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Dedicated to the memory of V. F. R. Jones, 1952–2020, a friend and a mentor.

Abstract. In this note we give concise formulas, which lead to a simple and fast computer
program that computes a powerful knot invariant. This invariant ρ1 is not new, yet our
formulas are by far the simplest and fastest: given a knot we write one of the standard
matrices A whose determinant is its Alexander polynomial, yet instead of computing the
determinant we consider a certain quadratic expression in the entries of A´1. The proximity
of our formulas to the Alexander polynomial suggest that they should have a topological
explanation. This we don’t have yet.
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1. The Formulas

One of the selling points for this article is that the formulas in it are concise. Thus we
start by running through these formulas for a knot invariant ρ1 as quickly as we can. In
Section 2 we turn the formulas into a short yet very fast computer program, in Section 3 we
give a partial interpretation of the formulas in terms of car traffic on a knot diagram and use
it to prove the invariance of ρ1, and in Section 4 we quickly sketch the context: Alexander,
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Burau, Jones, Melvin, Morton, Rozansky, Overbay, and our own prior work. This article
accompanies two talks, [BN9] and [BN10] (videos and handouts available).
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Given an oriented n-crossing knot K, we draw it in the plane as a long

knot diagram D in such a way that the two strands intersecting at each
crossing are pointed up (that’s always possible because we can always rotate
crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram D3 is shown on the right.
We then label each edge of the diagram with two integer labels: a running

index k which runs from 1 to 2n ` 1, and a “rotation number” φk, the
geometric rotation number of that edge (the signed number of times the
tangent to the edge is horizontal and heading right, with cups counted with
`1 signs and caps with ´1; this number is well defined because at their
ends, all edges are headed up). On the right the running index runs from 1
to 7, and the rotation numbers for all edges are 0 (and hence are omitted)
except for φ4, which is ´1.

A Technicality. Some Reidemeister moves create or lose an edge and to
avoid the need for renumbering it is beneficial to also allow labelling the edges with non-
consecutive labels. Hence we allow that, and write i` for the successor of the label i along
the knot, and i`̀ for the successor of i` (these are i ` 1 and i ` 2 if the labelling is by
consecutive integers). Also, “1” will always refer to the label of the first edge, and “2n ` 1”
will always refer to the label of the last.

We let A be the p2n ` 1q ˆ p2n ` 1q matrix of Laurent polynomials in the formal variable
T defined by

A :“ I ´
ÿ

c

pT sEi,i� ` p1 ´ T s
qEi,j� ` Ej,j�q ,

where I is the identity matrix, Eαβ denotes the elementary matrix with 1 in row α and
column β and zeros elsewhere. The summation is over the crossings c of the diagram D, and
once c is chosen, s denotes its sign and i and j denote the labels below the crossing where
the label i belongs to the over-strand and j to the under-strand.

Alternatively, A “ I `
ř

c Ac, where Ac is a matrix of zeros except for the blocks as follows:

i ij

s “ `1 s “ ´1

j

j` i` i` j`

ÝÑ

Ac column i` column j`

row i ´T s T s ´ 1
row j 0 ´1

(1)

12

3
φ2“1

D1 D2

For example, if D “ D1 is the diagram with no crossings (as shown
on the right), the resulting matrix A is the 1 ˆ 1 identity matrix p1q. If
D “ D2 is the second diagram on the right (here s “ `1, pi, jq “ p2, 1q,
and pi`, j`q “ p3, 2q), then

A “

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚`

¨

˝

0 ´1 0
0 T ´ 1 ´T
0 0 0

˛

‚“

¨

˝

1 ´1 0
0 T ´T
0 0 1

˛

‚,

See http://drorbn.net/AP/Projects/APAI/
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and for D3 as on the first page, we have

A “

¨

˚

˚

˚

˚

˚

˝

1 ´T 0 0 T ´ 1 0 0
0 1 ´1 0 0 0 0
0 0 1 ´T 0 0 T ´ 1
0 0 0 1 ´1 0 0
0 0 T ´ 1 0 1 ´T 0
0 0 0 0 0 1 ´1
0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‚

.

We note without supplying details that the matrix A comes in a straightforward way from
Fox calculus as it is applied to the Wirtinger presentation of the fundamental group of the
complement of K (using the diagram D). Hence the determinant of A is equal up to a
unit to the normalized Alexander polynomial ∆ of K (which satisfies ∆pT q “ ∆pT ´1q and
∆p1q “ 1). In fact, we have that

∆ “ T p´φpDq´wpDqq{2 detpAq, (2)

where φpDq :“
ř

k φk is the total rotation number of D and where wpDq “
ř

c sc is the
writhe of D, namely the sum of the signs sc of all the crossings c in D.

For our example D2, detpAq “ T , φpDq “ 1, and wpDq “ 1, so ∆ “ T p´1´1q{2 ¨ T “ 1,
as expected for a diagram of the unknot. For D3, detpAq “ 1 ´ T ` T 2, φpDq “ ´1, and
wpDq “ 3, so ∆ “ T p1´3q{2p1 ´ T ` T 2q “ T ´ 1 ` T ´1, as expected for the trefoil knot.

