Notes on doubles

January 18, 2017

1 Introduction

2 Classical double

For parameters β, γ consider the Lie bialgebra \mathfrak{a} (the 2d affine algebra) generated by u, w subject to the relation $[u, w]=\beta w$ and with cobracket $\delta: \mathfrak{a} \rightarrow \Lambda^{2} \mathfrak{a}$ given by $\delta(u)=0$ and $\delta(w)=\gamma w \wedge u$. It clearly satisfies the co-Jacobi identity and the cocycle identity is clear too: $\delta([u, w])=\beta \gamma w \wedge u=\left(1 \otimes a d_{u}+a d_{u} \otimes 1-1 \otimes\right.$ $\left.a d_{w}-a d_{w} \otimes 1\right) \delta(w)$.

The dual \mathfrak{a}^{*} has dual basis n, m where m is dual to w and n is dual to u (notice the dual is the same symbol written upside down). The dual bracket and cobracket are $[,]_{\mathfrak{a}^{*}}=\delta^{*}$ and $\delta_{\mathfrak{a}^{*}}=[,]^{*}$ given by $[m, n]=\gamma m$ and $\delta(n)=0, \delta(m)=\beta n \wedge m$

The classical double is the vector space $D \mathfrak{a}=\mathfrak{a}+\mathfrak{a}^{* o p}$ together with the following Lie algebra structure. Here $\mathfrak{a}^{* o p}$ is the dual with opposite cobracket $\delta_{\mathfrak{a}^{* o p}}=-\delta_{\mathfrak{a}^{*}}$. The bracket on the double is defined by viewing \mathfrak{a} and \mathfrak{a}^{*} as Lie subalgebras of $D \mathfrak{a}$ and extending the pairing to a non-degenerate form given by $\left\langle\phi+a, \phi^{\prime}+a^{\prime}\right\rangle=\phi\left(a^{\prime}\right)+\phi^{\prime}(a)$. Next we extend the Lie bracket to make sure that the pairing is invariant in the sense that: $\left\langle[\phi, a], a^{\prime}\right\rangle=\left\langle\phi,\left[a, a^{\prime}\right]\right\rangle$ and $\left\langle[a, \phi], \phi^{\prime}\right\rangle=\left\langle a,\left[\phi, \phi^{\prime}\right]\right\rangle$.

In our example this means

$$
[n, u]=0 \quad[m, u]=\beta m \quad[n, w]=\gamma w \quad[m, w]=-\beta n-\gamma u
$$

since for example $\langle[m, u], n\rangle=-\langle u,[m, n]\rangle=0$ and $\langle[m, u], m\rangle=-\langle u,[m, m]\rangle=$ 0 and $\langle[m, u], u\rangle=\langle m,[u, u]\rangle=0$ and $\langle[m, u], w\rangle=\langle m,[u, w]\rangle=\beta$.

The co-bracket on $D \mathfrak{a}$ is defined to be $\delta_{\mathfrak{a}}-\delta_{\mathfrak{a}^{*}}$
The canonical element $r=\sum_{i} e_{i} \otimes e^{i} \in D \mathfrak{a}$ is a quasitriangular structure: It satisfies CYBE, and $\partial r=\delta$ and $r+\sigma(r)$ is $D \mathfrak{a}$ invariant, where $\sigma(x \otimes y)=$ $y \otimes x$. In our case we have $r=u \otimes n+w \otimes m$ and hence $\delta(u)=u . r=0$ and $\delta(w)=w \cdot r=-\beta w \otimes n-u \otimes \gamma w+w \otimes(\beta n+\gamma u)=\gamma w \wedge u$ and $\delta(m)=m . r=$ $\beta m \otimes n-u \otimes \gamma m-\beta n \otimes m+\gamma u \otimes m=-\delta_{\mathbf{a}^{*}}(m)=\delta_{\mathbf{a}^{* o p}}(m)$. And CYBE yields $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=[u, w] \otimes n \otimes m+[w, u] \otimes m \otimes n+u \otimes[n, w] \otimes$ $m+w \otimes[m, u] \otimes n+w \otimes[m, w] \otimes m+u \otimes w \otimes[n, m]+w \otimes u \otimes[m, n]=0$

Alternatively we could have derived the bialgebra structure on $D \mathfrak{a}$ from the assumptions that $D \mathfrak{a}=\mathfrak{a} \oplus \mathfrak{a}^{*}$ as vector space and both \mathfrak{a} and $\mathfrak{a}^{* o p}$ inject in the obvious way as sub Lie-bialgebras and the canonical element is a quasi-triangular structure.

