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1 Introduction

2 Classical double

For parameters β, γ consider the Lie bialgebra a (the 2d affine algebra) generated
by u,w subject to the relation [u,w] = βw and with cobracket δ : a→ Λ2a given
by δ(u) = 0 and δ(w) = γw ∧ u. It clearly satisfies the co-Jacobi identity and
the cocycle identity is clear too: δ([u,w]) = βγw ∧ u = (1⊗ adu + adu⊗ 1− 1⊗
adw − adw ⊗ 1)δ(w).

The dual a∗ has dual basis n,m where m is dual to w and n is dual to u
(notice the dual is the same symbol written upside down). The dual bracket
and cobracket are [ , ]a∗ = δ∗ and δa∗ = [ , ]∗ given by [m,n] = γm and
δ(n) = 0, δ(m) = βn ∧m

The classical double is the vector space Da = a + a∗op together with the
following Lie algebra structure. Here a∗op is the dual with opposite cobracket
δa∗op = −δa∗ . The bracket on the double is defined by viewing a and a∗ as Lie
subalgebras of Da and extending the pairing to a non-degenerate form given
by 〈φ + a, φ′ + a′〉 = φ(a′) + φ′(a). Next we extend the Lie bracket to make
sure that the pairing is invariant in the sense that: 〈[φ, a], a′〉 = 〈φ, [a, a′]〉 and
〈[a, φ], φ′〉 = 〈a, [φ, φ′]〉.

In our example this means

[n, u] = 0 [m,u] = βm [n,w] = γw [m,w] = −βn− γu

since for example 〈[m,u], n〉 = −〈u, [m,n]〉 = 0 and 〈[m,u],m〉 = −〈u, [m,m]〉 =
0 and 〈[m,u], u〉 = 〈m, [u, u]〉 = 0 and 〈[m,u], w〉 = 〈m, [u,w]〉 = β.

The co-bracket on Da is defined to be δa − δa∗
The canonical element r =

∑
i ei ⊗ ei ∈ Da is a quasitriangular structure:

It satisfies CYBE, and ∂r = δ and r + σ(r) is Da invariant, where σ(x ⊗ y) =
y ⊗ x. In our case we have r = u ⊗ n + w ⊗m and hence δ(u) = u.r = 0 and
δ(w) = w.r = −βw⊗ n− u⊗ γw+w⊗ (βn+ γu) = γw ∧ u and δ(m) = m.r =
βm⊗n−u⊗γm−βn⊗m+γu⊗m = −δa∗(m) = δa∗op(m). And CYBE yields
[r12, r13] + [r12, r23] + [r13, r23] = [u,w]⊗ n⊗m+ [w, u]⊗m⊗ n+ u⊗ [n,w]⊗
m+ w ⊗ [m,u]⊗ n+ w ⊗ [m,w]⊗m+ u⊗ w ⊗ [n,m] + w ⊗ u⊗ [m,n] = 0
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Alternatively we could have derived the bialgebra structure on Da from the
assumptions that Da = a⊕ a∗ as vector space and both a and a∗op inject in the
obvious way as sub Lie-bialgebras and the canonical element is a quasi-triangular
structure.

3 The Hopf algebra structure on U(a)
We now consider the universal enveloping algebra U(a) and attempt to deform
it using power series in the variable h. This allows us to turn U(a)[[h]] into a
Hopf algebra that is a quantization of U(a) in the following sense. Instead of
the usual coproduct ∆0(X) = X1 +X2 we want a coproduct ∆ that reflects the
cobracket. We require ∆(a)−∆op(a) = hδ(a) mod h2 and ∆ = ∆0 mod h.

In our case we have δ(u) = 0 so the simplest possible ∆ sets ∆(u) = u1 +u2.
The simplest(?) choice for ∆(w) is to respect the w-grading on a that gives w
degree 1 and u degree 0 so as to set ∆(w) = w1f2 + g1w2 for f, g ∈ U(a)[[h]]
independent of w. Applying the counit (or ∆ = ∆0 mod h) suggests f, g = 1
mod h. Coassociativity of ∆ forces ∆(f) = f ⊗ f and the same for g. A short
calculation then shows (Chari-Pressley p.193) that any grouplike f as above is
of the form ehµu for some µ ∈ Q[[h]]. We may therefore set

∆(w) = ehµu2w1 + ehµ
′u1w2

To reflect the cobracket we must have µ′−µ = γ mod h and since there seems
no point in adding higher order terms we settle for µ = γ and µ′ = 0. Other
choices (of lowest order) are equivalent and may be obtained anyway by rescaling
w by the group-like ehνu. In conclusion we have