We set1 G “ pgαβq “ A´1, and taking our inspiration from physics, we name gαβ the Green
function for the diagram D. For our three examples D1, D2, and D3, the Green function G
is respectively

´

1
¯

,

¨

˚

˝

1 T ´1 1
0 T ´1 1
0 0 1

˛

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 T 3
´T 2

`T
T 2´T `1 1 T 3

´T 2
`T

T 2´T `1 1 T 3
´T 2

`T
T 2´T `1 1

0 1 1
T 2´T `1

T
T 2´T `1

T
T 2´T `1

T 2

T 2´T `1 1

0 0 1
T 2´T `1

T
T 2´T `1

T
T 2´T `1

T 2

T 2´T `1 1

0 0 1´T
T 2´T `1

1
T 2´T `1

1
T 2´T `1

T
T 2´T `1 1

0 0 1´T
T 2´T `1

T ´T 2

T 2´T `1
1

T 2´T `1
T

T 2´T `1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3)

We can now define our invariant ρ1. It is the sum of two sums. The first is a sum of a
term R1pcq over all crossings c in D, where for such a crossing we let s denote its sign and
we let i and j denote the edge labels of the incoming over- and under-strands, respectively
and where

R1pcq :“ s pgji pgj�,j ` gj,j� ´ gijq ´ gii pgj,j� ´ 1q ´ 1{2q . (4)

The second sum is a sum over the edges k of D of a correction term dependent on the
rotation number φk. We multiply the result by ∆2 to “clear the denominators”2:

ρ1 :“ ∆2

˜

ÿ

c

R1pcq ´
ÿ

k

φk pgkk ´ 1{2q

¸

, (5)

Direct calculations show that ρ1pD1q “ 0 (as the sums are empty), ρ1pD2q “ 0, and
ρ1pD3q “ ´T 2 ` 2T ´ 2 ` 2T ´1 ´ T ´2.

1At T “ 1 the matrix A has 1’s on the main diagonal, p´1q’s on the diagonal above it, and 0’s everywhere
else. Hence A is invertible at T “ 1 and hence over the field of rational functions.

2R1psq is quadratic in the entries of G and hence it has denominators proportional to ∆2.

See http://drorbn.net/AP/Projects/APAI/
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Theorem 1 (“Invariance”, proofs in Section 3). The quantity ρ1 is a knot invariant.

As we shall see in the next section, ρ1 has more separation power than the Jones poly-
nomial, yet it is closer to the more topologically-meaningful Alexander polynomial ∆: it is
cooked up from the same matrix A and in terms of computational complexity, computing
ρ1 is not very different from computing ∆. In order to compute ∆ we need to compute the
determinant of A, while to compute ρ1 we need to invert A and then compute a sum of Opnq

terms that are quadratic in the entries of A´1.3 We have computed ρ1 for knots with over
200 crossings using the unsophisticated implementation presented in Section 2.

Topologists should be intrigued! ρ1 is derived from the same matrix as the Alexander
polynomial ∆, yet we have no topological interpretation for ρ1.

2. Implementation and Power

Two of the main reasons we like ρ1 is that it is very easy to implement and even an
unsophisticated implementation runs very fast. To highlight these points we include a full
implementation here, a step-by-step run-through, and a demo run. We write in Mathemat-
ica [Wo], and you can find the notebook displayed here at [BV4, APAI.nb].

We start by loading the library KnotTheory‘ [BM] (it is used here only for the list of knots
that it contains, and to compute other invariants for comparisons). We also load a minor
conversion routine [BV4, Rot.nb / Rot.m] whose internal workings are irrelevant here.

Once[<< KnotTheory`; << Rot.m];

Loading Rot.m from http://drorbn.net/APAI to compute rotation numbers.

2.1. The Program. This done, here is the full ρ1 program:

R1[s_, i_, j_] := s (gji (gj+,j + gj,j+ - gij) - gii (gj,j+ - 1) - 1/2);

ρ[K_] := ρ[K] = Module{Cs, φ, n, A, s, i, j, k, Δ, G, ρ1},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts

- 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ρ1 = 
k=1

n
R1 @@ Cs〚k〛 - 

k=1

2 n
φ〚k〛 (gkk - 1/2);

Factor@Δ, Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛;

The program uses mostly the same symbols as the text, so even without any knowledge
of Mathematica, the reader should be able to recognize at least formulas (1), (2), and (5)

3We prefer not to be more specific about the complexity of computing ρ1. It is the same as the complexity
of inverting A, and matrix inversion is poly-time, with a rather small exponent, even for matrices with entries
in a ring of polynomials (e.g. [St]). We have not explored how much one can further gain by exploiting the
fact that A is very sparse.

See http://drorbn.net/AP/Projects/APAI/
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within it. As a further hint we add that the variables Cs ends up storing the list of crossings
in a knot K, where each crossing is stored as a triple ps, i, jq, where s, i, and j have the same
meaning as in (1). The conversion routine Rot automatically produces Cs, as well as a list φ
of rotation numbers, given any other knot presentation known to the package KnotTheory‘.

Note that the program outputs the ordered pair p∆, ρ1q. The Alexander polynomial ∆ is
anyway computed internally, and we consider the aggregate p∆, ρ1q as more interesting than
any of its pieces by itself.

2.2. A Step-by-Step Run-Through. We start by setting K to be the knot diagram on
page 1 using the PD notation of KnotTheory‘ [BM]. We then print Rot[K], which is a list
of crossings followed by a list of rotation numbers:

K = PD[X[4, 2, 5, 1], X[2, 6, 3, 5], X[6, 4, 7, 3]];

Rot[K]

Next we set Cs and φ to be the list of crossings, and the list of rotation numbers, respec-
tively.

{Cs, φ} = Rot[K]

We set n to be the number of crossings, A to be the p2n ` 1q-dimensional identity matrix,
and then we iterate over c in Cs, adding a block as in (1) for each crossing.

n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts - 1

0 -1
;

Here’s what A comes out to be:

A // MatrixForm

1 -T 0 0 -1 + T 0 0

0 1 -1 0 0 0 0

0 0 1 -T 0 0 -1 + T

0 0 0 1 -1 0 0

0 0 -1 + T 0 1 -T 0

0 0 0 0 0 1 -1

0 0 0 0 0 0 1

We set ∆ to be the determinant of A, with a correction as in (2). So ∆ is the Alexander
polynomial of K.