3 The Hopf algebra structure on $\mathcal{U}(\mathfrak{a})$

We now consider the universal enveloping algebra $\mathcal{U}(\mathfrak{a})$ and attempt to deform it using power series in the variable h. This allows us to turn $\mathcal{U}(\mathfrak{a})[[h]]$ into a Hopf algebra that is a quantization of $\mathcal{U}(\mathfrak{a})$ in the following sense. Instead of the usual coproduct $\Delta_{0}(X)=X_{1}+X_{2}$ we want a coproduct Δ that reflects the cobracket. We require $\Delta(a)-\Delta^{o p}(a)=h \delta(a) \bmod h^{2}$ and $\Delta=\Delta_{0} \bmod h$.

In our case we have $\delta(u)=0$ so the simplest possible Δ sets $\Delta(u)=u_{1}+u_{2}$. The simplest(?) choice for $\Delta(w)$ is to respect the w-grading on a that gives w degree 1 and u degree 0 so as to set $\Delta(w)=w_{1} f_{2}+g_{1} w_{2}$ for $f, g \in \mathcal{U}(\mathfrak{a})[[h]]$ independent of w. Applying the counit (or $\Delta=\Delta_{0} \bmod h$) suggests $f, g=1$ $\bmod h$. Coassociativity of Δ forces $\Delta(f)=f \otimes f$ and the same for g. A short calculation then shows (Chari-Pressley p.193) that any grouplike f as above is of the form $e^{h \mu u}$ for some $\mu \in \mathbb{Q}[[h]]$. We may therefore set

$$
\Delta(w)=e^{h \mu u_{2}} w_{1}+e^{h \mu^{\prime} u_{1}} w_{2}
$$

To reflect the cobracket we must have $\mu^{\prime}-\mu=\gamma \bmod h$ and since there seems no point in adding higher order terms we settle for $\mu=\gamma$ and $\mu^{\prime}=0$. Other choices (of lowest order) are equivalent and may be obtained anyway by rescaling w by the group-like $e^{h \nu u}$. In conclusion we have

$$
\Delta(u)=u_{1}+u_{2} \quad \Delta(w)=w_{1} e^{h \gamma u_{2}}+w_{2}
$$

The rest of the Hopf algebra structure easily follows, the counit is as usual $\epsilon(u)=\epsilon(w)=0$ and the antipode is derived from the equation $M \circ(i d \otimes$ $S) \circ \Delta=1 \circ \epsilon$, where M denotes multiplication. We must have $S(u)=-u$ and $w e^{-h \gamma u}+S(w)=0$ so $S(w)=-w e^{-h \gamma u}$ and $S^{-1}(w)=-e^{-h \gamma u} w=$ $-e^{-\beta \gamma h} w e^{-h \gamma u}=-q^{-1} w e^{-h \gamma u}$ where we set $q=e^{h \beta \gamma}$. Our preferred basis of monomials is $w^{a} u^{b}$.

