COMPUTING SIGNATURES

Let U, V be finite dimensional vector spaces and let $A: U \to U^*$, $B: V \to U^*$, $C: V \to V^*$ be such that A and C are self-adjoint. Define the self-adjoint transformation M(A, B, C) on $U \oplus V$ by $M(u+v) := A(u) + B^*(u) + B(v) + C(v)$. That is, let M(A, B, C) be given by the matrix

Now pick isomorphisms

$$U \xrightarrow{f} (U/\ker A) \oplus (\ker A \cap \ker B^*) \oplus \underline{(\ker A/\ker B^*)}$$
$$V \xrightarrow{g} (V/B^{-1}(\operatorname{im}A)) \oplus B^{-1}(\operatorname{im}A)$$

that make the corresponding short exact sequences split. That is, we require: $\frac{1}{2}$

- $U \xrightarrow{f} U/\ker A$ is the natural projection
- (ker $A \cap \ker B^*$) $\xrightarrow{f^{-1}} U$ is the natural inclusion
- $\ker A \xrightarrow{f} \ker A / \ker B^*$ is the natural projection
- $V \xrightarrow{g} V/B^{-1}(\text{im}A)$ is the natural projection
- $B^{-1}(imA) \xrightarrow{g^{-1}} V$ is the natural inclusion

By taking the dual map of the isomorphisms above, we also get isomorphisms for U^* and V^* :

$$U^* \cong \operatorname{im} A \oplus (U^*/(\operatorname{im} A + \operatorname{im} B)) \oplus \operatorname{im} B/\operatorname{im} A$$
$$V^* \cong B^*(\ker A) \oplus (V^*/B^*(\ker A))$$

where the spaces of the same colour are naturally dual to each other. Then A, B, C induce maps $A_1, B_1, B_2, C_1, C_2, C_3$ on the summands in the direct sums as in the matrix below:

	$(U/\ker A)$	$(\ker A \cap \ker B^*)$	$(\ker A/\ker B^*)$	$(V/B^{-1}(\mathrm{im}A))$	$B^{-1}(\mathrm{im}A)$
$\mathrm{im}A$	A_1				B_1
$(U^*/(\mathrm{im}A + \mathrm{im}B))$					
imB/imA				B_2	
$B^*(\ker A)$			B_2^*	C_1	C_2
$(V^*/B^*(\ker A))$	B_1^*			C_2^*	C_3

For example, B induces the map $B_2: (V/B^{-1}(\text{im}A)) \to \text{im}B/\text{im}A$ by first restricting to $(V/B^{-1}(\text{im}A))$ and then projecting to imB/imA. Let the empty spots in the matrix above be 0. Then the matrix above represents a map M_1 , which is just the map M after applying the isomorphisms on U, U^*, V , and V^* . Thus M and M_1 have the same signature.

Note that A_1 and B_2 are invertible. Then let Q be the invertible map:

$$Q: (u_1 + u_2 + u_3 + v_1 + v_2) \mapsto (u_1 - A_1^{-1}B_1v_2 + u_2 + u_3 - (B_2^*)^{-1}C_2v_2 + v_1 + v_2)$$

We can verify that Q^*M_1Q is represented by the following matrix:

	$(U/\ker A)$	$(\ker A \cap \ker B^*)$	$(\ker A/\ker B^*)$	$(V/B^{-1}(\mathrm{im}A))$	$B^{-1}(\mathrm{im}A)$
$\mathrm{im}A$	A_1				
$(U^*/(\mathrm{im}A + \mathrm{im}B))$					
$\mathrm{im}B/\mathrm{im}A$				B_2	
$B^*(\ker A)$			B_2^*	C_1	
$(V^*/B^*(\ker A))$					$C_3 - B_1^* A_1^{-1} B_1$

Thus the signature of M(A, B, C) can be computed by

$$\sigma(M(A, B, C)) = \sigma(A_1) + \sigma\left(\frac{B_2}{B_2^* C_1}\right) + \sigma(C_3 - B_1^* A_1^{-1} B_1)$$
$$= \sigma(A) + \sigma(C_3 - B_1^* A_1^{-1} B_1)$$

Since $\sigma(A) = \sigma(A_1)$ and anything of the form $\left(\frac{B_2}{B_2^* C_1}\right)$ has signature 0. [A BETTER DESCRIPTION OF $C_3 - B_1^* A_1^{-1} B_1$]?

1

Theorem 0.1.

$$\sigma \begin{pmatrix} A & B \\ B^* & C+D & E \\ E^* & F \end{pmatrix} = \sigma(A) + \sigma(F) + \sigma(\pi(C+D-B_1^*A_1^{-1}B-E_1F_1^{-1}E^*)|_{(E^*)^{-1}(imF)\cap B^{-1}(imA)})$$

where:

- π is projection onto $V^*/(B^*(\ker A) + E(\ker F));$
- A_1^{-1} and F_1^{-1} are the inverses of the induced isomorphisms $A_1: U/\ker A \xrightarrow{\cong} imA$ and $F_1: W/\ker F \xrightarrow{\cong} imF$; and B_1^* and E_1 are the induced maps on the quotients $B_1^*: U/\ker A \to V^*/B(\ker A)$ and $E_1: W/\ker F \to V^*/E(\ker F)$