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A]

1 - T + T2

T

See http://drorbn.net/AP/Projects/APAI/
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G is now the Inverse of A:

G = Inverse[A];

G // MatrixForm

1 T-T2+T3

1-T+T2
1 T-T2+T3

1-T+T2
1 T-T2+T3

1-T+T2
1

0 1 1

1-T+T2
T

1-T+T2
T

1-T+T2
T2

1-T+T2
1

0 0 1

1-T+T2
T

1-T+T2
T

1-T+T2
T2

1-T+T2
1

0 0 1-T

1-T+T2
1

1-T+T2
1

1-T+T2
T

1-T+T2
1

0 0 1-T

1-T+T2
T-T2

1-T+T2
1

1-T+T2
T

1-T+T2
1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

It remains to blindly follow the two parts of Equation (5):

1 =
k=1

n
R1 @@ Cs k -

k=1

2 n
k (gkk - 1 / 2)

-2 + g4,4 - g1,1 (-1 + g4,4+) - (-1 + g2,2+) g5,5 - g3,3 (-1 + g6,6+) +

g2,5 (g2,2+ - g5,2 + g2+,2) + g4,1 (-g1,4 + g4,4+ + g4+,4) + g6,3 (-g3,6 + g6,6+ + g6+,6)

We replace each gαβ with the appropriate entry of G:

Δ
2
ρ1 /. _+

 + 1 /. g _, _  G〚 , 〛

1 - T + T22
-1 +

T

1-T+T22
-

-1+
1

1-T+T2

1-T+T2

T2

Finally, we output both ∆ and ρ1. We factor them just to put them in a nicer form:

Factor@Δ, Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛


1 - T + T2

T
, -

(-1 + T)2 1 + T2

T2


2.3. A Demo Run. Here are ∆ and ρ1 of all the knots with up to 6 crossings (a table up
to 10 crossings is printed at [BV3]:

TableForm[Table[Join[{K}, ρ[K]], {K, AllKnots[{3, 6}]}], TableAlignments  Center]

KnotTheory: Loading precomputed data in PD4Knots`.

See http://drorbn.net/AP/Projects/APAI/
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Figure 2.1. A 48-crossing knot from [GST].

Knot[3, 1] 1-T+T2

T

(-1+T)2 1+T2

T2

Knot[4, 1] -
1-3 T+T2

T
0

Knot[5, 1] 1-T+T2-T3+T4

T2

(-1+T)2 1+T2 2+T2+2 T4

T4

Knot[5, 2] 2-3 T+2 T2

T

(-1+T)2 5-4 T+5 T2

T2

Knot[6, 1] -
(-2+T) (-1+2 T)

T

(-1+T)2 1-4 T+T2

T2

Knot[6, 2] -
1-3 T+3 T2-3 T3+T4

T2

(-1+T)2 1-4 T+4 T2-4 T3+4 T4-4 T5+T6

T4

Knot[6, 3] 1-3 T+5 T2-3 T3+T4

T2
0

Some comments are in order:

‚ If K̄ is the mirror of a knot K, then ρ1pK̄qpT q “ ´ρ1pKqpT ´1q. Indeed in (5) both R1pcq

and φk flip sign under reflection in a plane perpendicular to the plane of the knot diagram,
and the matrix A and hence also all the gαβ’s are the same except for the substitution
T Ñ T ´1.

‚ ρ1 seems to always be divisible by pT ´ 1q2 and seems to always be palindromic (ρ1pT q “

ρ1pT
´1q). We are not sure why this is so.

‚ The last properties taken together would imply that ρ1 vanishes on amphicheiral knots,
such as 41 and 63 above.

Next is one of our favourites, a knot from [GST] (see Figure 2.1), which is a potential
counterexample to the ribbon“slice conjecture [Fo]. It takes about two minutes to compute
ρ1 for this 48 crossing knot (note that Mathematica prints Timing information is seconds,

See http://drorbn.net/AP/Projects/APAI/
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and that this information is highly dependent on the CPU used, how loaded it is, and even
on its temperature at the time of the computation):

Timing@ρEPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95, X96,7, X13,8, X9,28, X10,41, X42,11,

X27,12, X30,15, X16,61, X17,72, X18,83, X19,34, X89,20, X21,92, X79,22, X68,23, X57,24,

X25,56, X62,31, X73,32, X84,33, X50,35, X36,81, X37,70, X38,59, X39,54, X44,55, X58,45,

X69,46, X80,47, X48,91, X90,49, X51,82, X52,71, X53,60, X63,74, X64,85, X76,65, X87,66,

X67,94, X75,86, X88,77, X78,93

158.625, -
-1 + 2 T - T2 - T3 + 2 T4 - T5 + T8 -1 + T3 - 2 T4 + T5 + T6 - 2 T7 + T8

T8
,

1

T16
(-1 + T)2 5 - 18 T + 33 T2 - 32 T3 + 2 T4 + 42 T5 - 62 T6 - 8 T7 + 166 T8 - 242 T9 + 108 T10 +

132 T11 - 226 T12 + 148 T13 - 11 T14 - 36 T15 - 11 T16 + 148 T17 - 226 T18 + 132 T19 + 108 T20 -

242 T21 + 166 T22 - 8 T23 - 62 T24 + 42 T25 + 2 T26 - 32 T27 + 33 T28 - 18 T29 + 5 T30

2.4. The Separation Power of ρ1. Let us check how powerful ρ1 is on knots with up to
12 crossings:

{NumberOfKnots[{3, 12}],

Length@Union@Table[ρ[K], {K, AllKnots[{3, 12}]}],

Length@Union@Table[{HOMFLYPT[K], Kh[K]}, {K, AllKnots[{3, 12}]}]}

{2977, 2882, 2785}

So the pair p∆, ρ1q attains 2,882 distinct values on the 2,977 prime knots with up to 12
crossings (a deficit of 95), whereas the pair pH, Khq “ (HOMFLYPT polynomial, Khovanov
Homology) attains only 2,785 distinct values on the same knots (a deficit of 192).