4 Dual Hopf algebra

To get a suitable dual to $\mathcal{U}(\mathfrak{a})[[h]]$ we redefine n and m to be linear functionals on $\mathcal{U}(\mathfrak{a})[[h]]$ that are 1 on $h u$ and $h w$ respectively and zero on all other monomials. Then m, n (topologically) generate the quantum enveloping algebra dual that we denote $\mathcal{U}(\mathfrak{a})[[h]]^{*}$. To find the basis dual to the monomials $(h w)^{a}(h u)^{b}$ we argue as follows. First $\left\langle(h w)^{a}(h u)^{b}, n^{b^{\prime}}\right\rangle=\left\langle\Delta^{\left(b^{\prime}\right)}\left((h w)^{a}(h u)^{b}\right), n^{\otimes b}\right\rangle$ is non-zero only if $a=0$ and $b^{\prime}=b$, in which case it is equal to the coefficient of $(h u)^{\otimes b}$ in $\left(\bigotimes_{j=1}^{b} h u_{j}\right)^{b}$. This coefficient is b ! so $\left\langle(h w)^{a}(h u)^{b}, n^{b^{\prime}}\right\rangle=\delta_{b, b^{\prime}} \delta_{0, a} b$! Next,
$\left\langle(h w)^{a}(h u)^{b}, m^{a^{\prime}}\right\rangle=\left\langle\Delta^{(t)}(h w)^{a}(h u)^{b}, m^{\otimes a}\right\rangle$ is again zero unless $a^{\prime}=a, b=0$. In that case it is equal to the coefficient of the term in $\left(\Delta^{(a)}(h w)\right)^{a}$ that has precisely one $h w$ in each tensor factor. If we set $q=e^{h \beta \gamma}$ then the coefficient is precisely $[a]$! where $[k]=\frac{1-q^{k}}{1-q}$ (induction!).

The general case now follows, because $\left\langle(h w)^{a}(h u)^{b}, n^{b^{\prime}} m^{a^{\prime}}\right\rangle$ is the coefficient of $\left(\Delta^{\left(a^{\prime}+b^{\prime}\right)}(h w h u)\right)^{a+b}$ that has ends with a^{\prime} factors $h w$ and hence $a=a^{\prime}$ and should begin with b^{\prime} factors $h u$ so also $b^{\prime}=b$ and the coefficient is $[a]!b!$ as computed previously. In conclusion the basis dual to $\left\{(h w)^{a}(h u)^{b}\right\}$ is $\left\{\frac{n^{b} m^{a}}{[a]!b!}\right\}$

Note the commutation relation between m, n still is $[m, n]=\gamma m$. This is consistent with $n m$ being dual to $h w h u$, while both $\langle h w h u, m n\rangle=1$ and $\langle h w, m n\rangle=\gamma$ and zero for all other monomials, so $m n-n m-\gamma m$ pairs to 0 with any monomial in $h w, h u$.

The rest of the Hopf algebra structure transfers to the dual easily now. $\langle X \otimes Y, \Delta(n)\rangle=\langle X Y, n\rangle$ so the monomials X, Y must be 1 and $h u$. In other words $\Delta(n)=n_{1}+n_{2}$. Likewise $\langle X \otimes Y, \Delta(m)\rangle=\langle X Y, m\rangle$ now to get something non-zero either X, Y are $h w$ and 1 or $X=(h u)^{k}$ and $Y=h w$. In the latter case $X Y=h w(h u+h \beta)^{k}$ and so $\langle X Y, m\rangle=(h \beta)^{k}$. It follows that $\Delta(m)=$ $m_{1}+e^{\beta h n_{1}} m_{2}$. The antipode must be $S(n)=-n$ and $S(m)=-e^{-\beta h n} m$.

5 Quantum Double

Following Etingof-Schiffman the product in the quantum double $D \mathcal{U}(\mathfrak{a})=\mathcal{U}(\mathfrak{a})[[h]] \otimes$ $\mathcal{U}(\mathfrak{a})[[h]]^{* o p}$ is given by:

$$
\phi X=\sum X^{\prime \prime} \phi^{\prime \prime}\left\langle S^{-1}\left(X^{\prime}\right), \phi^{\prime}\right\rangle\left\langle X^{\prime \prime \prime}, \phi^{\prime \prime \prime}\right\rangle
$$

where $\phi \in \mathcal{U}(\mathfrak{a})[[h]]^{*}$ and $X \in \mathcal{U}(\mathfrak{a})[[h]]$ and $\Delta^{(2)} X=\sum X^{\prime} \otimes X^{\prime \prime} \otimes X^{\prime \prime \prime}$ and $\Delta^{o p(2)} \phi=\sum \phi^{\prime} \otimes \phi^{\prime \prime} \otimes \phi^{\prime \prime \prime}$ Just as in the classical double, this product is derived/designed to make the canonical pairing be a solution to the Yang-Baxter equation. More precisely it should yield a quasi-triangular Hopf algebra.

