
COMPUTING THE GENERATING FUNCT ION OF A
COINVARIANTS MAP

BY

JESSE FROHLICH

A thesis submitted in conformity with
the requirements for the degree of

Doctor of Philosophy
Graduate Department of Mathematics

University of Toronto

© 2023 Jesse Frohlich



ABSTRACT

Computing the generating function of a coinvariants map

Jesse Frohlich

Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2023

A well-known source of knot invariants is representations of quasitriangu-

lar Hopf algebras (also known as quantum groups). These invariants require

exponential time in the number of crossings to compute. Recent work has

allowed for polynomial-time computations within the Hopf algebras them-

selves, using perturbed Gaußian differential operators. This thesis introduces

and explores a partial expansion of the tangle invariant 𝑍 introduced by

Bar-Natan and van der Veen [BNvdVb]. We expand the use of the Hopf

algebra 𝔘(𝔰𝔩02+) to include its space of coinvariants, providing an extension

𝑍tr of 𝑍 from open tangles to links.

We compute a basis for the space of coinvariants of 𝔘(𝔰𝔩02+) and a closed-

form expression for the exponential generating function of the corresponding

trace map. The resulting function is not directly compatible with the previous

research, so we also find a method of computing 𝑍tr on a subclass of links

and write a program to compute 𝑍tr on two-component links. Contrary

to expectations, we find that 𝑍tr is neither stronger nor weaker than the

Multivariable Alexander polynomial. This unexplained behaviour warrants

further study into 𝑍tr and its relationship with other invariants.

ii



For M. L. E.

iii



ACKNOWLEDGEMENTS

Thank you:
To my advisor, Dror Bar-Natan, whose consistent meetings, guidance, and

encouragement brought me to this point, and to my supervisory committee,
Joel Kamnitzer and Eckhard Meinrenken, for their feedback and for helping
me connect to more of the department and its research.

To Jason Siefken and the other teaching mentors in the math department:
you have made me a better educator and communicator.

To the math department administration, especially Jemima Merisca and
Sonja Injac, whose kindness made the department a comfortable place to
be.

To Assaf Bar-Natan, Vincent Girard, Caleb Jonker, and Adriano Pacifico,
whose friendship, bike trips, and cooking sessions provided much joy; to the
people I met in the department, especially those who opened my thesis to
confirm they were included here: thank you specifically.

To the care-taking staff at the St. George campus, especially Maria and
Maria, whose diligent work and kind words have made this campus beautiful.

To the U of T Graduate Christian Fellowship for providing a refreshing
breadth of conversation and companionship.

To Rosemary and Alan Johnstone, whose hospitality made me feel imme-
diately welcome in a new city.

To my family, who encouraged me in my academic pursuits from the start:
to my mom for embracing my atypical learning styles, for instilling my love
of reading, and for teaching my how to think deeply; to my dad for teaching
me to cycle, cook, and notice the invisible among us; and to my brother for
all the laughter you bring to my life.

To the Perrins: you are my second family, and your support and love for
me is precious.

To my wife, Emily Langridge, who helped me with the motivation to
finish. I look forward to the next chapters of my life with you.

iv



CONTENTS

1 Executive summary 7
1.1 Algebraic tools for understanding knots . . . . . . . . . . . 7
1.2 Computational improvements using the universal invariant . 9
1.3 Extending 𝑍 to links . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Tensor products and meta-objects 12
2.1 Tensor product notation . . . . . . . . . . . . . . . . . . . . 12
2.2 Meta-objects . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Algebraic definitions . . . . . . . . . . . . . . . . . . . . . . 18
2.4 The meta-algebra of tangle diagrams . . . . . . . . . . . . . 23
2.5 The meta-algebra 𝑈 . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Morphisms between meta-objects . . . . . . . . . . . . . . . 38

3 Perturbed Gaußians 41
3.1 Expressing morphisms as generating functions . . . . . . . . 41
3.2 Computational example . . . . . . . . . . . . . . . . . . . . 46

4 Constructing the trace 48
4.1 Extending an invariant of open tangles to mixed tangles . . 48
4.2 The space of coinvariants of 𝑈 . . . . . . . . . . . . . . . . . 50
4.3 Computational example . . . . . . . . . . . . . . . . . . . . 55

5 Conclusions 58
5.1 Limitations of 𝑍tr . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Comparison with the multivariable Alexander polynomial . 58
5.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Code 60
A.1 Implementation of the perturbed Gaußian framework . . . . 60
A.2 Implementation of the trace . . . . . . . . . . . . . . . . . . 71
A.3 Defining 𝑍 and 𝑍tr . . . . . . . . . . . . . . . . . . . . . . . 75

v



A.4 Implementation of rotation number algorithm . . . . . . . . 81

B Table of values 94

vi



1
EXECUTIVE SUMMARY

1.1 ALGEBRAIC TOOLS FOR UNDERSTANDING KNOTS

Knotted objects

In the field of knot theory, distinguishing between two knots or links has
proven to be a difficult task. Computing strong invariants of knotted objects
is a popular way to aid with the classification of these objects.

21 2
1

?
=

Figure 1.1: Two strings tangled together. Can they be disentangled?

Merely being able to distinguish between two knotted objects does not
always provide us with enough information about these topological structures.
For instance, one may ask if a link is a satellite (i.e. whether its complement
has a non-trivial embedding of a torus), whether a knot is slice (i.e. it is the
boundary of a disk in ℝ4), or whether it is ribbon (i.e. it is the boundary
of a disk in ℝ3 with restricted types of singularities). (For more details see,
for instance, Lickorish’s [Lic].) Many interesting properties of knots can be
phrased in terms of certain topological operations, such as strand-doubling
(taking a strand and replacing it with two copies of itself, as in figure 1.2) or
strand-stitching (joining two open components together to form one longer
one).

7



1.1 ALGEBRAIC TOOLS FOR UNDERSTANDING KNOTS 8

i k j

∆
i
jk

Figure 1.2: An example of strand-doubling.

Open problems such as the Ribbon Slice Conjecture (asking whether there
exists a slice knot which is not ribbon, posed by R. H. Fox [Fox]) may be
advanced by the development of “topologically aware” invariants—those
which preserve topological data in a retrievable way.

Quantum invariants

One such class of topological invariants is derived from quasitriangular Hopf
algebras, which are algebraic structures whose operations mimic those of
knotted objects. In this approach, one takes a knotted object and decomposes
it into a sequence of topological operations (such as stitching strands or
doubling strands), then maps each of these operations to a corresponding
algebraic operation. The composition of these algebraic operations is the
value of the invariant.

More specifically, a Hopf algebra is an algebra 𝐴 together with several
maps between various tensor powers thereof (for instance, a comultiplication
mapΔ∶ 𝐴 → 𝐴⊗𝐴). To each crossing is assigned an element of 𝐴⊗𝐴. Tensor
factors which belong to the same strand are concatenated by multiplying
the associated algebra elements. The value of the invariant is an element of
a tensor power of 𝐴. We go over this in more detail in chapter 2.

While this formulation is elegant, it has a notable drawback: computing
the invariant of a tangle with many components requires manipulating large
tensor powers of 𝐴. One remedy is to instead perform the computation in a
representation 𝑉 of 𝐴 with a low dimension, though the issue of exponential



1.2 COMPUTATIONAL IMPROVEMENTS USING THE UNIVERSAL INVARIANT 9

growth in complexity remains. This limitation restricts the utility of quantum
invariants to smaller knots.

1.2 COMPUTATIONAL IMPROVEMENTS USING THE UNIVERSAL IN-
VARIANT

To avoid the issue of exponential computational complexity, one can instead
investigate the set of all values of the universal invariant (using the algebra
itself instead of a representation) as a subset of the algebra and its tensor
powers. For a particular choice of algebra (namely ̂𝔘(𝔰𝔩𝜖2+), as investigated
by Dror Bar-Natan and Roland van der Veen in [BNvdVb]) the space of
values the corresponding invariant 𝑍 can take is significantly smaller than
the whole space; the rank of the space of values grows only quadratically
with the number of crossings in the knotted object. In particular, by looking
at the generating functions of the algebra operations, one sees that the
value of 𝑍 on tangles always takes the form of a (perturbed) Gaußian.
Computationally, this means one need only keep track of a quadratic form
and a small perturbation. The invariant 𝑍 dominates the 𝔰𝔩2-coloured Jones
polynomial. Here, we will focus on the case when 𝜖 = 0, for which 𝑍 becomes
an efficient computation of the Alexander polynomial Δ on knots. This
topic is described in chapter 3.

1.3 EXTENDING 𝑍 TO LINKS

The research program outlined by Bar-Natan and van der Veen computes 𝑍
only for (open) tangles–that is, collections of open strands whose endpoints
are fixed to a boundary circle. (Note that this includes long knots, which
are exactly the one-component tangles.) This thesis is focused on extending
𝑍 and its computations to tangles with closed components, which includes
links. Here we summarize chapter 4.

Computing the extended map

The first task is to determine the space in which the extended invariant,
which we will call 𝑍tr, lives. One may observe that in a matrix algebra, one is
able to contract two matrices together via matrix multiplication. When one



1.3 EXTENDING 𝑍 TO LINKS 10

Figure 1.3: An open tangle. All components intersect the boundary.

Figure 1.4: A tangle with a closed component.

wishes to contract a matrix along itself, one uses the trace map. Analogously,
since stitching two strands in a tangle corresponds to multiplication, closing
a strand into a loop should correspond algebraically to a trace map.

In a generic algebra 𝐴, the trace map is defined as the projection onto
the set of coinvariants: tr ∶ 𝐴 → 𝐴𝐴 = 𝐴/[𝐴,𝐴].†1 In order to extend 𝑍 in
this framework, we must first compute the space of coinvariants for the
algebra 𝑈 = ̂𝔘(𝔰𝔩02+), then compute the coinvariants map, and write it as a
generating function. (This is accomplished in section 4.2.)

†1 Here, [𝐴,𝐴] = span{ [𝑥, 𝑦] | 𝑥, 𝑦 ∈ 𝐴} refers to the vector space of Lie brackets, not the
ideal generated thereby. The space 𝐴𝐴 does not have an algebra structure in general.



1.4 FURTHER STUDY 11

Performing computations

Unfortunately, the resulting trace map does not take the form of a perturbed
Gaußian in a way that readily connects to the existing framework. In order
to determine whether further study of 𝑍tr is merited, we must find an
alternative computation method to get a preliminary sense of the strength
of 𝑍tr.

For a subclass of links (which includes all two-component links), we
compute an explicit closed form for the trace map, then implement a
computer program to compute the value of 𝑍tr on all two-component links
with up to 11 crossings. When applied to knots, 𝑍 computes the Alexander
polynomial. When applied to two-component tangles, one may expect that
𝑍tr would produce the natural generalization to multiple components: the
Multivariable Alexander polynomial (MVA). Surprisingly, the MVA and
𝑍tr are incomparable, with each being able to distinguish pairs of links the
other cannot. (See section 5.2 for more information.)

1.4 FURTHER STUDY

As 𝑍tr does not generalize 𝑍 in the manner expected, several interesting
avenues of further research become open. Firstly, the precise relationship
between 𝑍tr and the MVA remains unknown. Second is the challenge of
finding an efficient method for computing 𝑍tr on links with more than
two components. Currently this endeavour is mired in complications with
non-elementary functions where quadratic forms normally appear. Third is
the question of the existence of other viable trace candidates. In particular,
it may be worth exploring whether a universal trace with respect to the
perturbed Gaußian framework defines a sufficiently useful invariant. See
chapter 5 for more information.



2
TENSOR PRODUCTS AND
META-OBJECTS

2.1 TENSOR PRODUCT NOTATION

In what follows, we will extensively use tensor products, tensor powers, and
generalizations thereof. We begin by introducing the notation that will make
working with these objects more straightforward, similar to the slot-naming
index notation introduced by Penrose [Pen].

Let 𝕜 be a field and 𝑉 a 𝕜-vector space (for the moment assumed to be
finite dimensional). When working with a large tensor power 𝑉 ⊗𝑛 of 𝑉, it
will often be more convenient to label tensor factors with elements of a finite
set 𝑆 (with |𝑆| = 𝑛) rather than by their position in a linear order.

For example, consider the vector 𝑢⊗𝑣⊗𝑤 ∈ 𝑉 ⊗3. Let us choose an index
set 𝑆 = {𝑖, 𝑗, 𝑘}. We then may equivalently write this vector by labelling
each tensor factor with one of the elements of 𝑆, say 𝑢𝑖𝑣𝑗𝑤𝑘. Since the labels
serve to distinguish the separate factors, this vector may equivalently be
written as 𝑢𝑖𝑣𝑗𝑤𝑘 = 𝑣𝑗𝑢𝑖𝑤𝑘 = 𝑤𝑘𝑣𝑗𝑢𝑖 ∈ 𝑉 ⊗𝑆, where 𝑉 ⊗𝑆 denotes the tensor
power of 𝑉. An additional notation which we will prefer is 𝑉𝑆 = 𝑉 ⊗𝑆. We
formalize the idea below:

Definition 2.1 (indexed tensor powers). Let 𝑉 be a vector space and
𝑆 = {𝑠1,… , 𝑠𝑛} be a finite set. We define the indexed tensor power of 𝑉 to
be the collection of formal linear combinations of functions from 𝑆 to 𝑉

𝑉𝑆 ≔ 𝑉 ⊗𝑆 ≔ span{𝑓∶ 𝑆 → 𝑉 }/ ∼ (2.1)

subject to the standard multilinear relations, namely multi-additivity and
the factoring of scalars:

12



2.1 TENSOR PRODUCT NOTATION 13

By multi-additivity, we mean that for each 𝑖 ∈ 𝑆 and 𝑓, 𝑔 ∈ 𝑉𝑆 satisfying
𝑓(𝑠) = 𝑔(𝑠) for each 𝑠 ∈ 𝑆 ⧵ {𝑖}, we have:

𝑓 + 𝑔 ∼ ⎛⎜
⎝
𝑠 ↦

⎧{
⎨{⎩

𝑓(𝑠) = 𝑔(𝑠) if 𝑠 ≠ 𝑖

𝑓(𝑖) + 𝑔(𝑖) if 𝑠 = 𝑖
⎞⎟
⎠

(2.2)

We will write such functions 𝑓∶ 𝑆 → 𝑉 with 𝑓(𝑠𝑖) = 𝑣𝑖 with the following
notation:

(𝑣1)𝑠1(𝑣2)𝑠2 ⋯(𝑣𝑛)𝑠𝑛 ≔ 𝑓 (2.3)

The factoring of scalars relation is:

(𝑣1)𝑠1(𝑣2)𝑠2 ⋯(𝜆𝑣𝑖)𝑠𝑖 ⋯(𝑣𝑛)𝑠𝑛 = 𝜆 ⋅ (𝑣1)𝑠1(𝑣2)𝑠2 ⋯(𝑣𝑛)𝑠𝑛 (2.4)

Similarly, equation (2.2) in the style of equation (2.3) becomes:

((𝑣1)𝑠1(𝑣2)𝑠2 ⋯𝑥𝑠𝑖 ⋯(𝑣𝑛)𝑠𝑛) + ((𝑣1)𝑠1(𝑣2)𝑠2 ⋯𝑦𝑠𝑖 ⋯(𝑣𝑛)𝑠𝑛)

= (𝑣1)𝑠1(𝑣2)𝑠2 ⋯(𝑥 + 𝑦)𝑠𝑖 ⋯(𝑣𝑛)𝑠𝑛

(2.5)

Next, we introduce notation for maps between tensor powers so that
we may unambiguously refer to appropriate tensor factors while defining
morphisms. We accomplish this task by adding a convenient way of writing
the domain and codomain of a map. Let 𝐷 and 𝐶 be finite sets, and
𝑇∶ 𝑉𝐷 → 𝑉𝐶. We will denote 𝑇 alternatively by 𝑇𝐷

𝐶 , so that its domain
and codomain are easily read off. It is important to note that when 𝑇 is
not symmetric in its arguments, the order of the indices in this notation
matters.

Example 2.2. Let 𝑉 = ℝ3, and 𝑇 𝑎,𝑏
𝑐 (equivalently, 𝑇∶ 𝑉{𝑎,𝑏} → 𝑉{𝑐})

defined by 𝑇 𝑎,𝑏
𝑐 ( ⃗𝑣𝑎�⃗�𝑏) = ( ⃗𝑣 × �⃗�)𝑐 denote the cross product. Stating that the

cross product is antisymmetric may be accomplished without referencing
vectors by writing:

𝑇 𝑎,𝑏
𝑐 = −𝑇 𝑏,𝑎

𝑐 (2.6)

Remark 2.3. There are three special cases with this notation:

• Given a (multi)linear functional 𝜙∶ 𝑉𝑆 → 𝕜 ≅ 𝑉∅, we will write 𝜙𝑆

instead of 𝜙𝑆
∅ . The linear order on 𝑆 remains in this notation.

• Elements 𝑣 ∈ 𝑉𝑆 will be interpreted as a map 𝑣∶ 𝕜 = 𝑉∅ → 𝑉𝑆 written
𝑣𝑆 instead of 𝑣∅𝑆.



2.2 META-OBJECTS 14

• When only one index is present in a subscript or superscript, and its
omission does not introduce an ambiguity in an expression, then it may
be omitted to improve readability. For instance, a map 𝜙∶ 𝑉{1,2} → 𝑉{3}

may be written as 𝜙1,2 instead of 𝜙1,2
3 , with the canonical isomorphism

𝑉 ≅ 𝑉{3} being suppressed.

When taking the tensor product of two tensor powers, we follow [BNS]
and use the notation “⊔” instead of “⊗”:

𝑉𝑋 ⊔ 𝑉𝑌 ≔ 𝑉𝑋⊔𝑌 (2.7)

Additionally, given 𝜙𝐷1
𝐶1

and 𝜓𝐷2
𝐶2

such that 𝐷1 ∩𝐷2 = ∅ = 𝐶1 ∩𝐶2, we have
a product morphism 𝜙𝐷1

𝐶1
𝜓𝐷2
𝐶2

≔ 𝜙 ⊗ 𝜓∶ 𝑉𝐷1⊔𝐷2
→ 𝑉𝐶1⊔𝐶2

, which we also
write with concatenation.

Finally, we point out that any morphism 𝑇𝐷
𝐶 may be extended to one with

larger domain and codomain. We introduce the notation 𝑇 [𝑆] ≔ 𝑇𝐷
𝐶 id𝑆𝑆 for

this concept. When no ambiguity arises, we will also suppress the “[𝑆]” so
that 𝑇𝐷

𝐶 represents more generally:

(𝑇𝐷
𝐶 )(𝑣𝐷𝑤𝑆) ≔ (𝑇𝐷

𝐶 𝑣𝐷)𝑤𝑆 (2.8)

for any 𝑣𝐷 ∈ 𝑉𝐷 and 𝑤𝑆 ∈ 𝑉𝑆.