In our spare time we computed all of these invariants on all the prime knots with up to
14 crossings. On these 59,937 knots the pair p∆, ρ1q attains 53,684 distinct values (a deficit
of 6,253) whereas the pair pH, Khq attains only 49,149 distinct values on the same knots (a
deficit of 10,788).

Hence the pair p∆, ρ1q, computable in polynomial time by simple programs, seems stronger
than the pair pH, Khq, which is more difficult to program and (for all we know) cannot be
computed in polynomial time. We are not aware of another poly-time invariant as strong as
the pair p∆, ρ1q.

3. Proofs of Theorem 1, the Invariance Theorem

We tell the proof of the Invariance Theorem (Theorem 1) in two ways: an elegant and
intuitive though slightly lacking telling in Section 3.2, and a complete though slightly dull
telling in Section 3.3. But first, a few common elements.

3.1. Common Elements. Two upright knot diagrams are considered the same (as dia-
grams) if their underlying knot diagrams are the same, and if the respective rotation numbers
of their edges are all the same. It is clear that ρ1 is well defined on upright knot diagrams.
To prove Theorem 1 we need to know what to prove. Namely, when do two upright knot di-
agrams represent the same knot? This is answered in the spirit of the classical Reidemeister
theorem by the following:

See http://drorbn.net/AP/Projects/APAI/
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R2cR1rR1l R2b

R3 Sw`

Figure 3.1. The upright Reidemeister moves: Reidemeister 1 left and right, Reide-
meister 2 braid-like and cyclic, Reidemeister 3, and (the `) Swirl.

Theorem 2 (“Upright Reidemeister”). Two upright knot diagrams represent the same knot
if and only if they differ by a sequence of R1l, R2r, R2b, R2c, R3, and Sw` moves as in
Figure 3.1.

Sketch of the proof. In the case of round knots (i.e., not “long”), knot diagrams can be
turned upright by rotating individual crossings. The only ambiguity here is by powers of
the full rotation, the swirls Sw` and Sw´ (where Sw´ is the same as Sw` except with a
negative crossing, and we don’t need to impose it separately as it follows from Sw` and R2).
Hence we have a well-defined map from tknot diagramsu to tupright knot diagramsu{Sw˘.
It remains to write the usual Reidemeister moves between knot diagrams as moves between
upright knot diagrams. The result are the moves R1l, R2r, R2b, R2c, and R3. Note that
unoriented knot theory is presented with just three Reidemeister moves, but these split into
several versions in the oriented case. The sufficiency of the versions we picked can be found
in [Po]. In the case of long knots a minor further complication arises, regarding the rotation
numbers of the initial and final edges. We leave the details of the problem and its resolution
to the reader. l

Our key formulas, (4) and (5) involve the Green function gαβ. We need to know that it
is subject to some relations, the g-rules of Lemma 3 below, whose proof is so easy that it
comes first:
Proof of Lemma 3. The first set of g-rules reads out column β of the equality AG “ I, and
the second set of g-rules reads out row α of the equality GA “ I. l

Lemma 3 (“g-rules”). Given a fixed upright knot diagram D, its corresponding matrix A,
and its inverse G “ pgαβq, and given a crossing c “ ps, i, jq in D (with s, i, and j as before),
the following two sets of relations (the g-rules) hold (with δ denoting the Kronecker delta):

giβ “ δiβ ` T sgi�,β ` p1 ´ T s
qgj�,β, gjβ “ δjβ ` gj�,β, g2n`1,β “ δ2n`1,β (6)

and

gαi “ T ´s
pgα,i� ´ δα,i�q, gαj “ gα,j� ´ p1 ´ T s

qgαi ´ δα,j� , gα,1 “ δα,1. (7)

Furthermore, for each fixed β there are 2n ` 1 g-rules of type (6) (the first two depend on a
choice of one of n crossings, and the third is fixed, to a total of 2n ` 1 rules). These fully
determine the 2n`1 scalars gαβ corresponding to varying α. Similarly, for each fixed α there

See http://drorbn.net/AP/Projects/APAI/



10 DROR BAR-NATAN AND ROLAND VAN DER VEEN

are 2n ` 1 g-rules of type (7). These fully determine the 2n ` 1 scalars gαβ corresponding to
varying β.

For use later, we teach our computer about g-rules:

δi_,j_ := If[i === j, 1, 0];

gRuless_,i_,j_ := giβ_  δiβ + Ts gi+,β + 1 - Ts gj+,β, gjβ_  δjβ + gj+,β,

gα_,i  T-s (gα,i+ - δα,i+), gα_j  gα,j+ - 1 - Ts gαi - δα,j+

(α_+
)
+ := α "++"; (* this is for cosmetic reasons only *)

3.2. Cars, Traffic Counters, and Interchanges. Our first proof of Theorem 1 is slightly
informal as it uses the language and intuition of probability theory even though our “proba-
bilities” are merely algebraic formulae and not numbers between 0 and 1. Seasoned mathe-
maticians should see that there is no real problem here. Yet just to be safe, we also include
a fully formal proof in Section 3.3.