In our case $\Delta^{o p(2)}(n)=n_{1}+n_{2}+n_{3}$ and $S_{1}^{-1} \Delta^{(2)}(u)=-u_{1}+u_{2}+u_{3}$ and $S_{1}^{-1} \Delta^{(2)}(w)=-q^{-1} w_{1} e^{h \gamma\left(-u_{1}+u_{2}+u_{3}\right)}+w_{2} e^{h \gamma u_{3}}+w_{3}$ and $\Delta^{o p(2)}(m)=$ $e^{h \beta\left(n_{2}+n_{3}\right)} m_{1}+e^{h \beta n_{3}} m_{2}+m_{3}$. It follows that $n u=u n$ and $n w=w n+\gamma w$ and $m u=u m+\beta m$ just as in the classical double. Finally $m w=q w m+\frac{1}{h}(1-$ $\left.e^{h \beta n} e^{h \gamma u}\right)$. This does not agree with the classical double but it does to first order in h. By definition the universal R-matrix is $\sum_{a, b \geq 0} h^{a+b} w^{a} u^{b} \otimes \frac{n^{b} m^{a}}{[a]!b]}$.

Notice that the element $c=\beta n-\gamma u$ is central. Quotienting out by the two-sided ideal generated by it yields the usual quantum group $U_{h} \mathfrak{s l}_{2}$ For us it is convenient to keep u and express n in terms of it: $n=\frac{c+\gamma u}{\beta}$.

A more symmetric expression with a usual commutator is obtained by setting $M=e^{\frac{-h \gamma u}{2}} m$ and $W=w e^{\frac{-h \gamma u}{2}}$ in these variables we find, with $t=e^{h c}$:

$$
[M, W]=\frac{1}{h}\left(e^{-h \gamma u}-t e^{h \gamma u}\right)
$$

$$
[n, u]=0 \quad[M, n]=\gamma M \quad[M, u]=\beta M \quad[n, W]=\gamma W \quad[u, W]=\beta W
$$

The capitals M, W are convenient since their antipode is very simple: $S(W)=$ $S\left(e^{-\frac{h \gamma u}{2}}\right) S(w)=e^{\frac{h \gamma u}{2}}\left(-w e^{-h \gamma u}\right)=-q^{\frac{1}{2}} W$. For M we have to take the opposite antipode corresponding to the opposite coproduct (written here in $D \mathcal{U}(\mathfrak{a})$ as $S): S(m)=-m e^{-\beta h n}$. So $S(M)=S(m) e^{\frac{h \gamma u}{2}}=-m e^{\frac{h \gamma u-2 \beta h n}{2}}=-t^{-1} q^{-\frac{1}{2}} M$.

There is an interesting Lie algebra automorphism (involution) Θ on $D \mathcal{U}(\mathfrak{a})$ with $\Theta(M)=t^{-\frac{1}{2}} W$ and $\Theta(W)=t^{-\frac{1}{2}} M$ and $\Theta(n)=-n, \Theta(u)=-u$

In summary the Hopf algebra structure on the quantum double is given as

$$
\begin{gathered}
{[M, W]=\frac{1}{h}\left(e^{-h \gamma u}-t e^{h \gamma u}\right)} \\
{[n, u]=0 \quad[M, n]=\gamma M \quad[M, u]=\beta M \quad[n, W]=\gamma W \quad[u, W]=\beta W} \\
\Delta(W)=W_{1} e^{\frac{h \gamma u_{2}}{2}}+W_{2} e^{\frac{-h \gamma u_{1}}{2}} \quad \Delta(u)=u_{1}+u_{2} \\
\Delta(M)=e^{\frac{-h \gamma u_{1}}{2}} M_{2}+t_{2} e^{\frac{h \gamma u_{2}}{2}} M_{1} \quad \Delta(c)=c_{1}+c_{2} \\
S(W)=-q^{\frac{1}{2}} W \quad S(u)=-u \quad S(c)=-c \quad S(M)=-t^{-1} q^{-\frac{1}{2}} M
\end{gathered}
$$