∆(u) = u1 + u2 ∆(w) = w1e
hγu2 + w2

The rest of the Hopf algebra structure easily follows, the counit is as usual
ε(u) = ε(w) = 0 and the antipode is derived from the equation M ◦ (id ⊗
S) ◦ ∆ = 1 ◦ ε, where M denotes multiplication. We must have S(u) = −u
and we−hγu + S(w) = 0 so S(w) = −we−hγu and S−1(w) = −e−hγuw =
−e−βγhwe−hγu = −q−1we−hγu where we set q = ehβγ . Our preferred basis of
monomials is waub.

4 Dual Hopf algebra

To get a suitable dual to U(a)[[h]] we redefine n and m to be linear functionals on
U(a)[[h]] that are 1 on hu and hw respectively and zero on all other monomials.
Then m,n (topologically) generate the quantum enveloping algebra dual that
we denote U(a)[[h]]∗. To find the basis dual to the monomials (hw)a(hu)b we
argue as follows. First 〈(hw)a(hu)b, nb

′〉 = 〈∆(b′)((hw)a(hu)b), n⊗b〉 is non-zero
only if a = 0 and b′ = b, in which case it is equal to the coefficient of (hu)⊗b

in (
⊗b

j=1 huj)
b. This coefficient is b! so 〈(hw)a(hu)b, nb

′〉 = δb,b′δ0,ab! Next,

2



〈(hw)a(hu)b,ma′〉 = 〈∆(t)(hw)a(hu)b,m⊗a〉 is again zero unless a′ = a, b = 0.
In that case it is equal to the coefficient of the term in (∆(a)(hw))a that has
precisely one hw in each tensor factor. If we set q = ehβγ then the coefficient is

precisely [a]! where [k] = 1−qk
1−q (induction!).

The general case now follows, because 〈(hw)a(hu)b, nb
′
ma′〉 is the coefficient

of (∆(a′+b′)(hwhu))a+b that has ends with a′ factors hw and hence a = a′ and
should begin with b′ factors hu so also b′ = b and the coefficient is [a]!b! as

computed previously. In conclusion the basis dual to {(hw)a(hu)b} is {n
bma

[a]!b! }
Note the commutation relation between m,n still is [m,n] = γm. This

is consistent with nm being dual to hwhu, while both 〈hwhu,mn〉 = 1 and
〈hw,mn〉 = γ and zero for all other monomials, so mn − nm − γm pairs to 0
with any monomial in hw, hu.

The rest of the Hopf algebra structure transfers to the dual easily now.
〈X ⊗ Y,∆(n)〉 = 〈XY, n〉 so the monomials X,Y must be 1 and hu. In other
words ∆(n) = n1+n2. Likewise 〈X⊗Y,∆(m)〉 = 〈XY,m〉 now to get something
non-zero either X,Y are hw and 1 or X = (hu)k and Y = hw. In the latter
case XY = hw(hu + hβ)k and so 〈XY,m〉 = (hβ)k. It follows that ∆(m) =
m1 + eβhn1m2. The antipode must be S(n) = −n and S(m) = −e−βhnm.

5 Quantum Double

Following Etingof-Schiffman the product in the quantum doubleDU(a) = U(a)[[h]]⊗
U(a)[[h]]∗op is given by:

φX =
∑

X ′′φ′′〈S−1(X ′), φ′〉〈X ′′′, φ′′′〉

where φ ∈ U(a)[[h]]∗ and X ∈ U(a)[[h]] and ∆(2)X =
∑
X ′ ⊗ X ′′ ⊗ X ′′′ and

∆op (2)φ =
∑
φ′ ⊗ φ′′ ⊗ φ′′′ Just as in the classical double, this product is

derived/designed to make the canonical pairing be a solution to the Yang-Baxter
equation. More precisely it should yield a quasi-triangular Hopf algebra.

In our case ∆op (2)(n) = n1 + n2 + n3 and S−11 ∆(2)(u) = −u1 + u2 + u3
and S−11 ∆(2)(w) = −q−1w1e

hγ(−u1+u2+u3) + w2e
hγu3 + w3 and ∆op (2)(m) =

ehβ(n2+n3)m1 + ehβn3m2 +m3. It follows that nu = un and nw = wn+ γw and
mu = um + βm just as in the classical double. Finally mw = qwm + 1

h (1 −
ehβnehγu). This does not agree with the classical double but it does to first

order in h. By definition the universal R-matrix is
∑
a,b≥0 h

a+bwaub ⊗ nbma

[a]!b! .