Cars ( , ) travel on knot diagrams subject to the following three rules, inspired by
Jones’ “bowling balls” [Jo] and by Lin, Tian, and Wang’s “random walks” [LTW] (within
the proof of Proposition 5 below we will see that these rules are equivalent to the g-rules of
Equation (6) above):

‚ On plain roads (edges) they travel following the orientation of the edge.
‚ When reaching an underpass (the lower strand of a crossing), cars just pass through.
‚ When reaching an overpass cars pass through with probability T s (where s “ ˘1 is the

sign of the crossing), yet drop over to the lower strand with the complementary probability
of 1 ´ T s.

These rules can be summarized by the following pictures:

p “ 1´ T s

1´T T 1 0 0 1 T�1 1´T�1

In these pictures the horizontal struts represent “traffic counters” which measure the
amount of traffic that passes through their respective roads, and the output reading of these
counters is printed above them. Thus for example, the last interchange picture indicates
that if a unit stream of cars is injected into the diagram on the bottom right and two traffic
counters are placed at the top, then the first of these will read a car intensity of T ´1 and
the second p1 ´ T ´1q.
Note that our probabilities aren’t really probabilities, if only because T and T ´1 cannot

both be between 0 and 1 simultaneously. Yet we will manipulate them algebraically as if
they are probabilities, restricting ourselves to equalities and avoiding inequalities. With this
restriction, we can use intuition from probability theory. We will pretend that T s „ 1,
or equivalently, that 1 ´ T s „ 0. This has an algebraic meaning that does not refer to
inequalities. Namely, certain series can be deemed summable. For example,

ÿ

rě0

p1 ´ T s
q
r

“
1

1 ´ p1 ´ T sq
“ T ´s.

See http://drorbn.net/AP/Projects/APAI/
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1

3

2

D2

Example 4. Cars are injected on edge #1 of the diagram D2 of Section 1 as
indicated on the right. What does the indicated traffic counter on edge #2
measure?
Solution. Every car coming through the interchange from #1 passes through
the underpass and comes to #2, so the counter reads “1” just for this traffic.
But then these cars continue and pass on the overpass, and p1 ´ T q of them fall down and
continue through edge #2 and get counted again. But then these fallen cars continue and
pass on the overpass once again, and p1´T q of them, meaning p1´T q2 of the original traffic,
fall once more and contribute a further reading of p1 ´ T q2. This process continues and the
overall counter reading is

1 ` p1 ´ T q ` p1 ´ T q
2

` p1 ´ T q
3

` . . . “
1

1 ´ p1 ´ T q
“ T ´1.

Note that this is exactly the row 1 column 2 entry of the matrix G computed for this tangle
in (3).

We claim that this is general:

Proposition 5. For a general knot diagram D, the entry gαβ of its Green function is equal
to the reading of a traffic counter placed at β given that traffic is injected into D at α. (In
the case where α “ β, the counter is placed after where the traffic is injected, not before).

Proof. Consider the g-rules of type (6). The third, g2n`1,β “ δ2n`1,β is the statement that
if traffic is injected on the outgoing edge of D, it can only be measured on the outgoing
edge of D (so traffic never flows backwards). The second, gjβ “ δjβ ` gj�,β, is the statement
that traffic goes through underpasses undisturbed, so gjβ “ gj�,β unless the traffic counter
β is placed between j and j`, in which case it measures one unit more if the cars are
injected before it, at j, rather than after it, at j`. Similarly the first of these g-rules,
giβ “ δiβ ` T sgi�,β ` p1´ T sqgj�,β, is the statement of the behaviour of traffic at overpasses.
Thus the rules in (6) are obeyed by cars and traffic counters, and as the rules in (6) determine
gαβ, the proposition follows. l

Proposition 6. The quantity ρ1 is invariant under R3.

Proof. We first show that cars entering a multiple interchange styled as the left hand side of
the R3 move, exit it with the exact same distribution as cars entering the multiple interchange
styled as the right hand side. The hardest part of that computation is when cars enter at
the bottom left (at i) and it boils down to the equality 1´T “ p1´T q2`T p1´T q:

1´T

1´T

p1´T q2`T p1´T qT 2T p1´T q p1´T qT T 2

T p1´T q

T

T

i j k

i`

j`̀k`̀ i`̀

j`

k`

i j k

i`

j`
k`

k`̀ j`̀ i`̀

“

See http://drorbn.net/AP/Projects/APAI/
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side:

gi,β “ δiβ`Tgi`,β`p1´T qgk`̀ ,β

gk`,β “ gk`̀ ,β

gi`,β “ Tgi`̀ ,β`p1´T qgj`̀ ,β

gj`,β “ gj`̀ ,β

gj,β “ δjβ`Tgj`,β`p1´T qgk`,β

gk,β “ δkβ`gk`,β

g1
i`,β “ Tg1

i`̀ ,β`p1´T qg1
k`,β

g1
k,β “ δkβ`g1

k`,β

g1
j`,β “ Tg1

j`̀ ,β`p1´T qg1
k`̀ ,β

g1
k`,β “ g1

k`̀ ,β

g1
i,β “ δiβ`Tg1

i`,β`p1´T qg1
j`,β

g1
j,β “ δjβ`g1

j`,β

k`̀ j`̀ i`̀

i j k

i`

j`

k`

k`̀ j`̀ i`̀

i j k

i`

j`

k`

A routine computation (eliminating gi�,β, gj�,β, and gk�,β) shows that the first system of
6 equations is equivalent to the following 3 equations:

gi,β “ δiβ ` T 2gi��,β ` T p1 ´ T qgj��,β ` p1 ´ T qgk��,β,

gj,β “ δjβ ` Tgj��,β ` p1 ´ T qgk��,β, and gk,β “ δkβ ` gk��,β.