The universal R-matrix takes the form

$$
R=\sum_{a, b} \frac{h^{a+b}}{[a]_{q^{-1}}!b!\beta^{b}} W^{a} e^{\frac{a h \gamma u}{2}} u^{b} \otimes(c+\gamma u)^{b} e^{\frac{a h \gamma u}{2}} M^{a}
$$

6 The special case $\gamma^{2}=0$

To make use of the nilpotency of γ we set $h=1, \beta=1$ so $q=e^{\gamma}$ and set $t=e^{c}$. The commutation relation between M and W reads

$$
[M, W]=e^{-\gamma u}-t e^{\gamma u}=1-t-(1+t) \gamma u
$$

Also $q=e^{\gamma}=1+\gamma$ so $q^{k}=1+k \gamma$ and $[k]=k\left(1+\gamma \frac{k-1}{2}\right),[k]!=k!\left(1+\frac{\gamma}{2}\binom{k}{2}\right)$ and $[a]!_{q^{-1}}^{-1}=\frac{1}{a!}\left(1+\frac{\gamma}{2}\binom{a}{2}\right)$. The R-matrix can be written

$$
R=\sum_{a, b} \frac{1}{a!b!}\left(1+\frac{\gamma}{2}\binom{a}{2}\right) W^{a}\left(1+\frac{a \gamma u}{2}\right) u^{b} \otimes\left(c^{b}+b c^{b-1} \gamma u\right)\left(1+\frac{a \gamma u}{2}\right) M^{a}
$$

More concisely the γ independent part is $R=\sum_{a, b} \frac{1}{a!b!} W_{1}^{a} u_{1}^{b} c_{2}^{b} M_{2}^{a}=\mathbb{O}\left(e^{W_{1} M_{2}+c_{2} u_{1}}\right)$
Here the \mathbb{O} denotes anti-alphabetic ordering of the variables in the power series. The whole R-matrix becomes

$$
R=\mathbb{O}\left(e^{W_{1} M_{2}+c_{2} u_{1}}\left(1+\gamma\left(\frac{W_{1}^{2} M_{2}^{2}}{4}+\frac{W_{1}\left(u_{1}+u_{2}\right) M_{2}}{2}+u_{1} u_{2}\right)\right)\right)
$$

Applying $S \otimes i d$ to R we get the inverse:

$$
R^{-1}=\mathbb{O}\left(e^{-t_{2} W_{1} M_{2}-c_{2} u_{1}}\left(1+\gamma\left(-\frac{W_{1}^{2} M_{2}^{2}}{4}-\frac{W_{1}\left(-u_{1}+u_{2}\right) M_{2}}{2}-u_{1} u_{2}\right)\right)\right)
$$

6.1 Commutation relations

The commutator $K=[M, W]=1-t-(1+t) \gamma u$ is an element that Q-commutes with both M and W as follows: $M K=Q K M$ and $K W=Q W K$. Here $Q=1+\frac{t+1}{t-1} \gamma$
lemma 1.
$M^{a} W^{b}=\sum_{j} \frac{a!b!}{(a-j)!(b-j)!j!} W^{b-j}(1-t)^{j-1}\left(1-t-\left(\left(\frac{a+b}{2}-1+u\right) j-\frac{3}{4} j(j-1)\right)(t+1) \gamma\right) M^{a-j}$
Proof. It follows by induction that

$$
M^{a} W^{b}=\sum_{j} \frac{[a]_{Q}![b]_{Q}!}{[j]_{Q}![a-j]_{Q}![b-j]_{Q}!} W^{b-j} K^{j} M^{a-j}
$$

More explicitly $\frac{[a] Q![b] Q!}{\left.[j] Q![a-j]_{Q}!(b-j]\right]_{Q}!}=\frac{a!b!}{(a-j)!(b-j)!j!}\left(1+\left(\left(\frac{a+b}{2}-1\right) j-\frac{3}{4} j(j-1)\right) \frac{t+1}{t-1} \gamma\right)$ and $K^{j}=(1-t)^{j}\left(1+j \frac{t+1}{t-1} \gamma u\right)$ so the result follows.