2.2 META-OBJECTS

While the above notation is helpful when working with vector spaces, we
are interested in also using the same notation to describe a tangle. Our
formulation of tangles (introduced in section 2.4) is not a tensor product,
though it shares many similarities. In particular, the domains and codomains
of the maps we have discussed so far have only depended on the index set.
With this observation, we replace the notation of tensor powers with that
of a so-called meta-object, first introduced by Bar-Natan and Selmani in
[BNS]. We introduce this concept by starting with monoids.

We now go through the process of defining a meta-monoid, which is a
generalization of a monoid object. Traditionally, the data of a monoid object
are the following:

• An object 𝑀 in a monoidal category (𝒞,⊗,1).



2.2 META-OBJECTS 15

• A morphism 𝑚∶ 𝑀 ⊗𝑀 → 𝑀 called the “multiplication” operation.

• A “unit” morphism 𝜂∶ 1 → 𝑀.†1

• A collection of relations between the operations, written as equalities of
morphisms between Cartesian powers of 𝑀. For example, associativity
may be written:

𝑀 ⊗𝑀 ⊗𝑀 𝑀 ⊗𝑀

𝑀 ⊗𝑀 𝑀

𝑚⊗id

id⊗𝑚 𝑚

𝑚

(2.9)

Further, the data of these relations is extended to higher powers of 𝑀 by
acting on other components by the identity:

𝑀⊗(𝑛+3) 𝑀⊗(𝑛+2)

𝑀⊗(𝑛+2) 𝑀⊗(𝑛+1)

𝑚⊗id⊗(𝑛+1)

id⊗𝑚⊗id⊗𝑛 𝑚⊗id⊗𝑛

𝑚⊗id⊗𝑛

(2.10)

Let us alter how we package these data so as to maximize the clarity of
the meta-monoid structure:

1. Instead of linear orders of factors 𝑀 ⊗⋯⊗𝑀, we will index factors
by a finite set 𝑋, writing it 𝑀𝑋 ≔ {𝑓∶ 𝑋 → 𝑀} in the style of
equation (2.1).†2

2. The indexed factors will determine how the monoid operations act.
For instance, multiplication of factor 𝑖 and 𝑗 together, with the result
labelled in factor 𝑘 is to be written 𝑚𝑖𝑗

𝑘 ∶ 𝑀{𝑖,𝑗} → 𝑀{𝑘}.

3. Instead of implicitly including extensions of operations to higher powers
by the identity, we will parametrize the extension by finite sets by
𝜙𝐷
𝐶 [𝑋] ≔ 𝜙𝐷

𝐶 ⊗ id𝑋𝑋. For example, multiplication 𝑚𝑖𝑗
𝑘 ∶ 𝑀{𝑖,𝑗} → 𝑀{𝑘}

generates a family of maps 𝑚𝑖𝑗
𝑘 [𝑋] ∶ 𝑀{𝑖,𝑗}⊔𝑋 → 𝑀{𝑘}⊔𝑋, each of which

must satisfy the relations of the monoid object such as equation (2.10).
(Again, the “[𝑋]” is frequently omitted from writing.)

†1 When 𝒞 = Set, we usually write the unit as an element 1 = 𝜂(1) ∈ 𝑀, where 1 = {1}.
†2 Indeed, when 𝒞 = Vect, these definitions are identical when the monoidal product is ⊗. In

this case, they are called algebras.



2.2 META-OBJECTS 16

This way of packaging the data leads us to the following generalization:

Definition 2.4 (meta-monoid [BNS, §3.3]). A meta-monoid in 𝒞 is the
following data:

• A family of objects 𝑀𝑋 ∈ 𝒞, indexed over finite sets 𝑋, with set
bijections 𝜓∶ 𝑋

∼
−→ 𝑌 inducing isomorphisms 𝜄𝜓 ∶ 𝑀𝑋

∼
−→ 𝑀𝑌.

• A family of morphisms 𝑚𝑖𝑗
𝑘 [𝑋] ∶ 𝑀{𝑖,𝑗}⊔𝑋 → 𝑀{𝑘}⊔𝑋 called “multipli-

cation”.

• A family of “unit” morphisms 𝜂𝑖[𝑋] ∶ 𝑀𝑋 → 𝑀{𝑖}⊔𝑋.

• A collection of relations between the morphisms, written as equalities
of morphisms between the 𝑀𝑋’s. In particular,

– associativity:

𝑀{1,2,3}⊔𝑋 𝑀{1,3}⊔𝑋

𝑀{1,2}⊔𝑋 𝑀{1}⊔𝑋

𝑚1,2
1 [𝑋⊔{3}]

𝑚2,3
2 [𝑋⊔{1}] 𝑚1,3

1 [𝑋]

𝑚1,2
1 [𝑋]

(2.11)

– the identity:

𝑀{1}⊔𝑋 𝑀{1,2}⊔𝑋

𝑀{1}⊔𝑋

𝜂2[𝑋]

id

𝑚1,2
1 [𝑋]𝑚2,1

1 [𝑋] (2.12)

– index relabelling:

𝜄𝜓 ∘ 𝑚𝑖𝑗
𝑘 [𝑋] ∘ 𝜄−1

𝜓 = 𝑚𝜓(𝑖),𝜓(𝑗)
𝜓(𝑘) [𝜓(𝑋)]

𝜄𝜓 ∘ 𝜂𝑖[𝑋] ∘ 𝜄−1
𝜓 = 𝜂𝜓(𝑖)[𝜓(𝑋)]

(2.13)

Example 2.5 (monoid objects are meta-monoids). Any monoid object
𝑀 in a strict, symmetric monoidal category (𝒞,⊗, {1}) has the structure
of a meta-monoid {𝑀𝑋}𝑋 via 𝑀𝑋 ≔ 𝑀⊗𝑋†3, 𝑚𝑖𝑗

𝑘 [𝑋] ≔ 𝑚𝑖𝑗
𝑘 ⊗ id𝑋𝑋, and

𝜂𝑖[𝑋](𝑣) ≔ 1𝑖 ⊗ 𝑣 for any 𝑣 ∈ 𝑀⊗𝑋.

†3 By 𝑀⊗𝑋 we mean 𝑀⊗|𝑋| together with a choice of assigning each factor an index, analogous
to definition 2.1. By symmetry, any choice of assignment is equivalent to any other.



2.2 META-OBJECTS 17

Consider the following structure, which satisfies the definition of a meta-
monoid, but is not a monoid in the traditional sense:

Example 2.6 (the meta-monoid of square matrices). Let 𝕜 be a field and
𝑀𝑋 ≔ Mat𝑋×𝑋(𝕜) be the set of square matrices whose rows and columns
are indexed by the finite set 𝑋 = {𝑥𝑖}𝑖. Define 𝑚𝑖𝑗

𝑘 [𝑋] ∶ 𝑀𝑋⊔{𝑖,𝑗} → 𝑀𝑋⊔{𝑘}

by 𝑚𝑖𝑗
𝑘 [𝑋]((𝑎𝑟𝑠)𝑟𝑠) ≔ (𝑎𝑟𝑠 + 𝛿𝑟𝑘(𝑎𝑖𝑠 + 𝑎𝑗𝑠) + 𝛿𝑠𝑘(𝑎𝑠𝑖 + 𝑎𝑠𝑗))𝑟𝑠. That is, the

multiplication of two indices corresponds to the summation of their respective
rows and columns, the result of which is stored in row and column 𝑘:

⎡
⎢
⎢
⎢
⎣

𝑎𝑥1,𝑥1
⋯ 𝑎𝑥1,𝑖 𝑎𝑥1,𝑗

⋮ ⋱ ⋮ ⋮
𝑎𝑖,𝑥1

⋯ 𝑎𝑖𝑖 𝑎𝑖𝑗
𝑎𝑗,𝑥1

⋯ 𝑎𝑗𝑖 𝑎𝑗𝑗

⎤
⎥
⎥
⎥
⎦

𝑚𝑖𝑗
𝑘

−−→
⎡
⎢⎢
⎣

𝑎𝑥1,𝑥1
⋯ 𝑎𝑥1,𝑖 + 𝑎𝑥1,𝑗

⋮ ⋱ ⋮
𝑎𝑖,𝑥1

+ 𝑎𝑗,𝑥1
⋯ 𝑎𝑖𝑖 + 𝑎𝑗𝑖 + 𝑎𝑖𝑗 + 𝑎𝑗𝑗

⎤
⎥⎥
⎦

(2.14)
where the last column and row on the right-hand-side is indexed by 𝑘. The
unit 𝜂𝑖[𝑋]((𝑎𝑟𝑠)𝑟𝑠) extends (𝑎𝑟𝑠)𝑟𝑠 to include a row and column of 0’s, each
labelled by the index 𝑖.

Example 2.7 (tangles form a meta-algebra). Tangles are the main example
of a meta-algebra which is not an algebra in the traditional sense. We go
into more detail in section 2.4.

In order to define other meta-objects (such as a meta-coalgebra or a
meta-semigroup) we provide the following more general definition:

Definition 2.8 (meta-object). Let 𝒞 be a category. A meta-object in 𝒞 is
four things:

1. A collection of objects 𝐴𝑋, one for each choice of finite set 𝑋. (This
serves as the analogue to monoidal powers.)

2. For each bijection 𝜓∶ 𝑋
∼
−→ 𝑌 of finite sets 𝑋 and 𝑌, a reindexing

isomorphism 𝜄𝜓 ∶ 𝐴𝑋
∼
−→ 𝐴𝑌.

3. A collection of operations 𝜙1, 𝜙2,… , 𝜙𝑛 each with a signature |𝜙𝑖| ∈
ℤ≥0×ℤ≥0. For any pair of finite sets (𝐷,𝐶) satisfying (|𝐷|, |𝐶|) = |𝜙|,
we have a morphism:

𝜙𝐷
𝐶 ∶ 𝐴𝐷 → 𝐴𝐶 (2.15)

4. For each operation 𝜙𝐷
𝐶 , there is a collection of morphisms 𝜙𝐷

𝐶 [⋅] indexed
by finite sets such that for each finite set 𝑆, 𝑇:



2.3 ALGEBRAIC DEFINITIONS 18

a) 𝜙[𝑆] ∶ 𝐴𝐷⊔𝑆 → 𝐴𝐶⊔𝑆

b) 𝜙[∅] = 𝜙

c) (𝜙[𝑆])[𝑇 ] = 𝜙[𝑆 ⊔ 𝑇 ]

When no ambiguity arises, we will omit the portion written in square
brackets, so that 𝜙 will stand for 𝜙[𝑋], with the set 𝑋 determined from
context.

Finally, we may define the product of two objects 𝐴𝑆 and 𝐴𝑇 by 𝐴𝑆𝐴𝑇 =
𝐴𝑆⊔𝑇. Given operations 𝜙𝐷1

𝐶1
and 𝜓𝐷2

𝐶2
such that 𝐷1 ∩𝐷2 = ∅ = 𝐶1 ∩𝐶2, we

have a product morphism 𝜙𝐷1
𝐶1

𝜓𝐷2
𝐶2

∶ 𝐴𝐷1⊔𝐷2
→ 𝐴𝐶1⊔𝐶2

.

Composition of operators 𝜙𝐷1
𝐶1

and 𝜓𝐷2
𝐶2

is defined when 𝐶1 = 𝐷2 (This is
visualized in figure 2.1.):

𝜓𝐷2
𝐶2

∘ 𝜙𝐷1
𝐶1

∶ 𝒞𝐷1
→ 𝒞𝐶2

(2.16)

Remark 2.9. In this text, we will denote left-to-right composition with the
symbol “//” (pronounced “then”): 𝑓//𝑔 ≔ 𝑔∘𝑓. Writing function composition
in this order assists with readability when there are many functions to apply.

Remark 2.10. To make expressions easier to read, we introduce the domain
extension implicitly in the following context: given morphisms 𝜙𝐷1

𝐶1
and 𝜓𝐷2

𝐶2

such that 𝐶2 ∩ (𝐶1 ⧵ 𝐷2) = ∅ = 𝐷1 ∩ (𝐷2 ⧵ 𝐶1), we define:

𝜙𝐷1
𝐶1

// 𝜓𝐷2
𝐶2

≔ 𝜙𝐷1
𝐶1

[𝐷2 ⧵ 𝐶1] // 𝜓
𝐷2
𝐶2

[𝐶1 ⧵ 𝐷2] (2.17)

Figure 2.2 visualizes this extension.

The two extreme cases of this definition are:

• When 𝐶1 ∩𝐷2 = ∅, equation (2.17) becomes 𝜙𝐷1
𝐶1

𝜓𝐷2
𝐶2

.

• When 𝐶1 = 𝐷2, equation (2.17) becomes the composition 𝜙𝐷1
𝐶1

// 𝜓𝐷2
𝐶2

exactly.

2.3 ALGEBRAIC DEFINITIONS

We now introduce the algebraic structures which will be used to define the
tangle invariant. These definitions follow those given by Majid in [Maj],
presented in a way that their corresponding meta-structure are readily
visible.



2.3 ALGEBRAIC DEFINITIONS 19

D1

C1 = D2

C2

φ1

φ2

Figure 2.1: We may visualize a composition of morphisms with a graphical calculus.
This graphic represents (𝜙1)

𝐷1
𝐶1

// (𝜙2)
𝐷2
𝐶2

when 𝐶1 = 𝐷2. Each arrow
represents one factor. Indices are written in grey boxes.

Definition 2.11 (meta-algebra). A meta-algebra (or meta-monoid†4) is
a meta-object {𝐴𝑋}𝑋 in 𝒞 with operations an associative multiplication
𝑚𝑖,𝑗

𝑘 ∶ 𝐴{𝑖,𝑗} → 𝐴{𝑘} (satisfying equation (2.18)) and a unit 𝜂𝑖 ∶ 𝐴∅ → 𝐴{𝑖}

satisfying equation (2.19).

Remark 2.12. When 𝒞 = (𝕜-Vect, ⊗) and 𝐴𝑋 = 𝑉𝑋 = 𝑉 ⊗𝑋 for some vector
space 𝑉, definition 2.11 becomes the more familiar definition of an algebra.
Then 𝐴∅ is the field 𝕜. It is more common to think of the unit as an element
1 ∈ 𝑉. The unit map is then defined by linearly extending the assignment
𝜂𝑖(1) = 1𝑖.

𝐴{1,2,3} 𝐴{1,3}

𝐴{1,2} 𝐴{1}

𝑚1,2
1

𝑚2,3
2 𝑚1,3

1

𝑚1,2
1

(2.18)

𝐴{1} 𝐴{1,2}

𝐴{1}

𝜂2

id 𝑚1,2
1𝑚2,1

1
(2.19)

†4 This is a repeat of definition 2.4. The only difference between an algebra object and a monoid
object is the presence of a linear structure.



2.3 ALGEBRAIC DEFINITIONS 20

D1

C1 ∩D2

D2 \ C1

C1 \D2

C2

φ

ψ

Figure 2.2: Visual mnemonic for extending morphisms. This graphic represents
equation (2.17).

Remark 2.13. Associativity allows us to denote repeated multiplication by
using extra indices. For instance: 𝑚𝑖,𝑗,𝑘

ℓ ≔ 𝑚𝑖,𝑗
𝑟 // 𝑚𝑟,𝑘

ℓ = 𝑚𝑗,𝑘
𝑠 // 𝑚𝑖,𝑠

ℓ .

There is also the dual notion of a coalgebra, which arises by reversing the
arrows in equations (2.18) and (2.19):

Definition 2.14 (meta-coalgebra). A meta-coalgebra (or meta-comonoid)
is a meta-object {𝐶𝑋}𝑋 with operations a comultiplication Δ𝑖

𝑗𝑘 ∶ 𝐶{𝑖} →
𝐶{𝑗,𝑘} which is coassociative (equation (2.20)) and a counit, which is a map
𝜖𝑖 ∶ 𝐴𝑖 → 𝐴∅ satisfying equation (2.21).

𝐶{1,2,3} 𝐶{2,3}

𝐶{1,2} 𝐶{1}

Δ1
1,2

Δ2
2,3

Δ1
1,2

Δ1
1,3 (2.20)

𝐶{1} 𝐶{1,2}

𝐶{1}

𝜖2

id
Δ1

1,2 Δ1
2,1 (2.21)

Remark 2.15. Coassociativity allows us to denote repeated comultiplication
by using extra indices. For instance: Δ𝑖

𝑗,𝑘,ℓ ≔ Δ𝑖
𝑗,𝑟 // Δ𝑟

𝑘,ℓ = Δ𝑖
𝑠,ℓ // Δ𝑠

𝑗,𝑗.

If a meta-object {𝐵𝑋}𝑥 has the structure of both an algebra and a
coalgebra, we introduce a definition for when the structures are compatible
with each other:



2.3 ALGEBRAIC DEFINITIONS 21

Definition 2.16 (meta-bialgebra). A meta-bialgebra (or meta-bimonoid)
is a meta-algebra (𝐵,𝑚, 𝜂) and a meta-coalgebra (𝐵,Δ, 𝜖), such that Δ and
𝜖 are meta-algebra morphisms. †5

𝐵{1,2} 𝐵{1}

𝐵{1,2,3,4} 𝐵{1,2}

𝑚1,2
1

Δ1
1,3//Δ2

2,4 Δ1
1,2

𝑚1,2
1 //𝑚3,4

2

(2.22)

𝐵{1}

𝐵∅

𝐵{1,2}

Δ1
1,2

𝜂1

𝜂1//𝜂2

(2.23)

𝐵{1,2} 𝐵{1}

𝐵∅

𝑚1,2
1

𝜖1//𝜖2 𝜖1
(2.24)

𝐵∅ 𝐵{1}

𝐵∅

𝜂1

id 𝜖1 (2.25)

Remark 2.17. The conditions for Δ being an algebra morphism are presented
in equations (2.22) and (2.23), while those for 𝜖 are in equations (2.24)
and (2.25). Observing invariance under arrow reversal, it may not come as
a surprise that equations (2.22) and (2.24) also are the conditions for 𝑚
being a coalgebra morphism, and equations (2.23) and (2.25) tell us that 𝜂
is as well.

Next, we introduce a notion of invertibility which extends a (meta-)bial-
gebra to a (meta-)Hopf algebra:

Definition 2.18 (meta-Hopf algebra). A meta-Hopf algebra (or meta-Hopf
monoid) is a meta-bialgebra 𝐻 together with a map 𝑆∶ 𝐻 → 𝐻 called the
antipode, which satisfies Δ1

1,2 // 𝑆1
1 // 𝑚1,2

1 = 𝜖1 // 𝜂1 = Δ1
1,2 // 𝑆2

2 // 𝑚1,2
1 . As

a commutative diagram, this looks like equation (2.26)

𝐻{1} 𝐻∅ 𝐻{1}

𝐻{1,2} 𝐻{1,2}

𝜖1

Δ1
1,2

𝜂1

𝑆2
2

𝑆1
1

𝑚1,2
1

(2.26)

In order to do knot theory, we need an algebraic way to represent a
crossing of two strands. This is accomplished by the ℛ-matrix:

†5 𝐵𝑋 inherits a meta-(co)algebra structure from 𝐵, given by (𝐵𝑋)𝑌 ≔ 𝐵𝑋𝑌 and component-
wise operations. The bialgebra structure on 𝐵∅ is given by 𝑚 = 𝜂 = Δ = 𝜖 = id.