Similarly eliminating g1
i�,β, g1

j�,β, and g1
k�,β from the second set of equations, we find that it

is equivalent to

g1
i,β “ δiβ ` T 2g1

i��,β ` T p1 ´ T qg1
j��,β ` p1 ´ T qg1

k��,β,

g1
j,β “ δjβ ` Tg1

j��,β ` p1 ´ T qg1
k��,β, and g1

k,β “ δkβ ` g1
k��,β.

But these two sets of equations are the same, and as stated in g-rules lemma (Lemma 3),
along with the g-rules corresponding to the other crossings in D (which are also the same
between g and g1), these equations determine gαβ and g1

αβ, for α, β R ti`, j`, k`u. So with this
exclusion on α and β, we have that gαβ “ g1

αβ. But this means that the summations (5) in
the definitions of ρ1 are equal for the two sides of R3, except perhaps for the three summands
on each side that come from the crossings that touch ti`, j`, k`u.
What remains is completely mechanical. We just need to compute the sum of those

three summands for both sides of R3, and apply to it the g-rules of types (6) and (7) that
eliminate the indices ti`, j`, k`u. The computation is easy enough to be done by hand, yet
why bother? Here’s the machine version (it takes less typing to apply all relevant g-rules
and also eliminate the indices ti, j, ku):

lhs = Simplify

R1[1, j, k] + R1[1, i, k+
] + R1[1, i+, j+

] //. gRules1,j,k ⋃ gRules1,i,k+ ⋃ gRules1,i+,j+

-
1

2 T2
-2 (-1 + T) T gj++,i++

2
+ 2 gj++,i++

T2 + T2 gi++,j++ - 2 T2 gj++,j++ + gk++,i++ - 2 T gk++,i++ + T2 gk++,i++ - T gk++,j++ + T2 gk++,j++ +

2 gi++,i++ -2 T2 + (-1 + T) T gj++,i++ + T2 gj++,j++ - gk++,i++ + T gk++,i++ + T2 gk++,k++ +

T 3 T - 2 (-1 + T) gk++,i++
2

+ 2 T gk++,j++ + 2 T gj++,k++ gk++,j++ + 2 gk++,j++
2

-

2 T gk++,j++
2

+ 2 gj++,j++ (-1 + T) gk++,i++ + (-1 + T) gk++,j++ + T -1 + gk++,k++ -

4 T gk++,j++ gk++,k++ + 2 gk++,i++ T + T gi++,k++ - 2 (-1 + T) gk++,j++ - 2 T gk++,k++

rhs = Simplify

R1[1, i, j] + R1[1, i+, k] + R1[1, j+, k+
] //. gRules1,i,j ⋃ gRules1,i+,k ⋃ gRules1,j+,k+

See http://drorbn.net/AP/Projects/APAI/
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-
1

2 T2
-2 (-1 + T) T gj++,i++

2
+ 2 gj++,i++

T2 + T2 gi++,j++ - 2 T2 gj++,j++ + gk++,i++ - 2 T gk++,i++ + T2 gk++,i++ - T gk++,j++ + T2 gk++,j++ +

2 gi++,i++ -2 T2 + (-1 + T) T gj++,i++ + T2 gj++,j++ - gk++,i++ + T gk++,i++ + T2 gk++,k++ +

T 3 T - 2 (-1 + T) gk++,i++
2

+ 2 T gk++,j++ + 2 T gj++,k++ gk++,j++ + 2 gk++,j++
2

-

2 T gk++,j++
2

+ 2 gj++,j++ (-1 + T) gk++,i++ + (-1 + T) gk++,j++ + T -1 + gk++,k++ -

4 T gk++,j++ gk++,k++ + 2 gk++,i++ T + T gi++,k++ - 2 (-1 + T) gk++,j++ - 2 T gk++,k++

l

Proposition 8. The quantity ρ1 is invariant under R2c.

Proof. We follow the exact same steps as in the case of R3. First, we write the g-rules,
assuming β isn’t in ti, j, i`, j`u:

H

j`̀

i`̀

φ
j

`̀
“
1j

i`̀

j`̀

i

i`

gi`,β “ Tgi`̀ ,β ` p1´ T qgj`,β

gj,β “ gj`,β

gi,β “ T´1gi`,β ` p1´ T´1qgj`̀ ,β

gj`,β “ gj`̀ ,β

j`

φ
j

`
“
1

Note that for the right hand side we allowed ourselves to label the edges i`̀ and j`̀ as
the computation is independent of the labelling and the labelling need not be by contiguous
integers (outside of the move area, we assume that the left hand side and the right hand side
are labelled in the same way). Note also that for the right hand side, there are no relevant
g-rules. Now as in the case of R3, for the left hand side we eliminate gi�,β and gj�,β and we
are left with the relations

gi,β “ gi��,β and gj,β “ gj��,β.

Otherwise the g-rules for the left and for the right are the same, and so their Green functions
are the same except if the indices are in ti, j, i`, j`u (these indices do not even appear in the
right hand side). Thus the contribution to ρ1 from outside the area of the move is the same
for both sides.