Notice that the element c = βn − γu is central. Quotienting out by the
two-sided ideal generated by it yields the usual quantum group Uhsl2 For us it
is convenient to keep u and express n in terms of it: n = c+γu

β .
A more symmetric expression with a usual commutator is obtained by setting

M = e
−hγu

2 m and W = we
−hγu

2 in these variables we find, with t = ehc:

[M,W ] =
1

h
(e−hγu − tehγu)

3



[n, u] = 0 [M,n] = γM [M,u] = βM [n,W ] = γW [u,W ] = βW

The capitalsM,W are convenient since their antipode is very simple: S(W ) =

S(e−
hγu
2 )S(w) = e

hγu
2 (−we−hγu) = −q 1

2W . For M we have to take the oppo-
site antipode corresponding to the opposite coproduct (written here in DU(a) as

S): S(m) = −me−βhn. So S(M) = S(m)e
hγu
2 = −me

hγu−2βhn
2 = −t−1q− 1

2M .
There is an interesting Lie algebra automorphism (involution) Θ on DU(a)

with Θ(M) = t−
1
2W and Θ(W ) = t−

1
2M and Θ(n) = −n, Θ(u) = −u

In summary the Hopf algebra structure on the quantum double is given as

[M,W ] =
1

h
(e−hγu − tehγu)

[n, u] = 0 [M,n] = γM [M,u] = βM [n,W ] = γW [u,W ] = βW

∆(W ) = W1e
hγu2

2 +W2e
−hγu1

2 ∆(u) = u1 + u2

∆(M) = e
−hγu1

2 M2 + t2e
hγu2

2 M1 ∆(c) = c1 + c2

S(W ) = −q 1
2W S(u) = −u S(c) = −c S(M) = −t−1q− 1

2M

The universal R-matrix takes the form

R =
∑
a,b

ha+b

[a]q−1 !b!βb
W ae

ahγu
2 ub ⊗ (c+ γu)be

ahγu
2 Ma

6 The special case γ2 = 0

To make use of the nilpotency of γ we set h = 1, β = 1 so q = eγ and set t = ec.
The commutation relation between M and W reads

[M,W ] = e−γu − teγu = 1− t− (1 + t)γu

Also q = eγ = 1 + γ so qk = 1 + kγ and [k] = k(1 + γ k−12 ), [k]! = k!(1 + γ
2

(
k
2

)
)

and [a]!−1q−1 = 1
a! (1 + γ

2

(
a
2

)
). The R-matrix can be written

R =
∑
a,b

1

a!b!
(1 +

γ

2

(
a

2

)
)W a(1 +

aγu

2
)ub ⊗ (cb + bcb−1γu)(1 +

aγu

2
)Ma

More concisely the γ independent part isR =
∑
a,b

1
a!b!W

a
1 u

b
1c
b
2M

a
2 = O(eW1M2+c2u1)

Here the O denotes anti-alphabetic ordering of the variables in the power series.
The whole R-matrix becomes

R = O(eW1M2+c2u1(1 + γ(
W 2

1M
2
2

4
+
W1(u1 + u2)M2

2
+ u1u2)))

Applying S ⊗ id to R we get the inverse:

R−1 = O(e−t2W1M2−c2u1(1 + γ(−W
2
1M

2
2

4
− W1(−u1 + u2)M2

2
− u1u2)))
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6.1 Commutation relations

The commutator K = [M,W ] = 1−t−(1+t)γu is an element that Q-commutes
with both M and W as follows: MK = QKM and KW = QWK. Here
Q = 1 + t+1

t−1γ

lemma 1.

MaW b =
∑
j

a!b!

(a− j)!(b− j)!j!
W b−j(1−t)j−1(1−t−((

a+ b

2
−1+u)j−3

4
j(j−1))(t+1)γ)Ma−j

Proof. It follows by induction that

MaW b =
∑
j

[a]Q![b]Q!

[j]Q![a− j]Q![b− j]Q!
W b−jKjMa−j

More explicitly
[a]Q![b]Q!

[j]Q![a−j]Q![b−j]Q! = a!b!
(a−j)!(b−j)!j! (1+((a+b2 −1)j− 3

4j(j−1)) t+1
t−1γ)

and Kj = (1− t)j(1 + j t+1
t−1γu) so the result follows.