2.3 ALGEBRAIC DEFINITIONS 22

Definition 2.19 (quasitriangular meta-Hopf algebra). A quasitriangular
meta-Hopf algebra (or quasitriangular meta-Hopf monoid) is a meta-Hopf
algebra 𝐻, together with an invertible element ℛ𝑖,𝑗 ∈ 𝐻𝑖,𝑗, called the
ℛ-matrix, which satisfies the following properties: (we will denote the inverse
by ℛ)

ℛ13 // Δ1
12 = ℛ13ℛ24 // 𝑚34

3 (2.27)

ℛ13 // Δ3
23 = ℛ13ℛ42 // 𝑚14

1 (2.28)

Δ1
21 = Δ1

12ℛ𝑎1,𝑎2
ℛ𝑝1,𝑝2

// 𝑚𝑎1,1,𝑝1
1 // 𝑚𝑎2,2,𝑝2

2 (2.29)

Definition 2.20 (Drinfeld element). In a quasitriangular meta-Hopf algebra
𝐻, the Drinfeld element, 𝔲 ∈ 𝐻 is:

𝔲 ≔ ℛ21 // 𝑆1
1 // 𝑚12 (2.30)

Definition 2.21 (monodromy). Each quasitriangular meta-Hopf algebra
has a monodromy 𝑄12 ≔ ℛ12ℛ34 // 𝑚14

1 // 𝑚23
2 . Its inverse will be denoted

𝑄12 = ℛ12ℛ34 // 𝑚14
1 // 𝑚23

2 .

Definition 2.22 (ribbon meta-Hopf algebra). A quasitriangular meta-Hopf
algebra 𝐻 is called ribbon if it has an element 𝜈 ∈ 𝑍(𝐻) such that:

𝜈1𝜈2 // 𝑚12 = 𝔲1𝔲2 // 𝑆2
2 // 𝑚12 (2.31)

𝜈1 // Δ1
12 = 𝜈1𝜈2 // 𝑄34 // 𝑚

13
1 // 𝑚24

2 (2.32)

𝜈 // 𝑆 = 𝜈 (2.33)

𝜈 // 𝜖 = 𝜂 // 𝜖 = 1 (2.34)

Definition 2.23 (spinner). A spinner†6 in a ribbon meta-Hopf algebra 𝐻
is an invertible element 𝐶 ∈ 𝐻 (with inverse 𝐶) such that for all 𝑥 ∈ 𝐻:

𝐶1𝜈2𝐶3 // 𝑆2
2 // 𝑚123 = 𝜈 (2.35)

𝐶1 // Δ1
12 = 𝐶1𝐶2 (2.36)

𝐶 // 𝑆 = 𝐶 (2.37)

𝐶1𝑥2𝐶3 // 𝑚123 = 𝑥 // 𝑆 // 𝑆 (2.38)

𝐶 // 𝜖 = 𝜂 // 𝜖 = 1 (2.39)

†6 These are more commonly referred to as distinguished grouplike elements. The term we use
is inspired by the tangle in figure 2.17.



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 23

Lemma 2.24 (spinners and ribbon Hopf algebras). If a (meta-)Hopf algebra
has either a ribbon element 𝜈 or a spinner 𝐶, then it must have the other as
well, given by the formula: 𝐶1𝜈2 // 𝑚12 = 𝔲.

Proof. See Majid’s work in [Maj] or Etingof and Schiffmann in [ES] for more
details on this standard result. Note that the proof does not rely on the
additive structure of the Hopf algebra, which allows us to extend this result
to the realm of meta-Hopf algebras.

2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS

The particular structures introduced were chosen for their ability to represent
the topological properties of knotted objects. We will now introduce the
notion of a tangle and demonstrate its meta-algebraic structure.

Upright tangles

For our purposes, a tangle will be visualised as follows: take a stiff (topo-
logically) circular metal frame forming a Jordan curve (i.e. with a defined
inside and outside), then attach a collection of strings to the wire, ensuring
that the strings always remain inside the wire, and that each string is tied
to the metal frame in two unique locations (that is, no two strings share an
endpoint).

1 2

Figure 2.3: Example of a tangle with strands labelled 1 and 2.

Definition 2.25 (open tangle). An open tangle is an embedding of line
segments (called components or strands) into a thickened topological disk



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 24

𝐷 × [−1, 1] (or a disjoint union of such disks) such that the endpoints of
the line segments are fixed along 𝜕𝐷 × {0}. Each strand is labelled with
elements of a set 𝑋. Two open tangles are considered equivalent if there
exists an isotopy of the embeddings which fixes the endpoints of the strands.
The set of all tangles with strands indexed by 𝑋 will be denoted 𝒯𝑋. (The
term “open” refers to the absence of closed loops.)

The objects which are more natural for us to study are tangles with a
framing, which one may think of as open tangles with the strings replaced
with thin ribbons.

Definition 2.26 (framed tangle). A framed tangle is an open tangle together
with a choice of section of the normal bundle for each component, with
endpoints of the section fixed pointing to the right of the tangent vector. This
choice is taken up to endpoint-fixing homotopy. Unless otherwise mentioned,
it will be assumed that all tangles are framed.

Observe that a generic projection of a tangle to its central core 𝐷× {0}
results in the strands forming a graph, with each crossing of two strands in
the tangle producing a vertex in the graph. By assigning to each vertex the
sign of the corresponding crossing (either “positive” or “negative”), we end
up with a combinatorial object which is equivalent to the original tangle.

Definition 2.27 (open tangle diagram). An open tangle diagram is a
projection of a tangle onto its central core such that all the line segments
are immersions which intersect both the boundary disk and the other
strands transversally, together with an assignment of a sign to each strand
intersection. Small open neighbourhoods of these intersections are called
crossings, while the complement of the crossings is a collection of embedded
line segments called arcs.

Two open tangle diagrams are considered equivalent if they differ by a
finite sequence of Reidemeister moves, as outlined in figures 2.4 to 2.6

The rotation numbers of arcs will play a role in this thesis, so we will
capture these data in the following way (as described in [BNvdVa]):

Definition 2.28 (upright open tangle diagram). An upright tangle diagram
is a tangle diagram with the further requirement that the endpoints of each
arc must have a vertical tangent vector, and each crossing must involve only
curves with tangent vectors that point (diagonally) upwards. Here, each



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 25

=

Figure 2.4: (Framed) Reidemeister move 𝑅1′

=

Figure 2.5: Reidemeister move 𝑅2

arc has well-defined integer rotation number. Two tangles are considered
equivalent if they agree under the “rotational Reidemeister moves”, which
are figures 2.4 to 2.8. Given a finite set 𝑋, the set of equivalence classes of
𝑋-indexed upright tangle diagrams will be denoted 𝒯up

𝑋 .

Remark 2.29. The concept of upright tangles was first introduced by Louis
Kauffman in [Kau] under the name rotational virtual knot theory. In the
formulation here, we insist that all strands end pointing upwards instead of
merely requiring that endpoint vectors are vertical, so we will use the term
“upright” to remind the reader of this difference.

Fortunately, ambient isotopy allows us to rotate any classical tangle into
an upward-pointing form. Additionally, there is only one way to do this.
We reproduce the proof of this fact by Bar-Natan and van der Veen in
[BNvdVb] below:

Lemma 2.30 (tangles inject into upright tangles). To each open tangle
diagram 𝐷 there exists an upright open tangle diagram 𝐷′ obtained from



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 26

=

Figure 2.6: Reidemeister move 𝑅3

𝐷 by a planar isotopy. Further, if 𝐷″ is another such upright open tangle
diagram obtained from 𝐷, then 𝐷′ and 𝐷″ differ by a finite sequence of
rotational Reidemeister moves and a change of rotation number at the
endpoints.

Proof. Each arc and crossing in the diagram 𝐷 may be rotated so that
its endpoints are pointing upwards, giving rise to a diagram 𝐷′. Two
(nonupright) tangle diagrams are equivalent when they differ by a finite
sequence of Reidemeister moves. Each of these Reidemeister may also be
rotated to an equivalence of upright tangles, each of which is given as a
rotational Reidemeister move (figures 2.4 to 2.7). The last possibility is the
rotation of an entire crossing, which is covered by figure 2.8.

The meta-algebra structure of upright tangle diagrams

We now formally connect tangle diagrams with meta-algebras.

Theorem 2.31 (tangles form a ribbon meta-Hopf algebra). The collection
{𝒯up

𝑋}𝑋 forms a ribbon meta-Hopf algebra (in the category Set) with the
following operations:



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 27

i

j
j

i

=

Figure 2.7: The (cyclic) rotational Reidemeister move 𝑅2rot

j
i

i j

=

Figure 2.8: The whirling move

• multiplication 𝑚𝑖𝑗
𝑘 [𝑋] takes a tangle with strands 𝑋⊔{𝑖, 𝑗} and glues the

end of strand 𝑖 to strand 𝑗, labelling the resulting strand 𝑘 (figure 2.9).†7

• the unit 𝜂𝑖[𝑋] takes a tangle diagram with strands 𝑋 and introduces
a new strand 𝑖 which does not touch any of the other strands (fig-
ure 2.10).†8

†7 Strictly speaking, this operation is only defined when the end of strand 𝑖 is adjacent to
strand 𝑗. See remark 2.32 for more details.

†8 In general, there are multiple choices for the placement of such a new strand. See remark 2.33
for more details.



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 28

• the comultiplication Δ𝑖
𝑗𝑘[𝑋] takes a tangle with strands 𝑋 ⊔ {𝑖} and

doubles strand 𝑖, separating the two strands along the framing of strand
𝑖, calling the right strand 𝑗 and the left one 𝑘 (figure 2.12).†9

• the counit 𝜖𝑖[𝑋] takes a tangle with strands indexed by 𝑋 ⊔ {𝑖} and
returns the tangle with strand labelled by 𝑖 deleted (figure 2.11).

• The antipode 𝑆𝑖
𝑗[𝑋] takes a tangle with strands labelled by 𝑋 ⊔{𝑖} and

reverses the direction of strand 𝑖, then adds a counter-clockwise cap to
the new beginning, and a clockwise cup to the end. This new strand is
called 𝑗. When applied to a single vertical strand, the resulting tangle
looks like the letter “S” (figure 2.13).

• the ℛ-matrix ℛ𝑖𝑗 is given by the two-strand tangle with a single positive
crossing of strand 𝑖 over strand 𝑗. The inverse ℛ-matrix ℛ𝑖𝑗 is the
two-strand tangle with a negative crossing of strand 𝑖 over strand 𝑗
(figure 2.14).

• The spinner 𝐶𝑖[𝑋] takes a tangle in 𝒯up
𝑋 and adds a new strand with

rotation number 1 which has no interactions with any other strands.
This new strand looks like the letter “C” (figure 2.17).

j

i k

m
ij
k

Figure 2.9: Multiplication 𝑚𝑖𝑗
𝑘 stitches two strands in a tangle together.

Proof. We go through a straightforward verification of the various axioms:

1. We show 𝒯up
𝑋 is a meta-algebra:

†9 While this convention appears unfortunate, we follow the notation laid out in [BNvdVb] so
that the antipode and spinner have a more memorable representation, namely looking like
the letters they are represented by (see figures 2.13 and 2.17 for the resemblance).



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 29

k
j i

k
j

ηi

Figure 2.10: The unit 𝜂𝑖 introduces a new strand in a tangle.

j
i

j

ǫi

Figure 2.11: The counit 𝜖𝑖 deletes a strand in a tangle.

a) To establish associativity (equation (2.18)), notice that when
stitching a sequence of strands together in a fixed order, the
order in which the individual stitches are made does not affect
the resulting strand; the resulting strand has the same endpoints
and follows the same path.

b) To see that the unit axiom (equation (2.19)) holds, observe that
adding a non-interacting strand to a diagram , then stitching it
to an existing strand (without loss of generality, we may assume
that the new strand is placed adjacent to the existing one) does
not change any of the combinatorial data, resulting in identical
diagrams.

2. We show 𝒯up
𝑋 is a meta-coalgebra:



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 30

i k j

∆
i
jk

Figure 2.12: The comultiplication Δ𝑖
𝑗𝑘 doubles a strand in a tangle along its framing.

Notice the right-to-left strand labels.

i

i

Si

i

Figure 2.13: The antipode 𝑆𝑖
𝑖 reverses a strand, rotating the endpoints to maintain

an upright tangle.

a) Establishing coassociativity (equation (2.20)) amounts to the
same argument that cutting a strip of paper into three parallel
strips does not depend on the order of cutting.

b) The counit identity (equation (2.21)) states deleting a strand
is the same operation as first doubling it, then deleting both
resulting strands.

3. The meta-bialgebra axioms we verify next:

a) Equation (2.22) states that if two strands are stitched together,
then the resulting strand is doubled, this could have equivalently



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 31

ji

(a) A positive crossing, represented
by ℛ𝑖𝑗

j i

(b) A negative crossing, represented
by ℛ𝑖𝑗

Figure 2.14: The ℛ-matrix and its inverse represent a tangle with a single crossing.

i

Figure 2.15: The Drinfeld element 𝔲𝑖 in the meta-Hopf algebra of tangles.

been achieved by doubling each of the original strands, then
performing a stitching on both resulting pairs of strands.

b) Equation (2.24) simply states that stitching two strands together,
then removing the resulting strand could have equally been
achieved by removing both of the original strands without stitch-
ing them first.

c) Equation (2.25) states that introducing a strand, then immedi-
ately removing it is the identity operation.

d) Equation (2.23) says that doubling a newly-introduced (and there-
fore free of crossings) strand is the same operation as introducing
two strands separately. (For those worried that this equation
depends on the location of the separately introduced strands, this
is one place that the use of virtual tangles will be used, which
does not heed the relative locations of disjoint strands.)

4. Next, we show 𝒯up
𝑋 is a meta-Hopf algebra. Equation (2.26) states

that when a strand is doubled, then one of the two strands is reversed,
multiplying the two strands together results in a strand which can be



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 32

21

Figure 2.16: The monodromy in the meta-Hopf algebra of tangles.

i

(a) The spinner 𝐶𝑖 has rotation num-
ber 1.

i

(b) The inverse spinner 𝐶𝑖 has rota-
tion number −1.

Figure 2.17: The spinners represent strands with a unit rotation number.

rearranged to not interact with any of the other strands. This can be
readily seen, as this newly-created strand looks like a snake weaving
through the tangle diagram. One can remove the snake by applying a
series of Reidemeister 2 moves, resulting in a strand disjoint from the
rest of the diagram. This is the same as deleting the original strand,
then introducing a new disjoint one.

5. The quasitriangular axioms are equalities of pairs of three-strand
tangles:

a) Equations (2.27) and (2.28) tell us that doubling a strand involved
in a single crossing can also be built by adjoining two crossings
together. This is visualized in figures 2.19 and 2.20.



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 33

i i

=

Figure 2.18: A ribbon element 𝜈𝑖 in the meta-Hopf algebra of tangles. One can use
lemma 2.24 to verify this is compatible with the spinner.

3 2
1

3 2
1

=

Figure 2.19: Example of a tangle satisfying equation (2.28)

b) Equation (2.29) tells us that we can swap the order of a dou-
bled strand by adding crossings to either end (reminiscent of a
Reidemeister 2 move).

6. Next, we establish that 𝒯up
𝑋 is ribbon. Using lemma 2.24, it is enough

to verify the spinner axioms (equations (2.35) to (2.39)). All these
axioms have corresponding pictures one can draw, keeping in mind
the orientations in the definitions of the relevant operations.

Finally, we observe that the Reidemeister moves do not introduce any new
relations. Reidemeister 2 follows from the invertibility of the ℛ-matrix. Next,
it is readily seen that the quasitriangular relations governing the ℛ-matrix
force it to solve the Yang-Baxter equation, which is one equivalent to the
Reidemeister 3 in this case.

Remark 2.32. One may object that strand-stitching 𝑚𝑖𝑗
𝑘 is not defined when

the endpoint of strand 𝑖 cannot be connected to the starting point of strand
𝑗 using only an upward-pointing arc, and the two points are adjacent in the



2.4 THE META-ALGEBRA OF TANGLE DIAGRAMS 34

1
3 2

1
3 2

=

Figure 2.20: Example of a tangle satisfying equation (2.27)

cyclic ordering induced by the boundary of the disk. This issue is resolved
in multiple ways:

1. We may extend the collection of tangles we work with to include
virtual tangles. This generalization of tangles deals exactly with the
issue that multiplication need not produce a planar tangle diagram.
In fact, virtual tangles can be thought of as merely non-planar tangle
diagrams.

2. We may commit to only apply multiplication when doing so would
result in a valid (classical) tangle. This is the approach we will take
when performing computations on tangles, though we emphasize that
the true context we are working in is that of virtual tangles.

Remark 2.33. One may object that inserting a strand 𝜂𝑖 is not well-defined.
This issue is resolved in multiple ways:

1. We may extend the collection of tangles we work with to include
virtual tangles, which encode only the combinatorial information of a
tangle, so the placement of a new strand is not relevant.

2. We may commit to place the new strand in one location; the relations
above will suffice to define tangles. Moving strands’ intersection with
the boundary disk does not play a role in deciding the equivalence of
two classical links.



2.5 THE META-ALGEBRA 𝑈 35

2.5 THE META-ALGEBRA 𝑈

Here we define the ribbon Hopf algebra 𝑈 ≅ ̂𝔘(𝔰𝔩02+), and point out some of
its properties.

Definition 2.34 (The ribbon Hopf algebra 𝑈). Define the Lie algebra

𝔤 ≔ spanℚ{y,b,a,x ∣ [a,x] = x, [a,y] = −y, [x,y] = b, [b, ⋅ ] = 0} (2.40)

We put a grading on 𝔤 by deg(𝑦) = deg(𝑏) = 1 and deg(𝑎) = deg(𝑥) = 0.
Then the algebra 𝑈 is defined to be the graded completion of the universal
enveloping algebra ̂𝔘(𝔤). With B ≔ e−b, the bialgebra structure of 𝑈 is:

Δ𝑖,𝑗(y) =
b𝑖 + b𝑗

1 −B𝑖B𝑗
(B𝑗

1 −B𝑖
b𝑖

y𝑖 +
1 −B𝑗

b𝑗
y𝑗)

Δ𝑖,𝑗(b) = b𝑖 + b𝑗

Δ𝑖,𝑗(a) = a𝑖 + a𝑗

Δ𝑖,𝑗(x) = x𝑖 + x𝑗

(2.41)

For any z ∈ {y,b,a,x}, we have 𝜖(z) = 0 (extended multiplicatively by
equation (2.24)).

Next, we define the Hopf algebra structure by defining the antipode, which
is defined as 𝑆(z) ≔ −z for each z ∈ {y,b,a,x}, extended antimultiplica-
tively.