Next we write the contribution to ρ1 coming from the two crossings and one rotation that
appear on the left, and use the g-rules to push all the indices in ti, j, i`, j`u up to i`̀ and
j`̀ . This can be done by hand, but seeing that we have tools, we use them:

Simplify[R1[-1, i, j+] + R1[1, i+, j] - (gj+,j+ - 1/2)]

lhs = SimplifyR1[-1, i, j+] + R1[1, i+, j] - (gj+,j+ - 1/2) //. gRules-1,i,j+ ⋃ gRules1,i+,j

1

2
- (-1 + gj,j+) gi+,i+ + gj,i+ (gj,j+ - gi+,j + gj+,j) +

gi,i -1 + gj+,j++ - gj+,i -gi,j+ + gj++,j+ + gj+,j++ - gj+,j+

1

2
- gj++,j++

See http://drorbn.net/AP/Projects/APAI/
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This result is clearly equal to the single rotation contribution to ρ1 that comes from the
right hand side. l

Proposition 9. The quantity ρ1 is invariant under R1l.

Proof. We start with the relevant g-rules:

i`̀

H

i

i`

i`̀

gi`,β “ δi`,β ` Tgi`̀ ,β ` p1´ T qgi`,β

gi,β “ δi,β ` gi`,β

The first of these rules is equivalent to gi�,β “ T ´1δi�,β ` gi��,β. For β ‰ i, i` we find as
before that gi,β “ gi��,β and we can ignore the contributions to ρ1 coming from outside the
area of the move. The contribution to ρ1 coming from the single crossing and single rotation
on the left hand side is computed below, and is equal to the empty contribution coming from
the right hand side:

lhs1 = R1[1, i+, i] - (gi+,i+ - 1/2)

lhs2 = lhs1 //. gi+,β_  T-1
δi+,β + gi++,β, gi,β_  δi,β + gi+,β

Simplify[lhs2]

gi,i+
2

- gi+,i+ - (-1 + gi,i+) gi+,i+

-
1

T
- gi++,i+ - -1 +

1

T
+ gi++,i+

1

T
+ gi++,i+ +

1

T
+ gi++,i+

2

0

l

Second Proof of Theorem 1, “Invariance”. After the Upright Reidemeister Theorem (The-
orem 2) which sets out what we need to do, and Propositions 7, 8, and 9 which prove
invariance under R3, R2c, and R1l, it remains to show the invariance of ρ1 under R1r, R2b,
and Sw`. This is done exactly as in the examples already shown, so in each case we show
only the punch line:

SimplifyR1[1, i, i+] + (gi+,i+ - 1/2) //.  (* R1r *)

giβ_  δiβ + T gi+,β + (1 - T) gi++,β, gi+,β_  δi+,β + gi++,β,

gα_,i  T-1 (gα,i+ - δα,i+), gα_,i+  T gα,i++ - (1 - T) δα,i+ - T δα,i++ 

0

(Note that the version of the g-rules we used above easily follows from (7)).

SimplifyR1[1, i, j] + R1[-1, i+, j+] //. gRules1,i,j ⋃ gRules-1,i+,j+ (* R2b *)

0

(gi,i - 1/2) + (gj,j - 1/2) - (gi+,i+ - 1/2) - (gj+,j+ - 1/2) //. gRules1,i,j (* Sw+ *)

0

l

See http://drorbn.net/AP/Projects/APAI/
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4. Some Context and Some Morals

We would like to emphasize again that ρ1 seems very close to the Alexander polynomial,
yet we have no topological interpretation for it. Until that changes, where is ρ1 coming from?

It comes via a lengthy path, which we will only sketch here. For a while now [BV1, BV3,
BN2, BN3, BN4, BV2, BN5, BN6, BN8] we’ve been studying quantum invariants related to
the Lie algebra slϵ2`, the 4-dimensional Lie algebra with generators y, b, a, x and brackets

rb, xs “ ϵx, rb, ys “ ´ϵy, rb, as “ 0, ra, xs “ x, ra, ys “ ´y, rx, ys “ b ` ϵa,

where ϵ is a scalar. The beauty of this algebra stems from the following:

‚ It is a “classical double” of a two dimensional the Lie bialgebra xa, xy, with

ra, xs “ x, δpaq “ 0, δpxq “ ϵx ^ a,

and hence quantization tools are available and are used below (e.g. [ES]).
‚ At invertible ϵ it is isomorphic to sl2 ‘ xty, where t is a central element5. Quantum
topology tells us that the algebra sl2 is related to the Jones polynomial. In fact, the
universal quantum invariant (see [La1, La2, Oh]) for the Lie algebra sl2 is equivalent to
the coloured Jones polynomial of [Jo].

‚ At ϵ “ 0 it becomes the diamond Lie algebra ˛, a solvable algebra in which computations
are easier. The algebra ˛ is the semi-direct product of the unique non-commutative 2D Lie
algebra a with its dual, and quantum topology tells us that it is related to the Alexander
polynomial [BN1, BD].

The last two facts taken together tell us that the Alexander polynomial is some limit
of the coloured Jones polynomial (originally conjectured [MM, Ro1] and proven by other
means [BNG]).

We can make this a bit more explicit. By using the Drinfel’d quantum double construc-
tion [Dr] we find that the universal enveloping algebra Upslϵ2`q has a quantization QU , which
has an R-matrix solving the Yang-Baxter equation (meaning, satisfying the R3 move, in the
appropriate sense). These are given by:

QU “ Axy, b, a, xy

Nˆ

rb, as “ 0, rb, xs “ ϵx, rb, ys “ ´ϵy,

ra, xs “ x, ra, ys “ ´y, xy ´ qyx “ 1´e�ℏpb�ϵaq

ℏ

˙

,

where Axgensy is the free associative algebra with generators gens, and q “ eℏϵ, and

R “
ÿ

m,ně0

ynbm b pℏaqmpℏxqn

m!rnsq!

