A question about Interior Multiplication in（1）

Before executing what follows，one needs to load packages＂FreeLie．m＂，＂AwCalculus．m＂，＂FAA．m＂， ＂EmergentChordDiagrams．m＂

```
SetDirectory["C:\\drorbn\\AcademicPensieve\\People\\Kuno"];
<< FreeLie.m
<< AwCalculus.m
<< FAA.m
<< EmergentChordDiagrams.m
```

FreeLie｀implements／extends
$\left\{*,+, * *, \$\right.$ SeriesShowDegree，〈〉， \int, \equiv, ad，Ad，adSeries，AllCyclicWords，AllLyndonWords， AllWords，Arbitrator，AS，ASeries，AW，b，BCH，BooleanSequence，BracketForm，BS，CC，Crop， cw，CW，CWS，CWSeries，D，Deg，DegreeScale，DerivationSeries，div，DK，DKS，DKSeries，EulerE， Exp，Inverse，j，J，JA，LieDerivation，LieMorphism，LieSeries，LS，LW，LyndonFactorization， Morphism，New，RandomCWSeries，Randomizer，RandomLieSeries，RC，SeriesSolve，Support， t ，tb，TopBracketForm，tr，UndeterminedCoefficients，α Map，$\Gamma,\llcorner, \Lambda, \sigma, \hbar, \leftharpoondown,-\}$ ．

FreeLie｀is in the public domain．Dror Bar－Natan is committed to support it within reason until July 15，2022．This is version 150814.

AwCalculus｀implements／extends \｛＊，＊＊，\equiv ，dA，dc，deg，dm，dS，d Δ ，d η ，d $\sigma, \mathrm{El}, \mathrm{Es}, \mathrm{hA}$ ， $\mathrm{hm}, \mathrm{hS}, \mathrm{h} \Delta, \mathrm{h} \eta, \mathrm{h} \sigma$ ，RandomElSeries，RandomEsSeries， $\mathrm{tA}, \mathrm{tha}, \mathrm{tm}, \mathrm{tS}, \mathrm{t} \Delta, \mathrm{t} \eta, \mathrm{t} \sigma, \Gamma, \Lambda\}$ ．

AwCalculus｀is in the public domain．Dror Bar－Natan is committed to support it within reason until July 15，2022．This is version 150909.

FreeLie｀implements／extends
$\left\{*,+, * *, \$\right.$ SeriesShowDegree，〈〉， \int, \equiv ，ad，Ad，adSeries，AllCyclicWords，AllLyndonWords， AllWords，Arbitrator，AS，ASeries，AW，b，BCH，BooleanSequence，BracketForm，BS，CC，Crop， CW，CW，CWS，CWSeries，D，Deg，DegreeScale，DerivationSeries，div，DK，DKS，DKSeries，EulerE， Exp，Inverse，j，J，JA，LieDerivation，LieMorphism，LieSeries，LS，LW，LyndonFactorization， Morphism，New，RandomCWSeries，Randomizer，RandomLieSeries，RC，SeriesSolve，Support， t ，tb，TopBracketForm，tr，UndeterminedCoefficients，α Map，$\ulcorner,\llcorner, \Lambda, \sigma, \hbar, \leftharpoondown,-\}$ ．

FreeLie｀is in the public domain．Dror Bar－Natan is committed to support it within reason until July 15，2022．This is version 150814.

AwCalculus｀implements／extends \｛＊，＊＊，\equiv ，dA，dc，deg，dm，dS，d Δ ，d η ，d $\sigma, \mathrm{El}, \mathrm{Es}, \mathrm{hA}$ ， hm，hS，h Δ ，h η ，h σ ，RandomElSeries，RandomEsSeries，tA，tha，tm，tS，$t \Delta, \mathrm{t} \eta, \mathrm{t} \sigma, \Gamma, \Lambda\}$ ．

AwCalculus｀is in the public domain．Dror Bar－Natan is committed to support it within reason until July 15，2022．This is version 150909.

Let us consider the following two elements：


```
T2 = © OAR,{x},{1}}[\mp@subsup{\mathcal{F}}{0}{}[A\mp@subsup{W}{1}{}[]+A\mp@subsup{W}{1}{}[x]+A\mp@subsup{W}{1}{}[x,x]]
Out[0]=
\mp@subsup{\mathbb{O}}{AR,{x},{1}}{{}[\mp@subsup{\mathcal{F}}{0}{}[A\mp@subsup{W}{1}{}[x]+A\mp@subsup{W}{1}{}[x,X]]]
Out[0]=
\mp@subsup{O}{AR, {x},{1}}{[\mathcal{F}}[\mp@subsup{\mathcal{F}}{0}{}[A\mp@subsup{W}{1}{}[]+A\mp@subsup{W}{1}{}[x]+A\mp@subsup{W}{1}{}[x,x]]]
```

```
ln[*]:= IM ['T1, T1]
IM2[T2, T2]
IM2[T1, T2]
Out[0]=
    \mp@subsup{O}{AR,{x},{1}}{[\mathcal{A}}[\mp@subsup{A}{0}{}
Out[0]=
    \mp@subsup{O}{AR,{x},{1}}{}[\mp@subsup{\mathcal{F}}{0}{}[A\mp@subsup{W}{1}{}[]+2A\mp@subsup{W}{1}{}[x]+3A\mp@subsup{W}{1}{}[x,x]]]
Out[0]=
    O
```

 The first output, \(\mathrm{IM}_{2}[\mathrm{~T} 1, \mathrm{~T} 1]\), should not have the degree 3 part,
 but it does ... It seems that \(I M_{d}\) does not return the correct answer when both the
 inputs have the trivial constant term. Why does it happen? Furthermore,
 if we take powers of such an element, then a bug appears :
 \(\ln [-]:=\mathbf{I M}_{\mathbf{2}}[\mathbf{T 1}, \mathbf{T 1}, \mathbf{T 1}]\)
 IM 2 [T1, T1, T1, T1]
 Out[0]=

0
Out[0]=
$\mathrm{IM}_{2}\left[0, \mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1\}}\left[\mathcal{A}_{0}\left[\operatorname{AW}_{1}[\mathrm{x}]+\mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}]\right]\right]\right]$
It seems that the problem comes from applying the strand multiplication to the zero element in \mathbb{O}..
$\ln [0]:=\mathbb{O}_{\mathbf{A R},\{\mathbf{x}\},\{\mathbf{1}, 2\}}\left[\mathcal{A}_{\boldsymbol{0}}\left[\mathrm{AW}_{\mathbf{1}}[] \mathrm{AW}_{\mathbf{2}}[]\right]\right]$
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1,2\}}\left[\mathcal{A}_{\theta}\left[\mathrm{AW}_{1}[] \mathrm{AW}_{2}[]\right]\right] / / \mathrm{sm}_{1,2 \rightarrow 3}$
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1,2\}}\left[\mathcal{P}_{0}\left[0 \mathrm{AW}_{1}[] \mathrm{AW}_{2}[]\right]\right]$
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1,2\}}\left[\mathcal{F}_{0}\left[0 \mathrm{AW}_{1}[] \mathrm{AW}_{2}[]\right]\right] / / \mathrm{sm}_{1,2 \rightarrow 3}$
Out $[0]=$
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1,2\}}\left[\mathcal{P}_{0}\left[\mathrm{AW}_{1}[] \mathrm{AW}_{2}[]\right]\right]$
Out[0]=
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{3\}}\left[\mathcal{F}_{0}\left[\mathrm{AW}_{3}[]\right]\right]$
Out[0]=
0

Out[0]=
0