Next, we introduce the ribbon structure of 𝑈 with an ℛ-matrix and the
spinner 𝐶:

ℛ𝑖,𝑗 ≔ exp(b𝑖a𝑗) exp(
1 −B𝑖
b𝑖

y𝑖x𝑗) (2.42)

𝐶 ≔
√
B (2.43)

𝜈 ≔ ℛ31𝐶2 // 𝑚123 = ℛ13𝐶2 // 𝑚123 (2.44)



2.5 THE META-ALGEBRA 𝑈 36

Remark 2.35. The algebra 𝑈 is isomorphic to the algebra ̂𝔘(𝔰𝔩02+) defined in
[BNvdVa, §4] when 𝜖 = 0 under the following change-of-variables:

𝔻
∼
−→ 𝑈

y ↦ 1−B

b
y

b ↦ b

a ↦ a

x ↦ x

(2.45)

This change-of-variables was implemented to facilitate the pullback of the
ℛ-matrix structure of 𝑄𝑈, while maintaining cocommutativity.

Lemma 2.36 (Commutation relations in 𝑈). Given 𝑓 ∈ ℚ[a], we have the
following relations in 𝑈:

𝑓(a)y𝑟 = y𝑟𝑓(a− 𝑟) x𝑟𝑓(a) = 𝑓(a− 𝑟)x𝑟 (2.46)

These relations also hold when 𝑓(𝑎) is replaced with 𝑓(𝑎, 𝑏) ∈ ℚ[a]JbK.

Proof. We begin by commuting a single “a” past a power of y:

ay𝑟 = y(a− 1)y𝑟−1 = y2(a− 2)y𝑟−2 = ⋯ = y𝑟(a− 𝑟) (2.47)

Repeating the above process for multiple copies of 𝑎 yields:

a𝑘y𝑟 = a𝑘−1(ay𝑟) = a𝑘−1y𝑟(a− 𝑟) = a𝑘−2y𝑟(a− 𝑟)2 = ⋯ = y𝑟(a− 𝑟)𝑘

(2.48)
Equation (2.48) establishes a linear relation, so the result extends to any
polynomial in a, and thereby to any element of ℚ[a]JbK.

A similar argument exists to show x𝑟𝑓(a) = 𝑓(a− 𝑟)x𝑟.

Next, we observe that since [x,y] = b is central, the Weyl canonical
commutation relation holds:

Lemma 2.37 (Weyl canonical commutation relation). In the ring 𝑈J𝜉, 𝜂K,
we have the following relation:

e𝜉xe𝜂y = e𝜉𝜂be𝜂ye𝜉x (2.49)

Proof. See, Weyl’s [Wey] or Hall’s [Hal] for details on this result.



2.5 THE META-ALGEBRA 𝑈 37

We have further commutation relations with exponentials:

Lemma 2.38 (Exponential commutation relations in 𝑈). In the ring
𝑈J𝛼, 𝜂, 𝜉K, let 𝒜 ≔ e𝛼. Then we have:

e𝛼ae𝜂y = e
𝜂
𝒜ye𝛼a (2.50)

e𝜉xe𝛼a = e𝛼ae
𝜉
𝒜x (2.51)

Proof. Using equation (2.46), we notice

e𝛼ae𝜂y = e𝛼a ∑
𝑛

(𝜂y)𝑛

𝑛!
= ∑

𝑛

(𝜂y)𝑛

𝑛!
e𝛼(a−𝑛) = e

𝜂
𝒜ye𝛼a (2.52)

similarly,

e𝜉xe𝛼a = ∑
𝑛

(𝜉x)𝑛

𝑛!
e𝛼a = ∑

𝑛
e𝛼(a−𝑛) (𝜉x)𝑛

𝑛!
= e𝛼ae

𝜉
𝒜x (2.53)

Lemma 2.39 (the algebra 𝑈 is ribbon). The algebra 𝑈 has a ribbon structure
given by the above ℛ-matrix and spinner 𝐶.

Proof. This follows from [BNvdVb, theorem 29]. For completeness, we
produce a more direct proof:

The Hopf algebra structure of 𝑈 is straightforward, and is left to the
reader to verify. We will focus our attention on verifying quasitriangularity
and the ribbon structure.

Let us verify equation (2.28) first. The left-hand side is:

ℛ12 // Δ2
23 = exp(b1(a2 + a3)) exp(

1 −B1
b1

y1(x2 + x3)) (2.54)

Equality with the right-hand side follows by commutativity of b1 and y1:

ℛ13ℛ42 // 𝑚14
1

= exp(b1a3) exp(
1 −B1
b1

y1x3) exp(b1a2) exp(
1 −B1
b1

y1x2)

= exp(b1(a2 + a3)) exp(
1 −B1
b1

y1(x2 + x3))

(2.55)



2.6 MORPHISMS BETWEEN META-OBJECTS 38

Next we verify equation (2.27), whose left-hand side is:

ℛ13//Δ1
12 = exp((b1+b2)a3) exp((B2

1 −B1
b1

𝑦1 +
1 −B2
b2

𝑦2)x3) (2.56)

On the right-hand side, we have

ℛ13ℛ24 // 𝑚34
3

= exp(b1a3) exp(
1 −B1
b1

y1x3) exp(b2a3) exp(
1 −B2
b2

y2x3)

= exp((b1 + b2)a3) exp(
1 −B1
b1

B2y1x3) exp(1 −B2
b2

y2x3)

(2.57)

We use lemma 2.38 to write the expression in a canonical order. Finally, the
right two exponentials may be combined since each variable commutes with
the others, either by belonging to separate tensor factors, or in the case of
b, being central. The verifications of equation (2.29) and equations (2.35)
to (2.39) follow with similar computations.

2.6 MORPHISMS BETWEEN META-OBJECTS

We can define a tangle invariant by considering a morphism between the
meta-structure of tangles and that of an algebraic object. We now define a
morphism between meta-objects:

Definition 2.40 (morphism of meta-objects). Let {𝐴𝑋}𝑋 and {𝐵𝑋}𝑋 be
compatible meta-objects (i.e. ones with the same operations and relations
between the operations). A morphism Φ between these meta-objects is a
map Φ∶ {𝐴𝑋}𝑋 → {𝐵𝑋}𝑋 sending 𝐴𝑋 ↦ 𝐵𝑋 such that each operation 𝜙𝑋

𝑌

in 𝐴 intertwines with that in 𝐵:

Φ(𝜙𝑋
𝑌 ) = 𝜙𝑋

𝑌 (2.58)

Upright tangle invariants from a ribbon meta-Hopf algebra

Given a ribbon-Hopf algebra, there is an associated universal invariant,
called the Reshetikhin–Turaev invariant (introduced in [RT]). What follows
is an outline of the definition of the universal invariant 𝑍 for 𝑈:



2.6 MORPHISMS BETWEEN META-OBJECTS 39

1. Given a open tangle, disconnect each crossing from its neighbours, as
well as each arc with a nonzero rotation number.

2. Replace each crossing with an ℛ-matrix ℛ𝑖𝑗 ∈ 𝑈{𝑖,𝑗}, and each rotation
of an arc with a spinner 𝐶𝑖 ∈ 𝑈{𝑖}.

3. For each disconnection, there is a corresponding stitching operation
required to bring the tangle back to its original state. Replace each
stitching operation with a multiplication operation in 𝑈.

Figure 2.21 provides an example of this process. There, the meta-morphism
𝑍 sends the right-hand tangle to ℛ3,7ℛ6,2ℛ1,5𝐶4. By equation (2.58), the im-
age of the left-hand tangle (which is the knot 31) under 𝑍 isℛ3,7ℛ6,2ℛ1,5𝐶4//
𝑚1,2,…,7

𝑖 . As an algebra element, this is

exp(b3a7) exp(
1 −B3
b3

y3x7) exp(b6a2) exp(
1 −B6
b6

y6x2)

⋅ exp(b1a5) exp(
1 −B1
b1

y1x5)B
−1/2
4 // 𝑚1,2,…,7

𝑖

(2.59)

In order to meaningfully compare such expressions, we must first write them
in a canonical form. The form we use here is to order monomials so that
they are of the form y𝑛1b𝑛2a𝑛3x𝑛4 . This may always be done through the
use of the relations with the Lie bracket. Doing so efficiently is a difficult
task, and will be addressed in the following chapter.



2.6 MORPHISMS BETWEEN META-OBJECTS 40

i
51

26

73

4

Figure 2.21: Breaking up a tangle into its constituent components.



3
PERTURBED GAUSS IANS

We now summarize the work of Bar-Natan and van der Veen in [BNvdVb],
which uses perturbed Gaußians to compute 𝑍 quickly.

3.1 EXPRESSING MORPHISMS AS GENERATING FUNCTIONS

In order to be able to compute 𝑍 efficiently, we need an effective way to
reduce expressions in 𝑈 to a closed form. In [BNvdVb], Bar-Natan and van
der Veen achieve this by compactly encoding operations. We outline their
formulation in what follows.

To describe 𝕜-linear maps between tensor powers of the algebra 𝑈, we
define some categories 𝒰, ℋ, and 𝒞, each with objects given by finite sets.
For the first two categories, their homsets are given by:

Hom𝒰(𝐽,𝐾) ≔ Hom𝕜(𝑈𝐽, 𝑈𝐾) (3.1)

Homℋ(𝐽,𝐾) ≔ Hom𝕜(ℚ[𝑧𝐽], ℚ[𝑧𝐾]) (3.2)

where 𝑧𝑋 is a shorthand for all the variables 𝑦𝑖, 𝑏𝑖, 𝑎𝑖, and 𝑥𝑖 for all 𝑖 ∈ 𝑋.
Equations (3.1) and (3.2) explicitly denote vector space maps, not just
algebra or ring homomorphisms.

By the PBW theorem, we know that 𝑈 is isomorphic as a vector space to
the polynomial ring ℚ[𝑦, 𝑏, 𝑎, 𝑥] by choosing an ordering of the generators
(following [BNvdVb], we use (y,b,a,x)):

𝕆∶ ℚ[𝑦, 𝑏, 𝑎, 𝑥]
∼
−→ 𝑈

𝑦𝑛1𝑏𝑛2𝑎𝑛3𝑥𝑛4 ↦ y𝑛1b𝑛2a𝑛3x𝑛4
(3.3)

This map extends to a linear isomorphism of the homsets of ℋ and 𝒰,
inducing an isomorphism of categories 𝕆∶ ℋ

∼
−→ 𝒰. By this ordering map,

we can work with linear maps between polynomial spaces instead of with
linear maps between the non-commuting polynomials of 𝑈.

41



3.1 EXPRESSING MORPHISMS AS GENERATING FUNCTIONS 42

Next we seek to better understand linear maps between polynomial spaces.
Bar-Natan and van der Veen use generating functions, whose definition we
reproduce below:

For 𝐴 and 𝐵 finite sets, consider the set Hom(ℚ[𝑧𝐴], ℚ[𝑧𝐵]) of linear maps
between multivariate polynomial rings. Such a map is determined by its
values on the monomials 𝑧n

𝐴 for each multi-index n ∈ ℕ𝐴.

Definition 3.1 (Exponential generating function). Given a linear map
Φ∶ ℚ[𝑧𝐴] → ℚ[𝑧𝐵] between polynomial spaces, its exponential generating
function is:

𝒢(Φ) ≔ ∑
n∈ℕ𝐴

Φ(𝑧n
𝐴)

n! 𝜁n
𝐴 ∈ ℚ[𝑧𝐵]J𝜁𝐴K (3.4)

We also extend the domain of Φ from ℚ[𝑧𝐴] to ℚ[𝑧𝐴]J𝜁𝐴K via extension of
scalars Φ ↦ Φ⊗ idℚJ𝜁𝐴K. This extension allows us to write the exponential
generating function in a cleaner way:

𝒢(Φ) = Φ( ∑
n∈ℕ𝐴

(𝑧𝐴𝜁𝐴)n

n! ) = Φ(𝒢(idℚ[𝑧𝐴])) (3.5)

We may now define the homsets for the category 𝒞 of generating functions.
Given finite sets 𝐽 and 𝐾 we set:

Hom𝒞(𝐽,𝐾) ≔ ℚ[𝑧𝐾]J𝜁𝐽K (3.6)

Composition of generating functions𝒯 ∈ Hom𝒞(𝐽,𝐾) and 𝒮 ∈ Hom𝒞(𝐾,𝐿)
is defined as:

𝒯 // 𝒮 ≔ (𝒯∣
𝑧𝐾↦𝜕𝜁𝐾

𝒮)∣
𝜁𝐾=0

(3.7)

The map 𝒢 intertwines the compositions on 𝒞 and ℋ. On 𝒞, the pullback
of composition through 𝒢−1 takes the following form (quoted from [BNvdVb,
Lemma 3]):

Lemma 3.2 (Composition of generating functions). Suppose 𝐽, 𝐾, 𝐿 are
finite sets and 𝜙 ∈ Hom(ℚ[𝑧𝐽], ℚ[𝑧𝐾]) and 𝜓 ∈ Hom(ℚ[𝑧𝐾], ℚ[𝑧𝐿]). We
have

𝒢(𝜙 // 𝜓) = (𝒢(𝜙)|𝑧𝐾↦𝜕𝜁𝐾
𝒢(𝜓))∣

𝜁𝐾=0

(3.8)



3.1 EXPRESSING MORPHISMS AS GENERATING FUNCTIONS 43

The maps 𝕆∶ ℋ
∼
−→ 𝒰 and 𝒢∶ ℋ

∼
−→ 𝒞 as introduced in equations (3.3)

and (3.4) induce linear isomorphisms between the corresponding homsets,
which extend to monoidal isomorphisms.

We use this formulation because of the existence of a computationally
amenable subcategory of 𝒞 which contains the image of this invariant.
Instead of considering all power series in 𝒞, we may instead work with a
subset which is much easier to compute with.

Since the composition as in equation (3.7) will occur several times, we will
use the notion of contraction used by Bar-Natan and van der Veen (taken
from [BNvdVb, Definition 4]):

Definition 3.3 (Contraction). Let 𝑓 ∈ 𝕜J𝑟, 𝑠K be a power series. The
contraction of 𝑓 = ∑𝑘,𝑙 𝑐𝑘,𝑙𝑟

𝑘𝑠𝑙 along the pair (𝑟, 𝑠) is:

⟨𝑓⟩(𝑟,𝑠) ≔ ∑
𝑘

𝑐𝑘,𝑘𝑘! = ∑
𝑘,𝑙

𝑐𝑘,𝑙𝜕𝑘
𝑠 𝑠𝑙∣

𝑠=0

(3.9)

Further, this notation is to be extended to allow for multiple consecutive
contractions for 𝑓 ∈ 𝕜J𝑟𝑖, 𝑠𝑖K𝑖≤𝑛:

⟨𝑓⟩((𝑟𝑖)𝑖,(𝑠𝑖)𝑖) ≔ ⟨⟨⟨𝑓⟩(𝑟1,𝑠1)⟩(𝑟2,𝑠2)
⋯⟩

(𝑟𝑛,𝑠𝑛)
(3.10)

Using this notation, we write the extended composition notation intro-
duced in equation (2.17) as:

𝒢(𝜙𝐷1
𝐶1

// 𝜓𝐷2
𝐶2

) = ⟨𝒢(𝜙𝐷1
𝐶1

)𝒢(𝜓𝐷2
𝐶2

)⟩
(𝑧𝐶1∩𝐷2,𝜁𝐶1∩𝐷2)

(3.11)

where 𝑧𝑋 and 𝜁𝑋 are shorthand for 𝑦𝑖, 𝑏𝑖, 𝑎𝑖, 𝑥𝑖 and 𝜂𝑖, 𝛽𝑖, 𝛼𝑖, 𝜉𝑖 respectively.
It is important to note that contraction does not always define a convergent

expression. We will focus our attention on cases when convergence is well-
defined, and especially those where the computation is accessible.

The theorem we will rely heavily on in this thesis is the following, taken
from [BNvdVb, Theorem 6]:

Theorem 3.4 (Contraction theorem). For any 𝑛 ∈ ℕ, consider the ring
𝑅𝑛 = ℚ[𝑟𝑗, 𝑔𝑗]J𝑠𝑗,𝑊𝑖𝑗, 𝑓𝑗 ∣ 1 ≤ 𝑖, 𝑗 ≤ 𝑛K. Then

⟨e𝑔𝑠+𝑟𝑓+𝑟𝑊𝑠⟩𝑟,𝑠 = det(�̃� )e𝑔�̃�𝑓 (3.12)



3.1 EXPRESSING MORPHISMS AS GENERATING FUNCTIONS 44

where �̃� = (1 −𝑊)−1.

The main takeaway of this theorem is this: morphisms whose generating
functions are Gaußians have a clean formula for composition. Furthermore,
this formula is computationally reasonable, growing only polynomially in
complexity with 𝑛. This is contrasted with the conventional approach of
choosing a representation 𝑉 of 𝑈. When one considers morphisms between
large tensor powers 𝑉 ⊗𝑛, the computational complexity is exponential in 𝑛.

Expressing ribbon Hopf algebra operations as perturbed Gaußians

Using this vector space isomorphism, [BNvdVb] expresses all ribbon Hopf
algebra operations as power series in a closed form, namely as perturbed
Gaußians.