˜

where rnsq! “

n
ź

k“1

1 ´ qk

1 ´ q
is a “quantum factorial”

¸

.

Thus there is an associated universal quantum invariant of knots ZϵpKq P QU (which, as
stated, is equivalent to the coloured Jones polynomial). In our talks and papers we show
that Zϵ can be expanded as a power series in ϵ, that at ϵ “ 0 it is equivalent to the Alexander
polynomial, and that in general, the coefficient Zpkq of ϵk in Zϵ can be computed in polynomial
time and is homomorphic, meaning that it leads to an “algebraic knot theory” in the sense
of (say) [BN7]. We also know that the excess information in Zpkq (beyond the information
in tZp0q, . . . , Zpk´1qu) is contained in a single polynomial, ρk. The first of these polynomials
is ρ1 of this paper.

5 Via the isomorphism

ˆ

1 0
0´1

˙

Ø ϵ´1b` a,

ˆ

0 1
0 0

˙

Ø x,

ˆ

0 0
1 0

˙

Ø ϵ´1y, and tØ b´ ϵa.
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But how did we arrive at the specific formulas of this paper? As often seen with quanti-
zations, QU is isomorphic (though only as an algebra, not as a Hopf algebra) with Upslϵ2`q,
and the latter can be represented into the Heisenberg algebra H “ Axp, xy{prp, xs “ 1q via

y Ñ ´tp ´ ϵ ¨ xp2, b Ñ t ` ϵ ¨ xp, a Ñ xp, x Ñ x,

(abstractly, slϵ2` acts on its Verma module Upslϵ2`q{pUpslϵ2`qxy, a, b ´ ϵa ´ tyq – Qrxs by
differential operators, namely via H). So QU ’s R-matrix can be expanded in powers of ϵ and
pushed to Upslϵ2`q and on to H, resulting in R “ R0p1 ` ϵR1 ` ¨ ¨ ¨ q, with R0 “ etpxpb1´xbpq

and R1 a quartic polynomial in p and x. Now all the computations for ρ1 can be carried out
by pushing around a rather small number of p’s and x’s (at most 4), and this can be done
using the rules

pp b 1qR0 “ R0pe
t
pp b 1q ` p1 ´ etqp1 b pqq,

p1 b pqR0 “ R0p1 b pq,

which, after setting T “ et, must remind the reader of Equation (1). When all the dust
settles, the resulting formulas are similar to the ones in Equations (4) and (5) (but only
similar, because we applied some ad hoc cosmetics to make the formulas appear nicer).

There are some morals to this story:

(1) The definition of ρ1 in Section 1 and the proofs of its invariance in Section 3 are clearly
much simpler than the origin story, as outlined above. So quite clearly, we still don’t
understand ρ1. There ought to be a room for it directly within topology, that does not
require that one would know anything about quantum algebra. (And better if that room
is large enough to accommodate morals (2) and (6) below).

(2) Like there is ρ1, there are ρk. The origin story tells us that ρk should have a formula as
a summation over choices of k-tuples of features of the knot (crossings and rotations),
just as the formula for ρ1 is a single summation over these features. The summand for
ρk will be a degree 2k polynomial in the Green function gαβ (compare with (4), which is
quadratic). As a k-fold summation, after inverting A, ρk should be computable in Opnkq

additions and multiplications of polynomials in T , where n is the crossing number.
(3) These ρk should be equivalent to the invariants in our earlier works [BV1, BV3, BN2,

BN3, BN4, BV2, BN5, BN6, BN8].
(4) These ρk should be equivalent to the invariants studied earlier by Rozansky and Over-

bay [Ro1, Ro2, Ro3, Ov], as their quantum origin is essentially the same (though strictly
speaking, we have not written proofs of that, and normalizations may differ). Our formu-
las are significantly simpler and faster to compute than the Rozansky-Overbay formulas,
and in our language it is easier to see the behaviour of ρ1 under mirror reflection (see
Section 2.3).

(5) Like the Rozansky-Overbay invariants, ρk should be equivalent to the “higher diagonals”
for the Melvin-Morton expansion (e.g. [Ro3]) and should be dominated by the “loop
expansion” of the Kontsevich integral [Kr, GR].

(6) The quantum algebra story extends to other Lie algebras, beyond sl2. So there should be
variants ρg

k of ρk at least for every semisimple Lie algebra g, given by more or less similar
formulas. Quantum algebra suggests that ρg

k should be a polynomial in as many variables
as the rank of g, and should in general be stronger than the “base” ρk. We have not
seriously explored ρg

k yet, though some preliminary work was done by Schaveling [Sch].

See http://drorbn.net/AP/Projects/APAI/
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(7) It appears that QU has interesting traces and therefore that there should be a link version
of ρ1. We have not pursued this formally.

(8) QU has a co-product and an antipode, and so the universal tangle invariant associated
with QU has formulas for strand reversal and strand doubling (e.g. [BV3, BN6]). This
implies (e.g., by following the ideas of [BN7]) that there should be formulas for ρ1 that
start with a Seifert surface for the knot. We are pursuing such formulas now; we already
know that the degree of ρ1 is bounded by 2g, where g is the genus of a knot [BV3].

(9) For the same reasons, for ribbon knots ρ1 should have a formula computable from a ribbon
presentation, and its values might be restricted in a manner similar to the Fox-Milnor
condition [FM]. We are pursuing this now.

(10) The coloured Jones polynomial is invariant under mutation so we expect ρ1 to likewise
be invariant under mutation (and indeed, also ρk), yet we do not have a direct proof of
that yet. Note that we can expect ρg

k for higher-rank g to no longer be invariant under
mutation.
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