

What are the building blocks？

$$
z(\alpha) z(\beta)=e^{x+y}
$$

$$
\begin{aligned}
& \frac{6 \text {-gan for } \alpha \& \beta \mid}{\Delta_{1+12}(Z(\beta))=Z\left(\Delta_{n+22}(\beta)\right)} \\
& \left.\Delta_{1 \rightarrow 1,2}(Z(\alpha))\right)=Z\left(\Delta_{1+1,2}(\beta)\right)
\end{aligned}
$$

Pentagon equ

Want：

6－gon eq．

$$
Z\left(\left.\right|_{x y} \mid\right)=: \Phi(x, y)=\Phi_{e m}
$$

$$
e^{(x+y) / 2}=\Phi(x, y) e^{y / 2} \hat{\Phi}(x, y)^{-1} e^{x / 2} \Phi(y, x)^{-1}
$$

$$
\hat{\Phi}(x, y)=e^{x / 2} \Phi(y, x)^{-1} e^{-(x+y) / 2} \Phi(x, y) e^{y / 2}
$$

$$
\left.\begin{array}{l}
\left.\left[\frac{\text { Assumption }(?):}{Z\left(\left.\left.\right|_{1}\right|_{x y}\right.}\right)=\Phi(y, x)\right] \\
Z\left(\left.\left.\right|_{x 1}\right|_{y}\right)=\hat{\Phi}(x, y) \\
Z(\beta)=\Phi(x, y) e^{y} \Phi(x, y)^{-1} \\
Z(\alpha)=\Phi(x, y) e^{y / 2} \hat{\Phi}(x, y)^{-1} e^{x} \hat{\Phi}(x, y) e^{-y / 2} \Phi(x, y)^{-1} \\
=\cdots \\
=e^{(x+y) / 2} \Phi(y, x) e^{x} \Phi(y, x)^{-1} e^{-(x+y) / 2} \\
Z(\alpha) Z(\beta)
\end{array}=e^{x+y} \Leftrightarrow e^{(x+y) / 2} \Phi(y, x) e^{x} \Phi(y, x)^{-1} e^{-(x+y) / 2} \Phi(x, y) e^{y} \Phi(x, y)^{-1}=e^{x+y}\right] .
$$

Rather random questions

(1) Does $\Phi_{\mathrm{em}}=\Phi_{\mathrm{pps}}$ determine $Z(\alpha)$ and $Z(\beta)$? More concretely, should it be the following?

$$
\begin{aligned}
& Z(\alpha)=e^{\frac{x+y}{2}} \Phi_{\mathrm{em}}(y, x) e^{x} \Phi_{\mathrm{em}}(y, x)^{-1} e^{-\frac{x+y}{2}} \\
& Z(\beta)=\Phi_{\mathrm{em}}(x, y) e^{y} \Phi_{\mathrm{em}}(x, y)^{-1}
\end{aligned}
$$

(2) Does the pps-pentagon (plus normalization $\Phi(x, y)=1+\frac{1}{24}[x, y]+\cdots$) imply the equation $Z(\alpha) Z(\beta)=e^{x+y}$?
(3) On the pps-hexagon. We want to have $\Delta_{1 \rightarrow 1,2}(Z(\alpha))=Z\left(\Delta_{1 \rightarrow 1,2}(\alpha)\right)$ and $\Delta_{1 \rightarrow 1,2}(Z(\beta))=Z\left(\Delta_{1 \rightarrow 1,2}(\beta)\right)$. Does any of the two follow from the other? (Do we need $Z(\alpha) Z(\beta)=e^{x+y}$?)
(4) If Φ_{em} satisfies the pps-pentagon (with the normalization) and the ppshexagon, does it induce an expansion Z which respects "adding/deleting poles/strands" and "pole/strand doubling"?
(5) For questions above, does the argument in [AET] work?
(6) What about the HOMFLY-PT quotient? For instance, will the set of solutions to the pps-pentagon be different?