Theorem 3.5 (The ribbon meta-Hopf structure of 𝑈 is Gaußian). Each of
the ribbon meta-Hopf algebra operations for 𝑈 as defined in section 2.5 all
have the form of a perturbed Gaußian. That is, when the generators (𝑦, 𝑏, 𝑎, 𝑥)
are assigned weights of (1, 0, 2, 1) respectively, and their dual variables
(𝜂, 𝛽, 𝛼, 𝜉) are assigned complementary weights so that wt 𝑧 + wt 𝜁 = 2, we



3.1 EXPRESSING MORPHISMS AS GENERATING FUNCTIONS 45

have the following expressions which are either Gaußian or are generating
functions of central elements (with 𝐵 = e−𝑏 and 𝒜 = e𝛼):

𝒢(𝑚𝑖𝑗
𝑘 ) = exp((𝛼𝑖 + 𝛼𝑗)𝑎𝑘 + (𝛽𝑖 + 𝛽𝑗 + 𝜉𝑖𝜂𝑗)𝑏𝑘

+( 𝜉𝑖
𝒜𝑗

+ 𝜉𝑗)𝑥𝑘 +(
𝜂𝑗
𝒜𝑖

+ 𝜂𝑖)𝑦𝑘)

(3.13)

𝒢(𝜂𝑖) = 1 (3.14)

𝒢(Δ𝑖
𝑗𝑘) = exp(𝜂𝑖

𝑏𝑗 + 𝑏𝑘
1 − 𝐵𝑗𝐵𝑘

(𝐵𝑘
1 − 𝐵𝑗

𝑏𝑗
𝑦𝑗 +

1 − 𝐵𝑘
𝑏𝑘

𝑦𝑘)

+ 𝛽𝑖(𝑏𝑗 + 𝑏𝑘) + 𝛼𝑖(𝑎𝑗 + 𝑎𝑘) + 𝜉𝑖(𝑥𝑗 + 𝑥𝑘))

(3.15)

𝒢(𝜖𝑖) = 1 (3.16)

𝒢(𝑆𝑖
𝑖) = exp(−𝜂𝑖𝒜𝑖𝑦𝑖 − 𝛽𝑖𝑏𝑖 + 𝜂𝑖𝒜𝑖𝜉𝑖𝑏𝑖 − 𝑎𝑖𝛼𝑖 −𝒜𝑖𝜉𝑖𝑥𝑖) (3.17)

𝒢(ℛ𝑖𝑗) = exp(𝑎𝑗𝑏𝑖 +
1 − 𝐵𝑖

𝑏𝑖
𝑦𝑖𝑥𝑗) (3.18)

𝒢(𝐶𝑖) = √𝐵𝑖 (3.19)

𝒢(𝜈𝑖) = √𝐵𝑖 exp(𝑎𝑖𝑏𝑖 +
1 − 𝐵𝑖

𝑏𝑖
𝑥𝑖𝑦𝑖) (3.20)

Proof. This follows from [BNvdVb, §6]. For completeness, we include a
direct proof below:

To prove equation (3.13), we use equations (2.49) to (2.51), which allows
us to commute exponentials past each other to bring expressions into 𝑦𝑏𝑎𝑥-
order. Below we omit the index 𝑘 for readability:

𝒢(𝑚𝑖𝑗) = (𝕆−1 ∘ 𝑚𝑖𝑗 ∘ 𝕆)(e𝜂𝑖𝑦𝑖+𝛽𝑖𝑏𝑖+𝛼𝑖𝑎𝑖+𝜉𝑖𝑥𝑖e𝜂𝑗𝑦𝑗+𝛽𝑗𝑏𝑗+𝛼𝑗𝑎𝑗+𝜉𝑗𝑥𝑗)

= 𝕆−1(e𝜂𝑖ye𝛽𝑖be𝛼𝑖ae𝜉𝑖xe𝜂𝑗ye𝛽𝑗be𝛼𝑗ae𝜉𝑗x)
(2.49)
= 𝕆−1(e𝜂𝑖ye𝛽𝑖be𝛼𝑖a(e𝜉𝑖𝜂𝑗be𝜂𝑗ye𝜉𝑖x)e𝛽𝑗be𝛼𝑗ae𝜉𝑗x)

(2.50)
= 𝕆−1(e(𝛽𝑗+𝛽𝑖+𝜉𝑖𝜂𝑗)be𝜂𝑖ye

𝜂𝑗
𝒜𝑖

y
e𝛼𝑖ae𝜉𝑖xe𝛼𝑗ae𝜉𝑗x)

(2.51)
= 𝕆−1(e(𝜂𝑖+

𝜂𝑗
𝒜𝑖

)y
e(𝛽𝑗+𝛽𝑖+𝜉𝑖𝜂𝑗)be(𝛼𝑖+𝛼𝑗)ae

( 𝜉𝑖
𝒜𝑗

+𝜉𝑗)x)

= e
(𝜂𝑖+

𝜂𝑗
𝒜𝑖

)𝑦
e(𝛽𝑗+𝛽𝑖+𝜉𝑖𝜂𝑗)𝑏e(𝛼𝑖+𝛼𝑗)𝑎e

( 𝜉𝑖
𝒜𝑗

+𝜉𝑗)𝑥

(3.21)



3.2 COMPUTATIONAL EXAMPLE 46

Since this expression is now written in the ybax-order, we conclude that
the corresponding generating function is this same expression, but written
with commuting variables.

The other computation we must verify is the antipode, which follows
similarly:

𝒢(𝑆) = (𝕆−1 ∘ 𝑆 ∘ 𝕆)(e𝜂𝑦+𝛽𝑏+𝛼𝑎+𝜉𝑥)

= 𝕆−1(e−𝜉xe−𝛼ae−𝛽be−𝜂y)
(2.50)
= 𝕆−1(e−𝜉xe−𝒜𝜂ye−𝛽be−𝛼a)

(2.49)
= 𝕆−1(e𝜉𝒜𝜂be−𝒜𝜂ye−𝜉xe−𝛼ae−𝛽b)

(2.51)
= 𝕆−1(e−𝒜𝜂ye(𝜂𝒜𝜉−𝛽)be−𝛼ae−𝜉𝒜x)

= e−𝒜𝜂𝑦+(𝜂𝒜𝜉−𝛽)𝑏−𝛼𝑎−𝜉𝒜𝑥

(3.22)

Equation (3.15) follows similarly, though the centrality of b makes for an
easier computation than the rest. Finally, equations (3.14), (3.16) and (3.18)
to (3.20) follow immediately.

Following the convention laid out earlier, we will write a morphism with
domain 𝐷, codomain 𝐶, and generating function 𝑓(𝜁𝐷, 𝑧𝐶) as 𝑓(𝜁𝐷, 𝑧𝐶)𝐷𝐶
(omitting any set if it is empty).

3.2 COMPUTATIONAL EXAMPLE

Continuing the computation in equation (2.59), we now have the tools to
bring the expression into a reduced form:

(𝐵1/2
4 e

𝑎5𝑏1+𝑎7𝑏3+𝑎2𝑏6−
(𝐵1−1)𝑥5𝑦1

𝑏1
− (𝐵3−1)𝑥7𝑦3

𝑏3
− (𝐵6−1)𝑥2𝑦6

𝑏6 )
{1,…,7}

// 𝑚{1,…,7}
1

(3.23)
Computing this contraction yields:

(exp(3𝑎1𝑏1 +
𝑥1𝑦1 −𝐵3

1𝑥1𝑦1
𝑏1

) 1
−𝐵3/2

1 +𝐵5/2
1 +√𝐵1

)
{1}

(3.24)



3.2 COMPUTATIONAL EXAMPLE 47

To bring this into a more recognizable form, we will also correct for the
framing by adding twists (that is, ribbon elements 𝜈):

(3.24) ⋅ 𝜈2𝜈3𝜈4 // 𝑚
1,2,3,4
1 = ( 1

𝐵1 − 1 + 𝐵−1
1

)
{1}

(3.25)

Thus we finish with the observation that 𝑍 applied to the (positive) trefoil is
equal to the reciprocal of the Alexander polynomialΔ: 𝑍(𝐾3,1) = Δ(𝐾3,1)−1.
In fact, this holds in general:

Proposition 3.6 ([BNvdVb]). Let 𝐾 be a (framed) upright knot diagram
with self-linking number 0. Then:

𝑍(𝐾) = Δ(𝐾)−1 (3.26)



4
CONSTRUCTING THE
TRACE

4.1 EXTENDING AN INVARIANT OF OPEN TANGLES TO MIXED TAN-
GLES

Thus far, the algebraic framework we have defined allows us to describe in-
variants of tangles with no closed components. We now provide an extension
to include closed components.

Definition 4.1 (traced meta-algebra). A traced meta-algebra (or traced
meta-monoid) is two things:

1. A collection of meta-algebras: for each finite set 𝐿, we assign one
meta-algebra {𝐴𝑆,𝐿}𝑆. †1 The multiplication maps 𝑚𝑖,𝑗

𝑘 [𝐿] then take
the form:

𝑚𝑖,𝑗
𝑘 [𝐿][𝑆] ∶ 𝐴{𝑖,𝑗}⊔𝑆,𝐿 → 𝐴{𝑘}⊔𝑆,𝐿 (4.1)

for 𝑖, 𝑗, 𝑘 disjoint from both 𝑆 and 𝐿.

2. For each pair of disjoint finite sets 𝑆, 𝐿 and index 𝑖 ∉ 𝑆 ∪ 𝐿, a
trace tr𝑖 ∶ 𝐴{𝑖}⊔𝑆,𝐿 → 𝐴𝑆,{𝑖}⊔𝐿 which governs the compatibility of the
families of meta-algebras in the following way:

𝑚𝑖,𝑗
𝑘 // tr𝑘 = 𝑚𝑗,𝑖

𝑘 // tr𝑘 (4.2)

Equation (4.2) is called the cyclic property of the trace.

Furthermore, tr𝑖 commutes with operations which do not involve the
same strands. That is, for any operation 𝜙𝐷

𝐶 and 𝑖 ∉ 𝐷 ∪ 𝐶:

𝜙𝐷
𝐶 // tr𝑖 = tr𝑖 //𝜙𝐷

𝐶 (4.3)

†1 These sets index the “strands” 𝑆 and the “loops” 𝐿.

48



4.1 EXTENDING AN INVARIANT OF OPEN TANGLES TO MIXED TANGLES 49

The first example we give is that of mixed tangles.

Definition 4.2 (mixed upright tangles). Let 𝒯up
𝐿,𝑆 be the set of upright

tangles with open strands indexed by 𝑆 and closed strands indexed by 𝐿. The
operations 𝜙[𝐿][𝑆] are defined analogously to the 𝜙[𝑆] given in theorem 2.31.
(Here 𝜙 varies over 𝑚, 𝜂, Δ, 𝜖, 𝑆, ℛ, and 𝐶.)

Lemma 4.3 (tangles are a traced algebra). The collection of all 𝒯up
𝐿,𝑆 is a

traced ribbon meta-Hopf algebra, with trace map given by closing a strand
into a loop.

Proof. When 𝐿 = ∅, the situation is exactly the case of theorem 2.31, so
𝒯up

∅,𝑆 = 𝒯up
𝑆 is a meta-Hopf algebra. Furthermore, since the Reidemeister

moves are local operations, the presence of closed components does not
affect our ability to verify the identities on the Hopf-algebra operations.

The last point to verify is that closing a strand into a loop is a cyclic
operation. Given two strands, we must verify that stitching one end together,
then tracing the other yields the same diagram as stitching the other ends
together, then taking the trace. However, by definition of trace, these two
actions yield identical diagrams: the two strands are replaced by the same
closed loop.

Remark 4.4. As in remark 2.32, the use of virtual tangles allows us to ensure
this result holds regardless of the diagram in question. In the computations
to be done in this paper, we will ensure that the two endpoints being joined
are situated so that joining them results in a planar diagram.

Lemma 4.5 (coinvariants are a trace map). Let 𝐴 be an algebra, and denote
by 𝐴𝐴 ≔ 𝐴/[𝐴,𝐴] its set of coinvariants.†2 Define 𝐴𝑆,𝐿 ≔ 𝐴𝑆⊗(𝐴𝐴)𝐿. Then
𝐴 defines a traced meta-algebra with trace map given by tr𝑖[𝑆][𝐿] ∶ 𝐴𝑆⊔{𝑖},𝐿 →
𝐴𝑆,𝐿⊔{𝑖}.

Proof. Observe that for any choice of 𝐿, extending morphisms by the identity
yield an isomorphism of traced meta-Hopf algebras:

𝜙𝐿 ∶ {𝐴𝑆}
∼
−→ {𝐴𝑆,𝐿}

𝐴𝑆 ↦ 𝐴𝑆,𝐿

𝑓𝐶
𝐷 ↦ 𝑓𝐶

𝐷 ⊗ id(𝐴𝐴)𝐿

(4.4)

†2 Here, [𝐴,𝐴] = span{ [𝑥, 𝑦] | 𝑥, 𝑦 ∈ 𝐴} refers to the vector space of Lie brackets, not the
ideal generated thereby. The space 𝐴𝐴 does not have an algebra structure in general.



4.2 THE SPACE OF COINVARIANTS OF 𝑈 50

Next, we must show that 𝑚𝑖𝑗
𝑘 // tr𝑘 = 𝑚𝑗𝑖

𝑘 // tr𝑘. This amounts to showing
that, given 𝑢, 𝑣 ∈ 𝐴, that 𝑢𝑣 = 𝑣𝑢 ∈ 𝐴𝐴. However, by the construction of
the coinvariants, 𝑢𝑣 − 𝑣𝑢 = 𝑢𝑣 − 𝑣𝑢 = 0 ∈ 𝐴.

Finally, we must show that tr intertwines the 𝑆-indexed collection of
algebras. When 𝑖 ∉ 𝐷∪𝐶, an operation 𝜙𝐷

𝐶 and tr𝑖 manipulate disjoint sets
of tensor factors, we notice that both composition orders are equivalent to
a tensor product:

𝜙𝐷
𝐶 // tr𝑖 = 𝜙𝐷

𝐶 tr𝑖 = tr𝑖 //𝜙𝐷
𝐶 (4.5)

We conclude that vector-space algebras have a traced algebraic structure.

4.2 THE SPACE OF COINVARIANTS OF 𝑈

We start with a result that simplifies working with coinvariants:

Lemma 4.6 (Coinvariant simplification). Let 𝔥 be a Lie algebra. Then
𝔘(𝔥)𝔘(𝔥) = 𝔘(𝔥)𝔥.

Proof. First, observe that for any 𝑢, 𝑣, 𝑓 ∈ 𝔘(𝔥), ad𝑢𝑣(𝑓) = ad𝑢(𝑣𝑓) +
ad𝑣(𝑓𝑢). Proceeding inductively, for any monomial 𝜇 ∈ 𝔘(𝔥), ad𝜇(𝑓) is a
linear combination of elements of [𝔥, 𝔘(𝔥)]. By linearity of ad, we conclude
[𝔘(𝔥), 𝔘(𝔥)] = [𝔥, 𝔘(𝔥)].

Theorem 4.7. The space of coinvariants of 𝑈, 𝑈𝑈, has basis {y𝑛a𝑘x𝑛}𝑛,𝑘≥0.

Proof. By lemma 4.6, we need only compute [𝔤, 𝑈] to determine 𝑈𝑈. Using
lemma 2.36, we compute the adjoint actions of y, a, and x. (Recall b is
central.)

ada 𝑓(x) = x𝑓 ′(x) ada 𝑓(y) = −y𝑓 ′(y) (4.6)

adx 𝑓(y) = b𝑓 ′(y) adx 𝑓(a) = −∇[𝑓](a)x (4.7)

ady 𝑓(x) = −b𝑓 ′(x) ady 𝑓(a) = y∇[𝑓](a) (4.8)



4.2 THE SPACE OF COINVARIANTS OF 𝑈 51

(Here∇ is the backwards finite difference operator∇[𝑓](𝑥) ≔ 𝑓(𝑥)−𝑓(𝑥−1).)
Observe for any 𝑛, 𝑚, 𝑘, and polynomials 𝑓 and 𝑔:

ada(y𝑚𝑔(b,a)x𝑛) = (𝑛 −𝑚)y𝑚𝑔(b,a)x𝑛 (4.9)

adx(y𝑛+1b𝑚−1𝑓(a)x𝑘) = (𝑛 + 1)y𝑛b𝑚𝑓(a)x𝑘 − y𝑛+1b𝑚−1∇[𝑓](a)x𝑘+1

(4.10)

ady(y𝑛b𝑚−1𝑓(a)x𝑘+1) = −(𝑘 + 1)y𝑛b𝑚𝑓(a)x𝑘 + y𝑛+1b𝑚−1∇[𝑓](a)x𝑘+1

(4.11)

By equation (4.9), any monomial whose powers of y and x differ vanish in
𝑈𝔤. As a consequence, in equations (4.10) and (4.11), the only nontrivial
case is when 𝑛 = 𝑘, resulting in the same relation. By induction on 𝑛, we
conclude that:

y𝑛b𝑚𝑓(a)x𝑘 ∼ 𝛿𝑛𝑘
𝑛!

(𝑛 +𝑚)!
y𝑛+𝑚∇𝑚[𝑓](a)x𝑛+𝑚 (4.12)

where ∼ refers to equivalence in the set of coinvariants. When 𝑓 is a monomial
in equation (4.12), we see directly that 𝑈𝔤 is spanned by {y𝑛a𝑘x𝑛}𝑛,𝑘≥0.

Finally, all that remains to show is linear independence. We do so by
defining the trace map:

tr ∶ 𝑈 → 𝑈𝑈

y𝑛b𝑚𝑓(a)x𝑘 ↦ 𝛿𝑛𝑘
𝑛!

(𝑛 +𝑚)!
y𝑛+𝑚∇𝑚[𝑓](a)x𝑛+𝑚

(4.13)

We will now show that the trace sends each relation defined in equations (4.9)
to (4.11) to 0. For the relations coming from ada, notice that:

tr(ada(y𝑛b𝑚𝑓(a)x𝑘)) = tr((𝑛 − 𝑘)𝛿𝑛𝑘
𝑛!

(𝑛 +𝑚)!
y𝑛+𝑚∇𝑚[𝑓](a)x𝑛+𝑚) = 0

(4.14)



4.2 THE SPACE OF COINVARIANTS OF 𝑈 52

For the relations from ady, observe:

tr(ady(y𝑛b𝑚−1𝑓(a)x𝑘+1))

= tr(−(𝑘 + 1)y𝑛b𝑚𝑓(a)x𝑘 + y𝑛+1b𝑚−1∇[𝑓](a)x𝑘+1)

= − (𝑘 + 1)𝛿𝑛𝑘
𝑛!

(𝑛 +𝑚)!
y𝑛+𝑚∇𝑚[𝑓](a)x𝑛+𝑚

+ 𝛿𝑛+1,𝑘+1
(𝑛 + 1)!

(𝑛 + 1 +𝑚− 1)!
y𝑛+𝑚∇𝑚−1[∇𝑓](a)x𝑛+𝑚

= 0

(4.15)

The relations from adx follow almost identically as those of ady. As b is
central, adb generates no more relations, so linear independence is estab-
lished.

A generating function for the coinvariants

In order to define a generating function, we need to choose a basis for
the space of coinvariants. We define an isomorphism from the space of
coinvariants to a polynomial space, tweaking the basis defined in theorem 4.7
by scalar multiples. Since it plays the role of the ordering map, we also
name it 𝕆.

𝕆∶ ℚ[𝑎, 𝑧]
∼
−→ 𝑈𝑈

𝑎𝑛𝑧𝑘 ↦ 1
𝑘!
y𝑘a𝑛x𝑘

𝑘!∇𝑚[𝑓](𝑎)𝑧𝑘+𝑚 ↤ y𝑘b𝑚𝑓(a)x𝑘

(4.16)

This defines a commutative square upon whose bottom edge (𝜏 = 𝕆 //
tr // 𝕆−1) we compute the generating function:

𝑈 𝑈𝑈

ℚ[𝑦, 𝑏, 𝑎, 𝑥] ℚ[𝑎, 𝑧]

tr

𝕆

𝜏

𝕆 (4.17)

We begin with a result on finite differences:

Lemma 4.8 (finite differences of exponentials). The finite difference opera-
tor acts in the following way on exponentials:

∇𝑛[e𝛼𝑎](𝑎) = (1 − e−𝛼)𝑛e𝛼𝑎 (4.18)



4.2 THE SPACE OF COINVARIANTS OF 𝑈 53

Proof. Using the fact that ∇𝑛[𝑓](𝑥) = ∑𝑛
𝑘=0 (

𝑛
𝑘)(−1)𝑘𝑓(𝑥 − 𝑘), we see that

∇𝑛[e𝛼𝑎](𝑎) = ∑𝑛
𝑘=0 (

𝑛
𝑘)(−1)𝑘e𝛼𝑎−𝛼𝑘 = (1 − e−𝛼)𝑛e𝛼𝑎.

We now are ready to compute the generating function for the trace:

Theorem 4.9 (Generating function for the trace of 𝑈).

