internally, and we consider the aggregate p∆, ρ1q as more interesting than
any of its pieces by itself.

2.2. A Step-by-Step Run-Through. We start by setting K to be the knot diagram on
page 1 using the PD notation of KnotTheory‘. We then print RVK[K], which is a list of
crossings followed by a list of rotation numbers:

K = PD[X[4, 2, 5, 1], X[2, 6, 3, 5], X[6, 4, 7, 3]];

RVK[K]

RVK[{{1, 1, 4}, {1, 5, 2}, {1, 3, 6}}, {0, 0, 0, -1, 0, 0}]

Next we set Cs and r to be the list of crossings, and the list of rotation numbers, respec-
tively.

{Cs, r} = List @@ RVK[K]

{{{1, 1, 4}, {1, 5, 2}, {1, 3, 6}}, {0, 0, 0, -1, 0, 0}}

We set n to be the number of crossings, B to be the zero matrix of dimensions 2n�p2n�1q,
and then we iterate over c in Cs, adding a block as in (1) for each crossings.

n = Length[Cs]; B = Table[0, 2 n, 2 n + 1];

Do{s, i, j} = c;

B〚{i, j}, {i, j, i + 1, j + 1}〛 =
1 0 -1 0

0 1 Ts - 1 -Ts
, {c, Cs};

Here’s what B comes out to be:

B // MatrixForm

1 -1 0 0 0 0 0

0 1 -T 0 0 -1 + T 0

0 0 1 -1 0 0 0

0 -1 + T 0 1 -T 0 0

0 0 0 0 1 -1 0

0 0 0 -1 + T 0 1 -T

Next we set A to be the matrix whose rows are All the rows of B, and whose columns
are the columns of B starting from column 2. We set ∆ to be the determinant of A, with a
correction as in (2). So ∆ is the Alexander polynomial of K.

A = B〚All, 2 ;;〛;

Δ = T(Total[r]-Total[First/@Cs])/2 Det[A]

T - T2 + T3

T2

G is now the Inverse of A with a row of 0’s added at the start. We set gαβ to be the
matrix entries of G, and print G:
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G = Prepend[Table[0, 2 n]][Inverse[A]]; gα_,β_ := G〚α, β〛;

G // MatrixForm

0 0 0 0 0 0

-T+T2-T3

T-T2+T3
0 0 0 0 0

-T+T2-T3

T-T2+T3
-

T2

T-T2+T3
T-T2

T-T2+T3
T-T2

T-T2+T3
T2-T3

T-T2+T3
0

-T+T2-T3

T-T2+T3
-

T2

T-T2+T3
-

T3

T-T2+T3
T-T2

T-T2+T3
T2-T3

T-T2+T3
0

-T+T2-T3

T-T2+T3
-

T

T-T2+T3
-

T2

T-T2+T3
-

T2

T-T2+T3
T-T2

T-T2+T3
0

-T+T2-T3

T-T2+T3
-

T

T-T2+T3
-

T2

T-T2+T3
-

T2

T-T2+T3
-

T3

T-T2+T3
0

-T+T2-T3

T-T2+T3
-1+T-T2

T-T2+T3
-T+T2-T3

T-T2+T3
-1+T-T2

T-T2+T3
-T+T2-T3

T-T2+T3
-1+T-T2

T-T2+T3

It remains to blindly follow the two parts of Equation (3):

ρ1 = Δ
2 Sum{s, i, j} = c;

s 1 - Ts gij (gij - gjj) + 2 gii gij - gij gji - gii gjj - gij + gjj - 1/2, {c, Cs}

T - T2 + T32 -
3

2
+

(1-T) T2

T-T2+T32
-

2 T T-T2

T-T2+T32
+

T

T-T2+T3
+

T-T2

T-T2+T3

T4

ρ1 += Δ
2 Sum[r〚k〛 (gkk - 1/2), {k, 2 n}]

T - T2 + T32  1

2
-

T-T2

T-T2+T3


T4
+

T - T2 + T32 -
3

2
+

(1-T) T2

T-T2+T32
-

2 T T-T2

T-T2+T32
+

T

T-T2+T3
+

T-T2

T-T2+T3

T4

And to output both ∆ and ρ1. We factor them just to put them in a nicer form:

Factor@{Δ, ρ1}


1 - T + T2

T
, -

(-1 + T)2 1 + T2

T2


2.3. A Demo Run. Here are ∆ and ρ1 of all the knots with up to 6 crossings:

Do[Echo[K  ρ[K]], {K, AllKnots[{3, 6}]}]

KnotTheory: Loading precomputed data in PD4Knots`.

Knot[3, 1]  
1 - T + T2

T
,

(-1 + T)2 1 + T2

T2


Knot[4, 1]  -
1 - 3 T + T2

T
, 0

Knot[5, 1]  
1 - T + T2 - T3 + T4

T2
,

(-1 + T)2 1 + T2 2 + T2 + 2 T4

T4
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Figure 2.1. A 48-crossing knot from [GST].

Knot[5, 2]  
2 - 3 T + 2 T2

T
,

(-1 + T)2 5 - 4 T + 5 T2

T2


Knot[6, 1]  -
(-2 + T) (-1 + 2 T)

T
,

(-1 + T)2 1 - 4 T + T2

T2


Knot[6, 2]  -
1 - 3 T + 3 T2 - 3 T3 + T4

T2
,

(-1 + T)2 1 - 4 T + 4 T2 - 4 T3 + 4 T4 - 4 T5 + T6

T4


Knot[6, 3]  
1 - 3 T + 5 T2 - 3 T3 + T4

T2
, 0

Next is one of our favourites, a knot from [GST] (see Figure 2.1), which is a potential
counterexample to the ribbon�slice conjecture. It takes about one minute to compute ρ1 for
this 48 crossing knot (note that Mathematica prints Timing information is seconds):

Timing@ρEPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95, X96,7, X13,8, X9,28, X10,41, X42,11,

X27,12, X30,15, X16,61, X17,72, X18,83, X19,34, X89,20, X21,92, X79,22, X68,23, X57,24,

X25,56, X62,31, X73,32, X84,33, X50,35, X36,81, X37,70, X38,59, X39,54, X44,55, X58,45,

X69,46, X80,47, X48,91, X90,49, X51,82, X52,71, X53,60, X63,74, X64,85, X76,65, X87,66,

X67,94, X75,86, X88,77, X78,93
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60.7188, -
-1 + 2 T - T2 - T3 + 2 T4 - T5 + T8 -1 + T3 - 2 T4 + T5 + T6 - 2 T7 + T8

T8
,

1

T16
(-1 + T)2 5 - 18 T + 33 T2 - 32 T3 + 2 T4 + 42 T5 - 62 T6 - 8 T7 + 166 T8 - 242 T9 + 108 T10 +

132 T11 - 226 T12 + 148 T13 - 11 T14 - 36 T15 - 11 T16 + 148 T17 - 226 T18 + 132 T19 + 108 T20 -

242 T21 + 166 T22 - 8 T23 - 62 T24 + 42 T25 + 2 T26 - 32 T27 + 33 T28 - 18 T29 + 5 T30

MORE.

3. Some Context

TBW.

Acknowledgement. We wish to thank TBW comments and suggestions.
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