Next define ¯O(f) to be the power series f written in alphabetical order. We
will present a few lemmas that allow reordering of the exponentials one meets
when stitching together R-matrices.

lemma 2. If ν = (1− δ(1− t))−1 then

Ō(eδMW ) = OνeνδWM (1 + γP )

where

P = ν2δ(t+ 1)(ν−1u+
δ

2
+ δW (δ(u+ 2) + ν)M + δ2ν(1 +

νδ

4
)W 2M2))

Proof.∑
k

δk

k!
MkW k =

∑
j,k

k!

(k − j)!2j!
δk−jW k−jδj(1−t)j−1(1−t−((`+u)j+

1

4
j(j−1))(t+1)γ)Mk−j

Set ` = k − j, we get ∑
`

δ`

`!
W `

∑
j

F (j, `)M `

where

F (j, `) =

(
`+ j

j

)
δj(1− t)j−1((`+ u)j +

1

4
j(j − 1))(t+ 1)γ)

using the binomial series and its derivatives we can carry out the sum over j ex-
plicitly:

∑
j

(
`+j
j

)
xj = 1

(1−x)`+1 and
∑
j

(
`+j
j

)
jxj−1 = `+1

(1−x)`+2 and
∑
j

(
`+j
j

)
j(j−

1)xj−2 = `(`−1)+4`+2
(1−x)`+3 Explicitly

∑
j F (j, `) =

1

(1− δ(1− t))`+1
+

δ(t+ 1)γ

(1− δ(1− t))`+3
((1−δ(1−t))(`+1)(`+u)+

δ

4
(`(`−1)+4`+2)) =
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ν`+1 + δ(t+ 1)γν`+3(ν−1u+
δ

2
+ (ν−1(u+ 2) + δ)`+ (ν−1 +

δ

4
)`(`− 1))

setting ν = (1− δ(1− t))−1

It follows that
∑
k
δk

k!M
kW k = OνeνδWM (1 + γP ) where

P = ν2δ(t+ 1)(ν−1u+
δ

2
+ δW (δ(u+ 2) + ν)M + δ2ν(1 +

νδ

4
)W 2M2))

lemma 3.
Ō(eαM+βW ) = O(eαM+βW+αβ(1−t)(1 + γP ))

with

P = −(t+ 1)(αβ(
α+ β

2
+ u) +

α2β2

4
(1− t))))

More generally consider Ō(eαM+βWZ(M,W )) for some polynomial Z in W .
We may rewrite it as Z(∂α, ∂β)Ō(eαM+βW ) and hence as

Z(∂α, ∂β)O(eαM+βW+αβ(1−t)(1 + γP ))

Proof. The left hand side reads
∑
a,b

αaβb

a!b! M
aW b. By the same procedure we

may rewrite it as∑
a,b,j

αa−jβb−j

(a− j)!(b− j)!j!
αjβjW b−j(1−t)j−1(1−t−((

a+ b

2
−1+u)j−3

4
j(j−1))(t+1)γ)Ma−j

Setting k = a− j and ` = b− j we get∑
k,`,j

αkβ`

k!`!
W kF (k, `, j)M `

where this time

F (k, `, j) =
αjβj

j!
(1− t)j−1(1− t− ((

k + `

2
+ u)j +

1

4
j(j − 1))(t+ 1)γ)

Again we can carry out the summation over j explicitly to get∑
j

F (k, `, j) = O(eαβ(1−t)(1− (t+ 1)γ(αβ(
k + `

2
+ u) +

α2β2

4
(1− t))))

Therefore the end result is

O(eαM+βW+αβ(1−t)(1 + γP ))

with

P = −(t+ 1)(αβ(
α+ β

2
+ u) +

α2β2

4
(1− t))))
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Finally we take care of u terms.

lemma 4.
Ō(eφu+αMZ(u,M)) = Z(∂φ, ∂α)O(eφu+e

φαM )

Ō(eφu+βW ) = Z(∂φ, ∂β)O(eφu+e
φβW )

Proof. We only prove the first formula, the proof of the second is the same. First

it follows by induction that Maub = (u+ a)bMa. Therefore
∑
a,b

αaφb

a!b! M
aub =∑

a,b
αaφb

a!b! (u + a)bMa =
∑
a
αa

a! e
φ(u+a)Ma = O(eφu+e

φαM ). Including a poly-
nomial Z is straightforward as in the previous lemma.
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