𝒢(tr) = exp(𝛼𝑎 + (𝜂𝜉 + 𝛽(1 − e−𝛼))𝑧) (4.19)

Proof. Using lemma 4.8 and the extension of scalars of tr to ℚJ𝜂, 𝛽, 𝛼, 𝜉K,
we see

𝒢(𝕆 // tr // 𝕆−1) = (e𝜂𝑦e𝛽𝑏e𝛼𝑎e𝜉𝑥) // tr // 𝕆−1

= 𝕆−1 ∑
𝑖,𝑗,𝑘

tr((𝜂𝑦)𝑖

𝑖!
(𝛽𝑏)𝑗

𝑗!
e𝛼𝑎

(𝜉𝑥)𝑘

𝑘!
)

= ∑
𝑖,𝑗

𝜂𝑖𝛽𝑗𝜉𝑖

𝑖!𝑗!
(1 − e−𝛼)𝑗e𝛼𝑎𝑧𝑖+𝑗 = e𝛼𝑎+(𝜂𝜉+𝛽(1−e−𝛼))𝑧

(4.20)

Evaluation of the trace on a generic element

Here we will outline a computation involving the trace by using Bar-Natan
and van der Veen’s Contraction Theorem.

A typical value for a tangle invariant that arises is of the form:

𝑃e𝑐+𝑐𝑎𝑎𝑖+𝑐𝑏𝑏𝑖+𝜎𝑎𝑖𝑏𝑖+𝑐𝑥(𝑏𝑖)𝑥𝑖+𝑐𝑦(𝑏𝑖)𝑦𝑖+𝜆(𝑏𝑖)𝑥𝑖𝑦𝑖 (4.21)

Here, 𝑐, 𝑐𝑎, 𝑐𝑏, and 𝜎 denote constants with respect to the variables 𝑦𝑖, 𝑏𝑖, 𝑎𝑖,
and 𝑥𝑖 (collectively referred to as “𝑣𝑖”s), while 𝑐𝑥, 𝑐𝑦, and 𝜆 are potentially
𝑏𝑖-dependent, and 𝑃 is a (rational) function in (the square root of) 𝐵𝑖.

Theorem 4.10 (The trace of a Gaußian). With symbols as defined above,
let 𝑓(𝑦𝑖, 𝑏𝑖, 𝑎𝑖, 𝑥𝑖) = 𝑃(𝐵𝑖)e𝑐+𝑐𝑎𝑎𝑖+𝑐𝑏𝑏𝑖+𝜎𝑎𝑖𝑏𝑖+𝑐𝑥(𝑏𝑖)𝑥𝑖+𝑐𝑦(𝑏𝑖)𝑦𝑖+𝜆(𝑏𝑖)𝑥𝑖𝑦𝑖 . Then
when 𝜎 = 0,

⟨𝑓(𝑦𝑖, 𝑏𝑖, 𝑎𝑖, 𝑥𝑖) tr𝑖⟩𝑣𝑖 =
𝑃(e−𝜇)

1 − 𝜆(𝜇) ̄𝑧𝑖
e
𝑐+𝑐𝑎�̄�𝑖+𝑐𝑏𝜇+

𝑐𝑦(𝜇)𝑐𝑥(𝜇) ̄𝑧𝑖
1−𝜆(𝜇) ̄𝑧𝑖 (4.22)

where 𝜇 ≔ (1 − e−𝑐𝑎) ̄𝑧𝑖.



4.2 THE SPACE OF COINVARIANTS OF 𝑈 54

Proof. Let us compute the trace of equation (4.21). For clarity, we will put
bars over the coinvariants variables 𝑎𝑖 and 𝑧𝑖, as they do not play a role in
the contraction.

⟨𝑃 (𝐵𝑖)e𝑐+𝑐𝑎𝑎𝑖+𝑐𝑏𝑏𝑖+𝑐𝑥(𝑏𝑖)𝑥𝑖+𝑐𝑦(𝑏𝑖)𝑦𝑖+𝜆(𝑏𝑖)𝑥𝑖𝑦𝑖 tr𝑖⟩𝑣𝑖
= ⟨𝑃(𝐵𝑖)e𝑐+𝑐𝑏𝑏𝑖+𝑐𝑥(𝑏𝑖)𝑥𝑖+𝑐𝑦(𝑏𝑖)𝑦𝑖+𝜆(𝑏𝑖)𝑥𝑖𝑦𝑖+𝜂𝑖𝜉𝑖 ̄𝑧𝑖+𝛽𝑖(1−e−𝛼𝑖) ̄𝑧𝑖e𝑐𝑎𝑎𝑖+𝛼𝑖�̄�𝑖⟩𝑣𝑖
= e𝑐𝑎�̄�𝑖⟨𝑃 (𝐵𝑖)e𝑐+𝑐𝑥(𝑏𝑖)𝑥𝑖+𝑐𝑦(𝑏𝑖)𝑦𝑖+𝜆(𝑏𝑖)𝑥𝑖𝑦𝑖+𝜂𝑖𝜉𝑖 ̄𝑧𝑖e𝑐𝑏𝑏𝑖+𝛽𝑖(1−e−𝑐𝑎) ̄𝑧𝑖⟩𝑏𝑖,𝑥𝑖,𝑦𝑖

In what follows, we let 𝜇 ≔ (1 − e−𝑐𝑎) ̄𝑧𝑖:

= e𝑐+𝑐𝑎�̄�𝑖+𝑐𝑏𝜇𝑃(e−𝜇)⟨e𝑐𝑦(𝜇)𝑦𝑖e(𝑐𝑥(𝜇)+𝜆(𝜇)𝑦𝑖)𝑥𝑖+𝜉𝑖𝜂𝑖 ̄𝑧𝑖⟩𝑥𝑖,𝑦𝑖

= e𝑐+𝑐𝑎�̄�𝑖+𝑐𝑏𝜇𝑃(e−𝜇)⟨e𝑐𝑦(𝜇)𝑦𝑖+𝑐𝑥(𝜇) ̄𝑧𝑖𝜂𝑖+𝜆(𝜇) ̄𝑧𝑖𝜂𝑖𝑦𝑖⟩𝑦𝑖

= 𝑃(e−𝜇)
1 − 𝜆(𝜇) ̄𝑧𝑖

e
𝑐+𝑐𝑎�̄�𝑖+𝑐𝑏𝜇+

𝑐𝑦(𝜇)𝑐𝑥(𝜇) ̄𝑧𝑖
1−𝜆(𝜇) ̄𝑧𝑖

(4.23)

Remark 4.11. Theorem 4.10 requires that the coefficient 𝜎 of the 𝑎𝑖𝑏𝑖-term
in the exponential is 0. This restriction allows the computed value to be a
composition of elementary functions. We demonstrate this by considering
the case where 𝑐 = 𝑐𝑏 = 𝑐𝑥 = 𝑐𝑦 = 𝜆 = 0. Expanding equation (4.22) yields
the following expression, which we name 𝑆:

⟨e𝛽𝑖(1−e−𝑐𝑎−𝜎𝑏𝑖) ̄𝑧𝑖⟩
𝑏𝑖
= 𝑆 (4.24)

The quantity 𝑆 satisfies the relation 𝑆 = e−𝑐𝑎−𝜎𝑆, whose solution is 𝑆 =
𝑊(e−𝑐𝑎𝜎)

𝜎 where 𝑊 denotes the Lambert 𝑊 function. This expression now
lies far outside of the Gaußian framework that 𝑍 is computed in.

Proof that 𝑆 satisfies 𝑆 = e−𝑐𝑎−𝜎𝑆. Denote by 𝛾𝑛 the 𝑏𝑖-coefficients of the
expression 1−e−𝑐𝑎−𝜎𝑏𝑖 , so that 𝛽𝑖(1−e−𝑐𝑎−𝜎𝑏𝑖) = ∑∞

𝑛=0 𝛽𝑖𝛾𝑛𝑏𝑛𝑖 . Visualizing
the 𝛾𝑛-term as a node of a directed tree with one incoming edge (correspond-
ing to 𝛽𝑖) and 𝑛 outgoing edges (corresponding to each of the 𝑏𝑖 factors),
we get the relation

𝑆 = 𝛾1𝑆 + 𝛾2𝑆2 + 𝛾3𝑆3 +… (4.25)

With the observation that 𝛾𝑛 = e−𝑐𝑎(−𝜇)𝑚)
𝑚! , we conclude that 𝑆 = e−𝑐𝑎−𝜇𝑆.



4.3 COMPUTATIONAL EXAMPLE 55

The 𝑎𝑖𝑏𝑖-coefficient associated to an open tangle is exactly the self-linking
number of component 𝑖. By adding correcting writhe terms, one can ensure
this coefficient is 0.

When applying equation (4.22) to a tangle with multiple closed compo-
nents, the 𝑎𝑖𝑏𝑖-coefficient no longer has the interpretation of a self-linking
number, so the writhe-correction technique fails. The author did not find a
workable closed form for the trace in this case.

We point out that the outcome of this computation is not guaranteed to
be a Gaußian. This puts a limitation on the applicability of this formula to
links with more than two components, explored in section 5.1.

4.3 COMPUTATIONAL EXAMPLE

Using the formula given in equation (4.22), let us work through an example.
Consider the Hopf link (figure 4.1). In order to compute 𝑍tr, we first open
one of the components, ensuring the rotation number at the endpoints is 0
(figure 4.2a). We do this because the total trace of many links we consider
is a trivial 1. The use of a partial trace provides a stronger invariant. We
then break open all the closed components (here, there is just one), so that
an open tangle remains, as in figure 4.2b, which we call 𝐻.

12

Figure 4.1: The (positive) Hopf link.

Computing 𝑍 on the open tangle 𝐻 yields:

𝑍(𝐻) = e
𝑎2𝑏1+𝑎1𝑏2+

(𝐵1−1)𝑦1((𝐵2−1)𝑥1−𝑥2)
𝑏1

−𝐵1(𝐵2−1)𝑥1𝑦2
𝑏2 √𝐵2 (4.26)

Applying tr2 then provides us with the invariant corresponding to fig-
ure 4.2a: (Here, we use 𝑤𝑖 to represent 𝑎𝑖 to be consistent with the computer-



4.3 COMPUTATIONAL EXAMPLE 56

2

1

(a) Opening the Hopf link to a tangle with one
open component.

1
2

(b) A tangle 𝐻 representing the Hopf link with
both tangles open.

Figure 4.2: Opening the strands of the closed Hopf link.

generated table of values in appendix B, which allows for easier distinguishing
between variables corresponding to 𝑈 and those to 𝑈𝑈.)

tr2(𝑍(𝐻)) = e
𝑎1(𝑧2−𝐵1𝑧2)+𝑏1𝑤2+

𝑒−𝑧2(𝑥1𝑦1𝑒
𝑧2−𝑥1𝑦1𝑒

𝐵1𝑧2)
𝑏1 e

1
2𝐵1𝑧2−

𝑧2
2 (4.27)

We repeat this procedure with the other component, opening and straight-
ening component 2, then opening component 1 without straightening to
get an open tangle digaram 𝐻′, then computing tr1(𝑍(𝐻′)). The symmetry
of the Hopf link results in the same computation with indices 1 and 2
exchanged:

tr1(𝑍(𝐻′)) = e
𝑎2(𝑧1−𝐵2𝑧1)+𝑏2𝑤1+

𝑒−𝑧1(𝑥2𝑦2𝑒
𝑧1−𝑥2𝑦2𝑒

𝐵2𝑧1)
𝑏2 e

1
2𝐵2𝑧1−

𝑧1
2 (4.28)

Finally, we keep track of which indices correspond to open strands and
closed strands. We will extend the notation from the previous section to
differentiate between open and closed indices. We write a morphism with
domain 𝐷 = 𝐷o ⊔ 𝐷c, codomain 𝐶 = 𝐶o ⊔ 𝐶c (here 𝐷o denotes domain
indices which are open, while 𝐷c those which are closed, with the same
convention for 𝐶) and generating function 𝑓(𝜁𝐷, 𝑧𝐶) as 𝑓(𝜁𝐷, 𝑧𝐶)

(𝐷o,𝐷c)
(𝐶o,𝐶c)

.



4.3 COMPUTATIONAL EXAMPLE 57

We package these data into a multiset:

𝑍(𝐿Hopf) = ((e𝑎1(𝑧2−𝐵1𝑧2)+𝑏1𝑤2+
𝑒−𝑧2(𝑥1𝑦1𝑒

𝑧2−𝑥1𝑦1𝑒
𝐵1𝑧2)

𝑏1 e
1
2𝐵1𝑧2−

𝑧2
2 )

{1},{2}
,

(e𝑎2(𝑧1−𝐵2𝑧1)+𝑏2𝑤1+
𝑒−𝑧1(𝑥2𝑦2𝑒

𝑧1−𝑥2𝑦2𝑒
𝐵2𝑧1)

𝑏2 e
1
2𝐵2𝑧1−

𝑧1
2 )

{2},{1}
)

(4.29)



5
CONCLUS IONS

5.1 LIMITATIONS OF 𝑍tr

For certain links, computing 𝑍tr results in expressions involving the Lam-
bert 𝑊-function. The presence of this non-elementary function complicates
attempts to keep the invariant valued in either the space of perturbed
Gaußians, or a manageable extension thereof.

As a result of this limitation, we restrict our attention to a class of links
that does yields only elementary expressions, namely two-component links.

5.2 COMPARISON WITH THE MULTIVARIABLE ALEXANDER POLY-
NOMIAL

Given that the long knot (i.e. one-component) case of this invariant encodes
the Alexander Polynomial, it was suspected that the invariant on long links
(i.e. multiple components, one of which is long) formed by adding the trace
would encode the MVA. However, there are links which the MVA separates
which this invariant does not.

Using the Thistlethwaite table of prime links [BNMea], on all prime
two-component links with at most 11 crossings (a collection of size 914),
the trace map attains 878 distinct values, while the MVA attains only 778.
However, the two invariants are incomparable in terms of their strength.

The links 𝐿5a1 and 𝐿10a95 are not distinguished by their partial traces,
with both returning a value of:

(( 𝐵1
𝐵2

1𝑡2 − 2𝐵1𝑡2 +𝐵1 + 𝑡2
)

({1},{2})
, ( 𝐵2

𝐵2
2𝑡1 − 2𝐵2𝑡1 +𝐵2 + 𝑡1

)
({2},{1})

)

(5.1)

58



5.3 FURTHER WORK 59

However, the values of these links under the MVA are (𝐵1−1)(𝐵2−1)
√𝐵1√𝐵2

and

− (𝐵1−1)(𝐵2−1)(𝐵1+𝐵2−1)(𝐵2𝐵1−𝐵1−𝐵2)
𝐵3/2

1 𝐵3/2
2

respectively.
In the other direction, there are also pairs of links in the same fibre of the

MVA which this traced invariant can distinguish. In particular 𝐿5a1 and 𝐿7n2

both have the same value under the MVA, namely (𝐵1−1)(𝐵2−1)
√𝐵1√𝐵2

. The trace

yields the values (( 𝐵1
𝐵2

1𝑡2−2𝐵1𝑡2+𝐵1+𝑡2
)
({1},{2})

, ( 𝐵2
𝐵2

2𝑡1−2𝐵2𝑡1+𝐵2+𝑡1
)
({2},{1})

)

and (( 𝐵1
𝐵2

1𝑡2−2𝐵1𝑡2+𝐵1+𝑡2
)
({1},{2})

, ( 𝐵2
𝐵2

2𝑡1−2𝐵2𝑡1+𝐵2
2−𝐵2+𝑡1+1)({2},{1})

) respec-

tively.
This example also serves to highlight that the information provided by

leaving one strand open is not enough to recover the value of a different
strand being left open.

5.3 FURTHER WORK

While all other Hopf algebra operations in 𝑈 are expressed by [BNvdVb] as
perturbed Gaußians, the form in equation (4.19) does not conform to the
same structure. Further work is needed to either implement this operation
into the established framework, or to suitably extend the framework (perhaps
with the use of Lambert 𝑊-functions).

Another potential approach is to search for a trace within the framework
of perturbed Gaußians themselves. The coinvariants map defined here are
universal with respect to the algebra 𝑈 (meaning that any other cyclic map
factors through this one). Instead, one can probe the existence of a cyclic
map trPG in the space of perturbed Gaußians which is universal– that is,
all other perturbed Gaußians which are cyclic factor through trPG.



A
CODE

A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK

This is a Mathematica™ implementation by Bar-Natan and van der Veen
in [BNvdVb], modified by the author. The full source code is available at
https://github.com/phro/GDO.

Use case

For example, to compute the value of 𝑍 on the Whitehead link, one need
only run the following:

1 In[0]:= Z@Knot[5, Alternating, 1]

2 Out[0]= GDO["do" -> {}, "dc" -> {}, "co" -> {1, 5}, "cc" -> {}, "PG"

-> PG["L" -> 0, "Q" -> -(((-1 + B[1])*(-1 + B[5])*(B[5]*x[5] +

B[1]*((-1 + B[5])*x[1] - B[5]*x[5]))*(b[5]*y[1] - b[1]*y[5]))/

(b[1]*b[5]*B[1]*(B[1]*(-1 + B[5]) - B[5])*B[5])), "P" ->

Sqrt[B[5]]/(B[1] + B[5] - B[1]*B[5])]]

↪

↪

↪

↪

Written in a more readable format, this becomes:

(
√𝐵5

−𝐵5𝐵1 +𝐵1 +𝐵5
e
− (𝐵1−1)(𝐵5−1)(𝑏5𝑦1−𝑏1𝑦5)(𝐵5𝑥5+𝐵1((𝐵5−1)𝑥1−𝐵5𝑥5))

𝑏1𝑏5𝐵1(𝐵1(𝐵5−1)−𝐵5)𝐵5 )
{},{}

{1,5},{}
(A.1)

60

https://github.com/phro/GDO


A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 61

Figure A.1: The Whitehead link with one of its components ready to have the trace
applied. Since the rotation number of the two components differ, the
value of 𝑍 is not symmetric.

Implementation

We begin by setting some variables, as well as a method for modifying
associations.

3 γ = 1; ℏ = 1; $k = 0;

4 setValue[value_,obj_,coord_]:=Module[

5 {b=Association@@obj},

6 b[coord] = value; Head[obj]@@Normal@b

7 ]

We introduce notation PG[L, Q, P] to be interpreted as the Perturbed
Gaußian 𝑃e𝐿+𝑄. The function fromE serves as a compatibility layer between
a Bar-Natan and van der Veen’s implementation and this one.



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 62

8 toPG[L_, Q_, P_] := PG["L"->L, "Q"->Q, "P"->P]

9 fromE[e_\[DoubleStruckCapitalE]] := toPG@@e/.

10 Subscript[(v:y|b|t|a|x|B|T|η|β|τ|α|ξ|A), i_] -> v[i]

We define the Kronecker-𝛿 function next.