Next define $\mathbb{O}(f)$ to be the power series f written in alphabetical order. We will present a few lemmas that allow reordering of the exponentials one meets when stitching together R-matrices.
lemma 2. If $\nu=(1-\delta(1-t))^{-1}$ then

$$
\overline{\mathbb{O}}\left(e^{\delta M W}\right)=\mathbb{O} \nu e^{\nu \delta W M}(1+\gamma P)
$$

where

$$
\left.P=\nu^{2} \delta(t+1)\left(\nu^{-1} u+\frac{\delta}{2}+\delta W(\delta(u+2)+\nu) M+\delta^{2} \nu\left(1+\frac{\nu \delta}{4}\right) W^{2} M^{2}\right)\right)
$$

Proof.
$\sum_{k} \frac{\delta^{k}}{k!} M^{k} W^{k}=\sum_{j, k} \frac{k!}{(k-j)!!^{2} j!} \delta^{k-j} W^{k-j} \delta^{j}(1-t)^{j-1}\left(1-t-\left((\ell+u) j+\frac{1}{4} j(j-1)\right)(t+1) \gamma\right) M^{k-j}$
Set $\ell=k-j$, we get

$$
\sum_{\ell} \frac{\delta^{\ell}}{\ell!} W^{\ell} \sum_{j} F(j, \ell) M^{\ell}
$$

where

$$
\left.F(j, \ell)=\binom{\ell+j}{j} \delta^{j}(1-t)^{j-1}\left((\ell+u) j+\frac{1}{4} j(j-1)\right)(t+1) \gamma\right)
$$

using the binomial series and its derivatives we can carry out the sum over j explicitly: $\sum_{j}\binom{\ell+j}{j} x^{j}=\frac{1}{(1-x)^{\ell+1}}$ and $\sum_{j}\binom{\ell+j}{j} j x^{j-1}=\frac{\ell+1}{(1-x)^{\ell+2}}$ and $\sum_{j}\binom{\ell+j}{j} j(j-$ 1) $x^{j-2}=\frac{\ell(\ell-1)+4 \ell+2}{(1-x)^{\ell+3}}$ Explicitly $\sum_{j} F(j, \ell)=$
$\frac{1}{(1-\delta(1-t))^{\ell+1}}+\frac{\delta(t+1) \gamma}{(1-\delta(1-t))^{\ell+3}}\left((1-\delta(1-t))(\ell+1)(\ell+u)+\frac{\delta}{4}(\ell(\ell-1)+4 \ell+2)\right)=$

$$
\nu^{\ell+1}+\delta(t+1) \gamma \nu^{\ell+3}\left(\nu^{-1} u+\frac{\delta}{2}+\left(\nu^{-1}(u+2)+\delta\right) \ell+\left(\nu^{-1}+\frac{\delta}{4}\right) \ell(\ell-1)\right)
$$

setting $\nu=(1-\delta(1-t))^{-1}$
It follows that $\sum_{k} \frac{\delta^{k}}{k!} M^{k} W^{k}=\mathbb{O} \nu e^{\nu \delta W M}(1+\gamma P)$ where

$$
\left.P=\nu^{2} \delta(t+1)\left(\nu^{-1} u+\frac{\delta}{2}+\delta W(\delta(u+2)+\nu) M+\delta^{2} \nu\left(1+\frac{\nu \delta}{4}\right) W^{2} M^{2}\right)\right)
$$

lemma 3.

