A question about Interior Multiplication in (1)

Before executing what follows, one needs to load packages "FreeLie.m", "AwCalculus.m", "FAA.m", "EmergentChordDiagrams.m"
Let us consider the following two elements:
$\ln [\sigma]:=\mathrm{T} 1=\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1\}}\left[\mathscr{F}_{\theta}\left[\mathrm{AW}_{1}[\mathrm{x}]+\mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}]\right]\right]$
$\mathrm{T} 2=\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1\}}\left[\mathcal{H}_{\theta}\left[A W_{1}[]+\mathrm{AW}_{1}[\mathrm{x}]+\mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}]\right]\right]$
Out[0] =
$\mathbb{O}_{\mathrm{AR},\{\mathrm{X}\},\{1\}}\left[\mathcal{A}_{\theta}\left[\mathrm{AW}_{1}[\mathrm{x}]+\mathrm{AW}[\mathrm{X}, \mathrm{x}]\right]\right]$
Out[0] =
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1\}}\left[\mathcal{P}_{\theta}\left[A W_{1}[]+\mathrm{AW} W_{1}[\mathrm{x}]+\mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}]\right]\right]$
$\ln [\rho]:=\mathbf{I M}_{\mathbf{2}}[\mathbf{T 1}, \mathrm{T} 1]$
$\mathrm{IM}_{2}[\mathrm{~T} 2, \mathrm{~T} 2]$
$\mathrm{IM}_{2}[\mathrm{~T} 1, \mathrm{~T} 2]$
Out[0]=
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1\}}\left[\mathcal{P}_{\theta}\left[\mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}]+2 \mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}, \mathrm{x}]\right]\right]$
Out[0] =
$\mathbb{O}_{\mathrm{AR},\{\mathrm{x}\},\{1\}}\left[\mathcal{F}_{\theta}\left[\mathrm{AW} \mathrm{A}_{1}[]+2 \mathrm{AW} \mathrm{A}_{1}[\mathrm{x}]+3 \mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}]\right]\right]$
Out[0] =
$\mathbb{O}_{A R,\{x\},\{1\}}\left[\mathcal{F}_{\theta}\left[\mathrm{AW}_{1}[\mathrm{x}]+2 \mathrm{AW}_{1}[\mathrm{x}, \mathrm{x}]\right]\right]$
The first output, $I M_{2}[T 1, T 1]$, should not have the degree 3 part, but it does ... It seems that IM_{d} does not return the correct answer when both the
inputs have the trivial constant term. Why does it happen? Furthermore, if we take powers of such an element, then a bug appears :
$\ln [\varepsilon]:=\mathbf{I M}_{\mathbf{2}}[\mathbf{T} 1, \mathbf{T 1}, \mathbf{T 1}]$
$\mathrm{IM}_{2}[\mathrm{~T} 1, \mathrm{~T} 1, \mathrm{~T} 1, \mathrm{~T} 1]$
Out [0] =
$\mathbb{O}_{A R,\{x\},\{1\}}\left[\mathcal{F}_{\theta}\left[A W_{1}[x, x, x]\right]\right]$
Out [0] =
$\mathrm{sm}_{1, \nu \$ 27214[1] \rightarrow 1}[0]$
It seems that the problem comes from applying the strand multiplication to the zero element in \mathbb{Q}...


```
Out[0]=
```



```
Out[0]=
    \mp@subsup{\mathbb{O}}{AR,{x},{3}}{}[\mp@subsup{\mathcal{F}}{0}{}[A\mp@subsup{W}{3}{}[]]]
Out[0]=
    0
Out[0]=
    sm
```