11 δ[i_,j_] := If[SameQ[i,j],1,0]

Next we introduce helper functions for the reading and manipulating of
PG-objects:

12 getL[pg_PG] := Lookup[Association@@pg,"L",0]

13 getQ[pg_PG] := Lookup[Association@@pg,"Q",0]

14 getP[pg_PG] := Lookup[Association@@pg,"P",1]

15

16 setL[L_][pg_PG] := setValue[L, pg, "L"];

17 setQ[Q_][pg_PG] := setValue[Q, pg, "Q"];

18 setP[P_][pg_PG] := setValue[P, pg, "P"];

19

20 applyToL[f_][pg_PG] := pg//setL[pg//getL//f]

21 applyToQ[f_][pg_PG] := pg//setQ[pg//getQ//f]

22 applyToP[f_][pg_PG] := pg//setP[pg//getP//f]

Next is a function CF, which bring objects into canonical form allows us
to compare for equality effectively. This is defined by Bar-Natan and van
der Veen.

23 CCF[e_] := ExpandDenominator@ExpandNumerator@Together[

24 Expand[e] //. E^x_ E^y_ :> E^(x + y) /. E^x_ :> E^CCF[x]

25 ];

26 CF[sd_SeriesData] := MapAt[CF, sd, 3];

27 CF[e_] := Module[

28 {vs = Union[

29 Cases[e, (y|b|t|a|x|η|β|τ|α|ξ)[_], ∞],

30 {y, b, t, a, x, η, β, τ, α, ξ}

31 ]},

32 Total[CoefficientRules[Expand[e], vs] /.

33 (ps_ -> c_) :> CCF[c] (Times @@ (vs^ps))

34 ]



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 63

35 ];

36 CF[e_PG] := e//applyToL[CF]//applyToQ[CF]//applyToP[CF]

We define the notion of equality for PG-objects, as well as what it means
to multiply them.

37 Congruent[x_, y_, z__] := And[Congruent[x, y], Congruent[y, z]]

38 PG /: Congruent[pg1_PG, pg2_PG] := And[

39 CF[getL@pg1 == getL@pg2],

40 CF[getQ@pg1 == getQ@pg2],

41 CF[Normal[getP@pg1-getP@pg2] == 0]

42 ]

43

44 PG /: pg1_PG * pg2_PG := toPG[

45 getL@pg1 + getL@pg2,

46 getQ@pg1 + getQ@pg2,

47 getP@pg1 * getP@pg2

48 ]

49

50 setEpsilonDegree[k_Integer][pg_PG] := setP[Series[Normal@getP@pg,{ϵ,

0, k}]][pg]↪

The variables 𝑦, 𝑏, 𝑡, 𝑎, and 𝑥 are paired with their dual variables 𝜂, 𝛽, 𝜏,
𝛼, and 𝜉. This applies as well when they have subscripts.

51 ddsl2vars = {y, b, t, a, x, z};

52 ddsl2varsDual = {η, β, τ, α, ξ, ζ};

53

54 Evaluate[Dual/@ddsl2vars] = ddsl2varsDual;

55 Evaluate[Dual/@ddsl2varsDual] = ddsl2vars;

56 Dual@z = ζ;

57 Dual@ζ = z;

58 Dual[u_[i_]]:=Dual[u][i]

Since various exponentials of the lowercase variables frequently appear,
we introduce capital variable names to handle various exponentiated forms.

59 U2l = {

60 B[i_]^p_. :> E^(-p ℏ γ b[i]), B^p_. :> E^(-p ℏ γ b),



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 64

61 W[i_]^p_. :> E^(w[i]) , W^p_. :> E^(p w),

62 T[i_]^p_. :> E^(-p ℏ t[i]) , T^p_. :> E^(-p ℏ t),

63 A[i_]^p_. :> E^(p γ α[i]) , A^p_. :> E^(-p γ α)

64 };

65 l2U = {

66 E^(c_. b[i_] + d_.) :> B[i]^(-c/(ℏ γ))E^d,

67 E^(c_. b + d_.) :> B^(-c/(ℏ γ))E^d,

68 E^(c_. t[i_] + d_.) :> T[i]^(-c/ℏ)E^d,

69 E^(c_. t + d_.) :> T^(-c/ℏ)E^d,

70 E^(c_. α[i_] + d_.) :> A[i]^(c/γ)E^d,

71 E^(c_. α + d_.) :> A^(c/γ)E^d,

72 E^(c_. w[i_] + d_.) :> W[i]^(c)E^d,

73 E^(c_. w + d_.) :> W^(c)E^d,

74 E^expr_ :> E^Expand@expr

75 };

Below the notion of differentiation is defined for expressions which involve
both upper- and lower-case variables.

76 DD[f_, b] := D[f, b ] - ℏ γ B D[f, B ];

77 DD[f_, b[i_]] := D[f, b[i]] - ℏ γ B[i] D[f, B[i]];

78

79 DD[f_, t ] := D[f, t ] - ℏ T D[f, T ];

80 DD[f_, t[i_]] := D[f, t[i]] - ℏ T[i] D[f, T[i]];

81

82 DD[f_, α ] := D[f, α ] + γ A D[f, A ];

83 DD[f_, α[i_]] := D[f, α[i]] + γ A[i] D[f, A[i]];

84

85 DD[f_, v_] := D[f, v];

86 DD[f_, {v_,0}] := f;

87 DD[f_, {}] := f;

88 DD[f_, {v_,n_Integer}] := DD[DD[f,v],{v,n-1}];

89 DD[f_, {l_List, ls___}] := DD[DD[f, l], {ls}];

What follows now is the implementation of contraction as introduced in
definition 3.3. We begin with the introduction of contractions of (finite)
polynomials.

90 collect[sd_SeriesData, ζ_] := MapAt[collect[#, ζ] &, sd, 3];

91 collect[expr_, ζ_] := Collect[expr, ζ];



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 65

92

93 Zip[{}][P_] := P;

94 Zip[ζs_List][Ps_List] := Zip[ζs]/@Ps;

95 Zip[{ζ_,ζs___}][P_] := (collect[P // Zip[{ζs}],ζ] /.

96 f_. ζ^d_. :> DD[f,{Dual[ζ], d}]) /.

97 Dual[ζ] -> 0 /.

98 ((Dual[ζ] /. {b->B, t->T, α -> A}) -> 1)

We define contraction along the variables 𝑥 and 𝑦 (here packaged into the
matrix Q).

99 QZip[ζs_List][pg_PG] := Module[{Q, P, ζ, z, zs, c, ys, ηs, qt, zrule,

ζrule},↪

100 zs = Dual/@ζs;

101 Q = pg//getQ;

102 P = pg//getP;

103 c = CF[Q/.Alternatives@@Union[ζs, zs]->0];

104 ys = CF/@Table[D[Q,ζ]/.Alternatives@@zs->0,{ζ,ζs}];

105 ηs = CF/@Table[D[Q,z]/.Alternatives@@ζs->0,{z,zs}];

106 qt = CF/@#&/@(Inverse@Table[

107 δ[z, Dual[ζ]] - D[Q,z,ζ],

108 {ζ,ζs},{z,zs}

109 ]);

110 zrule = Thread[zs -> CF/@(qt . (zs + ys))];

111 ζrule = Thread[ζs -> ζs + ηs . qt];

112 CF@setQ[c + ηs.qt.ys]@setP[Det[qt] Zip[ζs][P /. Union[zrule,

ζrule]]]@pg↪

113 ]

We define contraction along the variables 𝑎 and 𝑏 (here packaged into the
matrix L).

114 LZip[ζs_List][pg_PG] := Module[

115 {

116 L, Q, P, ζ, z, zs, Zs, c, ys, ηs, lt,

117 zrule, Zrule, ζrule, Q1, EEQ, EQ, U

118 },

119 zs = Dual/@ζs;

120 {L, Q, P} = Through[{getL, getQ, getP}@pg];

121 Zs = zs /. {b -> B, t -> T, α -> A};



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 66

122 c = CF[L/.Alternatives@@Union[ζs, zs]->0/.Alternatives@@Zs ->

1];↪

123 ys = CF/@Table[D[L,ζ]/.Alternatives@@zs->0,{ζ,ζs}];

124 ηs = CF/@Table[D[L,z]/.Alternatives@@ζs->0,{z,zs}];

125 lt = CF/@#&/@Inverse@Table[

126 δ[z, Dual[ζ]] - D[L,z,ζ],

127 {ζ,ζs},{z,zs}

128 ];

129 zrule = Thread[zs -> CF/@(lt . (zs + ys))];

130 Zrule = Join[zrule, zrule /.

131 r_Rule :> ( (U = r[[1]] /. {b -> B, t -> T, α -> A})

->↪

132 (U /. U2l /. r //. l2U))

133 ];

134 \[Zeta]rule = Thread[\[Zeta]s -> \[Zeta]s + \[Eta]s . lt];

135 Q1 = Q /. Union[Zrule, ζrule];

136 EEQ[ps___] :=

137 EEQ[ps] = (

138 CF[E^-Q1 DD[E^Q1,Thread[{zs,{ps}}]] /.

139 {Alternatives@@zs -> 0, Alternatives

@@Zs -> 1}]↪

140 );

141 CF@toPG[

142 c + ηs.lt.ys,

143 Q1 /. {Alternatives@@zs -> 0, Alternatives@@Zs -> 1},

144 Det[lt] (Zip[ζs][(EQ@@zs) (P /. Union[Zrule,ζrule])]

/.↪

145 Derivative[ps___][EQ][___] :> EEQ[ps] /. _EQ

->1↪

146 )

147 ]

148

149 ]

The function Pair combines the above zipping functions into the final
contraction map.

150 Pair[{}][L_PG,R_PG] := L R;

151 Pair[is_List][L_PG,R_PG] := Module[{n},

152 Times[

153 L /. ((v: b|B|t|T|a|x|y)[#] -> v[n@#]&/@is),

154 R /. ((v: β|τ|α|A|ξ|η)[#] -> v[n@#]&/@is)



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 67

155 ] // LZip[Join@@Table[Through[{β, τ, a}[n@i]],{i, is}]] //

156 QZip[Join@@Table[Through[{ξ, y}[n@i]],{i, is}]]

157 ]

Our next task is to provide domain and codomain information for the PG-
objects. These will be packaged inside a GDO, (Gaußian Differential Operator).
The four lists’ names refer to whether it is a domain or a codomain, and
whether the index corresponds to an open strand or a closed one.

158 toGDO[do_List,dc_List,co_List,cc_List,L_,Q_,P_] := GDO[

159 "do" -> do,

160 "dc" -> dc,

161 "co" -> co,

162 "cc" -> cc,

163 "PG" -> toPG[L, Q, P]

164 ]

165

166 toGDO[do_List,dc_List,co_List,cc_List,pg_PG] := GDO[

167 "do" -> do,

168 "dc" -> dc,

169 "co" -> co,

170 "cc" -> cc,

171 "PG" -> pg

172 ]

Next are functions for accessing and modifying sub-parts of GDO-objects.
The last argument of Lookup is the default value if nothing is specified. This
means that a morphism with empty domain or codomain may be specified
as such by omitting that portion of the definition.

173 getDO[gdo_GDO] := Lookup[Association@@gdo, "do", {}]

174 getDC[gdo_GDO] := Lookup[Association@@gdo, "dc", {}]

175 getCO[gdo_GDO] := Lookup[Association@@gdo, "co", {}]

176 getCC[gdo_GDO] := Lookup[Association@@gdo, "cc", {}]

177

178 getPG[gdo_GDO] := Lookup[Association@@gdo, "PG", PG[]]

179

180 getL[gdo_GDO] := gdo//getPG//getL

181 getQ[gdo_GDO] := gdo//getPG//getQ

182 getP[gdo_GDO] := gdo//getPG//getP



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 68

183

184 setPG[pg_PG][gdo_GDO] := setValue[pg, gdo, "PG"]

185

186 setL[L_][gdo_GDO] := setValue[setL[L][gdo//getPG], gdo, "PG"]

187 setQ[Q_][gdo_GDO] := setValue[setQ[Q][gdo//getPG], gdo, "PG"]

188 setP[P_][gdo_GDO] := setValue[setP[P][gdo//getPG], gdo, "PG"]

189

190 setDO[do_][gdo_GDO] := setValue[do, gdo, "do"]

191 setDC[dc_][gdo_GDO] := setValue[dc, gdo, "dc"]

192 setCO[co_][gdo_GDO] := setValue[co, gdo, "co"]

193 setCC[cc_][gdo_GDO] := setValue[cc, gdo, "cc"]

194

195 applyToDO[f_][gdo_GDO] := gdo//setDO[gdo//getDO//f]

196 applyToDC[f_][gdo_GDO] := gdo//setDC[gdo//getDC//f]

197 applyToCO[f_][gdo_GDO] := gdo//setCO[gdo//getCO//f]

198 applyToCC[f_][gdo_GDO] := gdo//setCC[gdo//getCC//f]

199

200 applyToPG[f_][gdo_GDO] := gdo//setPG[gdo//getPG//f]

201

202 applyToL[f_][gdo_GDO] := gdo//setL[gdo//getL//f]

203 applyToQ[f_][gdo_GDO] := gdo//setQ[gdo//getQ//f]

204 applyToP[f_][gdo_GDO] := gdo//setP[gdo//getP//f]

The canonical form function (CF) and the contraction mapping (Pair) we
extend to include GDO-objects. Furthermore, on the level of GDO-objects we
can compose morphisms and keep track of the corresponding domains and
codomains, using the left-to-right composition operator “//”.

205 CF[e_GDO] := e//

206 applyToDO[Union]//

207 applyToDC[Union]//

208 applyToCO[Union]//

209 applyToCC[Union]//

210 applyToPG[CF]

211

212 Pair[is_List][gdo1_GDO, gdo2_GDO] := GDO[

213 "do" -> Union[gdo1//getDO, Complement[gdo2//getDO, is]],

214 "dc" -> Union[gdo1//getDC, gdo2//getDC],

215 "co" -> Union[gdo2//getCO, Complement[gdo1//getCO, is]],

216 "cc" -> Union[gdo1//getCC, gdo2//getCC],

217 "PG" -> Pair[is][gdo1//getPG, gdo2//getPG]



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 69

218 ]

219

220 gdo1_GDO // gdo2_GDO :=

Pair[Intersection[gdo1//getCO,gdo2//getDO]][gdo1,gdo2];↪

We also define notions of equality and multiplication (by concatenation)
for GDO’s.

221 GDO /: Congruent[gdo1_GDO, gdo2_GDO] := And[

222 Sort@*getDO/@Equal[gdo1, gdo2],

223 Sort@*getDC/@Equal[gdo1, gdo2],

224 Sort@*getCO/@Equal[gdo1, gdo2],

225 Sort@*getCC/@Equal[gdo1, gdo2],

226 Congruent[gdo1//getPG, gdo2//getPG]

227 ]

228

229 GDO /: gdo1_GDO gdo2_GDO := GDO[

230 "do" -> Union[gdo1//getDO, gdo2//getDO],

231 "dc" -> Union[gdo1//getDC, gdo2//getDC],

232 "co" -> Union[gdo1//getCO, gdo2//getCO],

233 "cc" -> Union[gdo1//getCC, gdo2//getCC],

234 "PG" -> (gdo1//getPG)*(gdo2//getPG)

235 ]

For the sake of compatibility with Bar-Natan and van der Veen’s program,
we introduce several conversion functions between the two notations.

236 setEpsilonDegree[k_Integer][gdo_GDO] :=

237 setP[Series[Normal@getP@gdo,{ϵ,0,k}]][gdo]

238

239 fromE[Subscript[\[DoubleStruckCapitalE],{do_List, dc_List}->{co_List,

cc_List}][↪

240 L_, Q_, P_

241 ]] := toGDO[do, dc, co, cc, fromE[\[DoubleStruckCapitalE][L, Q, P]]]

242

243 fromE[Subscript[\[DoubleStruckCapitalE], dom_List->cod_List][

244 L_, Q_, P_

245 ]] := GDO["do" -> dom, "co" -> cod,

246 "PG" -> fromE[\[DoubleStruckCapitalE][L, Q, P]]

247 ]



A.1 IMPLEMENTATION OF THE PERTURBED GAUßIAN FRAMEWORK 70

It is at this point that we implement the morphisms of the algebra 𝑈.
Each operation is prepended with a “c” to emphasize that this is a classical
algebra, not a quantum deformation. These match the quantities given in
theorem 3.5.

248 fromLog[l_] := CF@Module[

249 {L, l0 = Limit[l, ϵ->0]},

250 L = l0 /. (η|y|ξ|x)[_]->0;

251 PG[

252 "L" -> L,

253 "Q" -> l0 - L

254 ]/.l2U

255 ]

256

257 cΛ = (η[i] + E^(-γ α[i] - ϵ β[i]) η[j]/(1+γ ϵ η[j]ξ[i])) y[k] +

258 (β[i] + β[j] + Log[1 + γ ϵ η[j]ξ[i]]/ϵ ) b[k] +

259 (α[i] + α[j] + Log[1 + γ ϵ η[j]ξ[i]]/γ ) a[k] +

260 (ξ[j] + E^(-γ α[j] - ϵ β[j]) ξ[i]/(1+γ ϵ η[j]ξ[i])) x[k];

261

262 cm[i_, j_, k_] = GDO["do" -> {i,j}, "co" -> {k}, "PG" -> fromLog[cΛ]];

263

264 cη[i_] = GDO["co" -> {i}];

265 cσ[i_,j_] = GDO["do"->{i},"co"->{j},

266 "PG"->fromLog[β[i] b[j] + α[i] a[j] + η[i] y[j] + ξ[i] x[j]]

267 ];

268 cϵ[i_] = GDO["do" -> {i}];

269 cΔ[i_, j_, k_] = GDO["do"->{i}, "co"->{j, k},

270 "PG" -> fromLog[

271 β[i](b[j] + b[k]) +

272 α[i](a[j] + a[k]) +

273 η[i]

274 ((b[j]+b[k])/(1-B[j]B[k]))

275 (

276 B[k]((1-B[j])/b[j])y[j]+

277 ((1-B[k])/b[k])y[k]

278 ) +

279 ξ[i](x[j] + x[k])

280 ]

281 ];

282

283 sY[i_, j_, k_, l_, m_] = GDO["do"->{i}, "co"->{j, k, l, m},

284 "PG" -> fromLog[β[i]b[k] + α[i]a[l] + η[i]y[j] + ξ[i]x[m]]

285 ];



A.2 IMPLEMENTATION OF THE TRACE 71

286

287 sS[i_] = GDO["do"->{i},"co"->{i},

288 "PG"->fromLog[-(β[i] b[i] + α[i] a[i] + η[i] y[i] + ξ[i]

x[i])]↪

289 ];

290

291 cS[i_] = sS[i] // sY[i, 1, 2, 3, 4] // cm[4,3, i] // cm[i, 2, i] //

cm[i, 1, i];↪

292

293 cR[i_, j_] = GDO[

294 "co" -> {i,j},

295 "PG" -> toPG[ℏ a[j] b[i], (B[i]-1)/(-b[i]) x[j] y[i], 1]

296 ]

297

298 cRi[i_, j_] = GDO[

299 "co" -> {i,j},

300 "PG" -> toPG[-ℏ a[j] b[i], (B[i]-1)/(B[i] b[i]) x[j] y[i], 1]

301 ]

302

303 CC[i_] := GDO["co"->{i},"PG"->PG["P"->B[i]^( 1/2)]]

304 CCi[i_] := GDO["co"->{i},"PG"->PG["P"->B[i]^(-1/2)]]

305

306 cKink[i_] = Module[{k}, cR[i,k] CCi[k] // cm[i, k, i]]

307 cKinki[i_] = Module[{k}, cRi[i,k] CC[k] // cm[i, k, i]]

308

309 cKinkn[0][i_] = cη[i]

310 cKinkn[1][i_] = cKink[i]

311 cKinkn[-1][i_] = cKinki[i]

312 cKinkn[n_Integer][i_] :=

Module[{j},cKinkn[n-1][i]cKink[j]//cm[i,j,i]]/; n > 1↪

313 cKinkn[n_Integer][i_] :=

Module[{j},cKinkn[n+1][i]cKinki[j]//cm[i,j,i]]/; n < -1↪

314

315 uR[i_, j_] = Module[{k}, cR[i,j] cKinki[k] // cm[i, k, i]]

316 uRi[i_, j_] = Module[{k}, cRi[i,j] cKink[k] // cm[i, k, i]]

A.2 IMPLEMENTATION OF THE TRACE

Now we implement the trace. We introduce several functions which extract
the various coefficients of a GDO, so that we may apply equation (4.22).