$$
\overline{\mathbb{O}}\left(e^{\alpha M+\beta W}\right)=\mathbb{O}\left(e^{\alpha M+\beta W+\alpha \beta(1-t)}(1+\gamma P)\right)
$$

with

$$
\left.\left.P=-(t+1)\left(\alpha \beta\left(\frac{\alpha+\beta}{2}+u\right)+\frac{\alpha^{2} \beta^{2}}{4}(1-t)\right)\right)\right)
$$

More generally consider $\overline{\mathbb{O}}\left(e^{\alpha M+\beta W} Z(M, W)\right)$ for some polynomial Z in W. We may rewrite it as $Z\left(\partial_{\alpha}, \partial_{\beta}\right) \overline{\mathbb{O}}\left(e^{\alpha M+\beta W}\right)$ and hence as

$$
Z\left(\partial_{\alpha}, \partial_{\beta}\right) \mathbb{O}\left(e^{\alpha M+\beta W+\alpha \beta(1-t)}(1+\gamma P)\right)
$$

Proof. The left hand side reads $\sum_{a, b} \frac{\alpha^{a} \beta^{b}}{a!b!} M^{a} W^{b}$. By the same procedure we may rewrite it as

$$
\sum_{a, b, j} \frac{\alpha^{a-j} \beta^{b-j}}{(a-j)!(b-j)!j!} \alpha^{j} \beta^{j} W^{b-j}(1-t)^{j-1}\left(1-t-\left(\left(\frac{a+b}{2}-1+u\right) j-\frac{3}{4} j(j-1)\right)(t+1) \gamma\right) M^{a-j}
$$

Setting $k=a-j$ and $\ell=b-j$ we get

$$
\sum_{k, \ell, j} \frac{\alpha^{k} \beta^{\ell}}{k!\ell!} W^{k} F(k, \ell, j) M^{\ell}
$$

where this time

$$
F(k, \ell, j)=\frac{\alpha^{j} \beta^{j}}{j!}(1-t)^{j-1}\left(1-t-\left(\left(\frac{k+\ell}{2}+u\right) j+\frac{1}{4} j(j-1)\right)(t+1) \gamma\right)
$$

Again we can carry out the summation over j explicitly to get

$$
\sum_{j} F(k, \ell, j)=\mathbb{O}\left(e^{\alpha \beta(1-t)}\left(1-(t+1) \gamma\left(\alpha \beta\left(\frac{k+\ell}{2}+u\right)+\frac{\alpha^{2} \beta^{2}}{4}(1-t)\right)\right)\right)
$$

Therefore the end result is

$$
\mathbb{O}\left(e^{\alpha M+\beta W+\alpha \beta(1-t)}(1+\gamma P)\right)
$$

with

$$
\left.\left.P=-(t+1)\left(\alpha \beta\left(\frac{\alpha+\beta}{2}+u\right)+\frac{\alpha^{2} \beta^{2}}{4}(1-t)\right)\right)\right)
$$

Finally we take care of u terms.
lemma 4.

$$
\begin{gathered}
\overline{\mathbb{O}}\left(e^{\phi u+\alpha M} Z(u, M)\right)=Z\left(\partial_{\phi}, \partial_{\alpha}\right) \mathbb{O}\left(e^{\phi u+e^{\phi} \alpha M}\right) \\
\overline{\mathbb{O}}\left(e^{\phi u+\beta W}\right)=Z\left(\partial_{\phi}, \partial_{\beta}\right) \mathbb{O}\left(e^{\phi u+e^{\phi} \beta W}\right)
\end{gathered}
$$

Proof. We only prove the first formula, the proof of the second is the same. First it follows by induction that $M^{a} u^{b}=(u+a)^{b} M^{a}$. Therefore $\sum_{a, b} \frac{\alpha^{a} \phi^{b}}{a!b!} M^{a} u^{b}=$ $\sum_{a, b} \frac{\alpha^{a} \phi^{b}}{a!b!}(u+a)^{b} M^{a}=\sum_{a} \frac{\alpha^{a}}{a!} e^{\phi(u+a)} M^{a}=\mathbb{O}\left(e^{\phi u+e^{\phi} \alpha M}\right)$. Including a polynomial Z is straightforward as in the previous lemma.