A.2 IMPLEMENTATION OF THE TRACE 72

Coefficients are extracted based on whether they belong to the matrix L or
the matrix Q.

317 getConstLCoef::usage = "getConstLCoef[i][gdo] returns the terms in the

L-portion of a GDO expression which are not a function of y[i],

b[i], a[i], nor x[i]."

↪

↪

318 getConstLCoef[i_][gdo_] :=

319 (SeriesCoefficient[#, {b[i],0,0}]&) @*

320 (Coefficient[#, y[i], 0]&) @*

321 (Coefficient[#, a[i], 0]&) @*

322 (Coefficient[#, x[i], 0]&) @*

323 ReplaceAll[U2l] @*

324 getL@

325 gdo

326

327 getConstQCoef::usage = "getConstQCoef[i][gdo] returns the terms in the

Q-portion of a GDO expression which are not a function of y[i],

b[i], a[i], nor x[i]."

↪

↪

328 getConstQCoef[i_][gdo_][bb_] :=

329 ReplaceAll[{b[i]->bb}] @*

330 (Coefficient[#, y[i], 0]&) @*

331 (Coefficient[#, a[i], 0]&) @*

332 (Coefficient[#, x[i], 0]&) @*

333 ReplaceAll[U2l] @*

334 getQ@

335 gdo

336

337 getyCoef::usage = "getyCoef[i][gdo][b[i]] returns the linear

coefficient of y[i] as a function of b[i]."↪

338 getyCoef[i_][gdo_][bb_] :=

339 ReplaceAll[{b[i]->bb}] @*

340 ReplaceAll[U2l] @*

341 (Coefficient[#, x[i],0]&) @*

342 (Coefficient[#, y[i],1]&) @*

343 getQ@

344 gdo

345

346 getbCoef::usage = "getbCoef[i][gdo] returns the linear coefficient of

b[i]."↪

347 getbCoef[i_][gdo_] :=

348 (SeriesCoefficient[#, {b[i],0,1}]&) @*

349 (Coefficient[#, a[i],0]&) @*

350 (Coefficient[#, x[i],0]&) @*



A.2 IMPLEMENTATION OF THE TRACE 73

351 (Coefficient[#, y[i],0]&) @*

352 ReplaceAll[U2l] @*

353 getL@

354 gdo

355

356 getPCoef::usage = "getPCoef[i][gdo] returns the perturbation P of a

GDO as a function of b[i]."↪

357 getPCoef[i_][gdo_][bb_] :=

358 ReplaceAll[{b[i]->bb}] @*

359 (Coefficient[#, a[i],0]&) @*

360 (Coefficient[#, x[i],0]&) @*

361 (Coefficient[#, y[i],0]&) @*

362 ReplaceAll[U2l] @*

363 getP@

364 gdo

365

366 getaCoef::usage = "getaCoef[i][gdo] returns the linear coefficient of

a[i]."↪

367 getaCoef[i_][gdo_] :=

368 (SeriesCoefficient[#, {b[i],0,0}]&) @*

369 (Coefficient[#, a[i],1]&) @*

370 ReplaceAll[U2l] @*

371 getL@

372 gdo

373

374 getxCoef::usage = "getxCoef[i][gdo][b[i]] returns the linear

coefficient of x[i] as a function of b[i]."↪

375 getxCoef[i_][gdo_][bb_] :=

376 ReplaceAll[{b[i]->bb}] @*

377 ReplaceAll[U2l] @*

378 (Coefficient[#, y[i],0]&) @*

379 (Coefficient[#, x[i],1]&) @*

380 getQ@

381 gdo

382

383 getabCoef::usage = "getabCoef[i][gdo] returns the linear coefficient

of a[i]b[i]."↪

384 getabCoef[i_][gdo_] :=

385 (SeriesCoefficient[#,{b[i],0,1}]&) @*

386 (Coefficient[#,a[i],1]&) @*

387 ReplaceAll[U2l] @*

388 getL@

389 gdo



A.2 IMPLEMENTATION OF THE TRACE 74

390

391 getxyCoef::usage = "getxyCoef[i][gdo][b[i]] returns the linear

coefficient of x[i]y[i] as a function of b[i]."↪

392 getxyCoef[i_][gdo_][bb_] :=

393 ReplaceAll[{b[i]->bb}] @*

394 ReplaceAll[U2l] @*

395 (Coefficient[#,x[i],1]&) @*

396 (Coefficient[#,y[i],1]&) @*

397 getQ@

398 gdo

In order to run more efficiently, limits are first computed by direct evalua-
tion, unless such an operation is ill-defined. In such a case, the corresponding
series is computed and evaluated at the limit point.

399 safeEval[f_][x_] := Module[{fx, x0},

400 If[(fx=Quiet[f[x]]) === Indeterminate,

401 Series[f[x0],{x0,x,0}]//Normal,

402 fx

403 ]

404 ]

405

406 closeComponent[i_][gdo_GDO]:=gdo//

407 setCO[Complement[gdo//getCO,{i}]]//

408 setCC[Union[gdo//getCC,{i}]]

Now we come to the implementation of the trace map. The current
implementation requires that the coefficient of 𝑎𝑖𝑏𝑖 be zero. (See section 4.2
for how this restriction limits computability.)

409 tr::usage = "tr[i] computes the trace of a GDO element on component i.

Current implementation assumes the Subscript[a, i] Subscript[b, i]

term vanishes and $k=0."

↪

↪

410 tr::nonzeroSigma = "tr[`1`]: Component `1` has writhe: `2`, expected:

0."↪

411 tr[i_][gdo_GDO] := Module[

412 {

413 cL = getConstLCoef[i][gdo],

414 cQ = getConstQCoef[i][gdo],

415 βP = getPCoef[i][gdo],



A.3 DEFINING 𝑍 AND 𝑍tr 75

416 ηη = getyCoef[i][gdo],

417 ββ = getbCoef[i][gdo],

418 αα = getaCoef[i][gdo],

419 ξξ = getxCoef[i][gdo],

420 λ = getxyCoef[i][gdo],

421 ta

422 },

423 ta = (1-Exp[-αα]) z[i];

424 expL = cL + αα w[i] + ββ ta;

425 expQ = safeEval[cQ[#] + z[i]ηη[#]ξξ[#]/(1-z[i] λ[#])&][ta];

426 expP = safeEval[βP[#]/(1-z[i] λ[#])&][ta];

427 CF[(gdo//closeComponent[i]//

setL[expL]//setQ[expQ]//setP[expP])//.l2U]↪

428 ] /; Module[

429 {σ = getabCoef[i][gdo]},

430 If[σ == 0,

431 True,

432 Message[tr::nonzeroSigma, i, ToString[σ]]; False

433 ]

434 ]

Here we introduce some formatting to display the output more aestheti-
cally.

435 Format[gdo_GDO] := Subsuperscript[\[DoubleStruckCapitalE],

436 Row[{gdo//getCO, ",", gdo//getCC}],

437 Row[{gdo//getDO, ",", gdo//getDC}]

438 ][gdo//getL, gdo//getQ, gdo//getP];

439 Format[pg_PG] := \[DoubleStruckCapitalE][pg//getL, pg//getQ,

pg//getP];↪

440

441 SubscriptFormat[v_] := (Format[v[i_]] := Subscript[v, i]);

442

443 SubscriptFormat/@{y,b,t,a,x,z,w,η,β,α,ξ,A,B,T,W};

A.3 DEFINING 𝑍 AND 𝑍tr

Now we are in a position to implement the 𝑍 invariant to tangles with a
closed component. We begin by defining an object representing an isolated
strand with arbitrary integer rotation number, CCn:



A.3 DEFINING 𝑍 AND 𝑍tr 76

444 CCn[i_][n_Integer]:=Module[{j},

445 If[n==0,

446 GDO["co"->{i}],

447 If[n>0,

448 If[n==1,

449 CC[i],

450 CC[j]//CCn[i][n-1]//cm[i,j,i]

451 ],

452 If[n==-1,

453 CCi[i],

454 CCi[j]//CCn[i][n+1]//cm[i,j,i]

455 ]

456 ]

457 ]

458 ]

Since multiplication is associative, we may implement a generalized mul-
tiplication which can take any number of arguments. It is also named cm,
with a first argument given as an ordered list of indices to be concatenated.

459 cm[{}, j_] := cη[j]

460 cm[{i_}, j_] := cσ[i,j]

461 cm[{i_, j_}, k_] := cm[i,j,k]

462 cm[ii_List, k_] := Module[

463 {

464 i = First[ii],

465 is = Rest[ii],

466 j ,

467 js ,

468 l

469 },

470 j = First[is];

471 js = Rest[is];

472 cm[i,j,l] // cm[Prepend[js, l], k]

473 ]

The function toGDO serves as the invariant for the generators of the tangles.
We define its value on crossings and on concatenations of elements.



A.3 DEFINING 𝑍 AND 𝑍tr 77

474 toGDO[Xp[i_,j_]] := cR[i,j]

475 toGDO[Xm[i_,j_]] := cRi[i,j]

476 toGDO[xs_Strand] := cm[List@@xs, First[xs]]

477 toGDO[xs_Loop] := Module[{x = First[xs]}, cm[List@@xs, x]//tr[x]]

478

479 getIndices[RVT[cs_List, _List, _List]] := Sort@Catenate@(List@@@cs)

480

481 TerminalQ[cs_List][i_] := MemberQ[Last/@cs,i];

482 next[cs_List][i_]:=If[TerminalQ[cs][i],

483 Nothing,

484 Extract[cs, ((#/.{c_,j_}->{c,j+1}&)@FirstPosition[i]@cs)]

485 ]

486

487 InitialQ[cs_List][i_] := MemberQ[First/@cs,i];

488 prev[cs_List][i_]:=If[InitialQ[cs][i],

489 Nothing,

490 Extract[cs, ((#/.{c_,j_}->{c,j-1}&)@FirstPosition[i]@cs)]

491 ]

To minimize the size of computations, whenever adjacent indices are
present in the partial computation, they are to be concatenated before more
crossings are introduced.

492 MultiplyAdjacentIndices[{cs_List,calc_GDO}]:=Module[

493 { is=getCO[calc]

494 , i

495 , i2

496 },

497 i = SelectFirst[is,MemberQ[is,next[cs][#]]&];

498 If[Head[i]===Missing,

499 {cs,calc},

500 i2 = next[cs][i];

501 {DeleteCases[cs,i2,2], calc//cm[i,i2,i]}

502 ]

503 ]

504

505 MultiplyAllAdjacentIndices[{cs_List, calc_GDO}] :=

506 FixedPoint[MultiplyAdjacentIndices, {cs, calc}]

507

508 generateGDOFromXing[x:_Xp|_Xm,rs_Association]:=Module[

509 {p, i,j, in, jn},

510 {i,j} = List@@x;



A.3 DEFINING 𝑍 AND 𝑍tr 78

511 {in,jn} = Lookup[rs,{i,j},0];

512 toGDO[x]*CCn[p[i]][in]*CCn[p[j]][jn]

//cm[p[i],i,i]//cm[p[j],j,j]↪

513 ]

514

515 addRotsToXingFreeStrands[rvt_RVT] := GDO[] * Times @@ (

516 CCn[#][Lookup[rvt[[3]], #, 0]] & /@

517 First /@ Select[rvt[[1]], Length@# == 1 &]

518 )

Next we implement the framed link invariant ZFramed.

519 ZFramedStep[{_List,{},_Association,calc_GDO}]:={{},{},<||>,calc};

520 ZFramedStep[{cs_List,xs_List,rs_Association,calc_GDO}]:=Module[

521 { x=First[xs], xss=Rest[xs]

522 , csOut, calcOut

523 , new

524 },

525 new=calc*generateGDOFromXing[x,rs];

526 {csOut,calcOut} = MultiplyAllAdjacentIndices[{cs,new}];

527 {csOut,xss,rs,calcOut}

528 ]

529

530 ZFramed[rvt_RVT] := Last@FixedPoint[ZFramedStep, {Sequence @@ rvt,

531 addRotsToXingFreeStrands[rvt]}]

532 ZFramed[L_] := ZFramed[toRVT@L]

Finally, when we wish to consider the unframed invariant, we apply the
function Unwrithe, defined below.

533 Z[rvt_RVT] := Unwrithe@Last@FixedPoint[ZFramedStep, {Sequence @@ rvt,

GDO[]}]↪

534 Z[L_] := Z[toRVT@L]

535

536 combineBySecond[l_List] := mergeWith[Total,#]& /@ GatherBy[l, First];

537 combineBySecond[lis___] := combineBySecond[Join[lis]]

538

539 mergeWith[f_, l_] := {l[[1, 1]], f@(#[[2]] & /@ l)}

540

541 Reindex[RVT[cs_, xs_, rs_]] := Module[

542 {



A.3 DEFINING 𝑍 AND 𝑍tr 79

543 sf,

544 cs2, xs2, rs2,

545 repl, repl2

546 },

547 sf = Flatten[List@@#&/@cs];

548 repl = (Thread[sf -> Range[Length[sf]]]);

549 repl2 = repl /. {(a_ -> b_) -> ({a, i_} -> {b, i})};

550 cs2 = cs /. repl;

551 xs2 = xs /. repl;

552 rs2 = rs /. repl2;

553 RVT[cs2, xs2, rs2]

554 ]

555

556 UnwritheComp[i_][gdo_GDO] := Module[

557 {n = gdo//getL//SeriesCoefficient[#,{a[i]b[i],0,1}]&, j},

558 gdo//(cKinkn[-n][j])//cm[i,j,i]

559 ]

560

561 Unwrithe[gdo_GDO]:=(Composition@@(UnwritheComp/@(gdo//getCO)))@gdo

562

563 toRVT[L_RVT] := L

The partial trace is what we use to close a subset of the strands in a tangle.
It takes the trace of all but one component, then returns the collection of
all such ways of leaving one component open (as described in section 5.2).

564 ptr[L_RVT] := Module[

565 {

566 ZL = Z[L],

567 cod

568 },

569 cod = getCO@ZL;

570 Table[(Composition@@Table[tr[j],

{j,Complement[cod,{i}]}])[ZL], {i,cod}]↪

571 ]

572 ptr[L_] := ptr[toRVT[L]]

In order to be able to compare GDO’s properly, we require a way to
canonically represent them. This is achieved by reindexing the strands of the
link and selecting one who’s resulting invariant comes first in an (arbitrarily-



A.3 DEFINING 𝑍 AND 𝑍tr 80

selected) order, in this case the built-in ordering of expressions as defined
by Mathematica™.

573 getGDOIndices[gdo_GDO]:=Sort@Catenate@Through[{getDO, getDC, getCO,

getCC}@gdo]↪

574

575 isolateVarIndices[i_ -> j_] :=

(v:y|b|t|a|x|η|β|α|ξ|A|B|T|w|z|W)[i]->v[j];↪

576

577 ReindexBy[f_][gdo_GDO] := Module[

578 {

579 replacementRules,

580 varIndexFunc,

581 repFunc,

582 indices = getGDOIndices[gdo]

583 },

584 replacementRules = Thread[indices->(f/@indices)];

585 repFunc = ReplaceAll[replacementRules];

586 varIndexFunc =

ReplaceAll[Thread[isolateVarIndices[replacementRules]]];↪

587 gdo//applyToPG[varIndexFunc]//

588 applyToCO[repFunc]//

589 applyToDO[repFunc]//

590 applyToDC[repFunc]//

591 applyToCC[repFunc]

592 ]

593

594 fromAssoc[ass_] := Association[ass][#] &

595

596 ReindexToInteger[gdos_List] := Module[

597 {is = getGDOIndices@gdos[[1]], f},

598 f = fromAssoc@Thread[is -> Range[Length[is]]];

599 ReindexBy[f]/@gdos

600 ]

601

602 getReindications[gdos_List] := Module[

603 {

604 gdosInt = ReindexToInteger[gdos],

605 is,

606 fs,

607 ls

608 },

609 is = getGDOIndices[gdosInt[[1]]];



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 81

610 fs = (fromAssoc@*Association@*Thread)/@(is -> # & /@

Permutations[is]);↪

611 ls = CF@ReindexBy[#]/@gdosInt&/@fs;

612 Sort[Sort/@ls]

613 ]

614

615 getCanonicalIndex[gdo_] := First@getReindications@gdo

616

617 deleteIndex[i_][expr_] := SeriesCoefficient[expr/.U2l, Sequence @@

({#[i], 0, 0} & /@ {↪

618 y, b, t, a, x, z, w

619 })]/.l2U

Here we introduce functions to further verify the co-algebra structure of a
traced ribbon meta-Hopf algebra. In particular, the counit is responsible for
deleting a strand. This has further applications in determining whether the
invariants of individual components are contained in those of more complex
links.

620 deleteIndexPG[i_][pg_PG] := pg//

621 applyToL[deleteIndex[i]]//

622 applyToQ[deleteIndex[i]]//

623 applyToP[deleteIndex[i]]

624

625 deleteLoop[i_][gdo_] := gdo//

626 applyToCC[Complement[#,{i}]&]//

627 applyToPG[deleteIndexPG[i]]

A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM

Description of algorithm for knots

Bar-Natan and van der Veen develop an algorithm to convert a classical
long knot into an upright tangle. It involves passing a line segment, called
the front, over the knot, requiring that everything behind the front is in
upright form. For example, consider the link in figure A.2. By pulling the
crossings along the arc which touches the front, we can bring the knot to



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 82

Figure A.2: A knot which is not in upright form. The front is written in dark grey.

upright form. The crossings are absorbed into the front in the order the
knot’s strand interacts with them.

Figure A.3: By advancing the front over a crossing, we bring a crossing into upright
form. A dashed line indicates where the front is advancing to.

Extending the algorithm to multiple components

Here we generalize the algorithm to convert a classical tangle with one open
component to an upright tangle diagram. This generalization allows us to
consider tangle diagrams with multiple components.

Uniqueness of the resulting tangle follows from the following lemma:

Lemma A.1 ([BNvdVb], Lemma 43). For each classical tangle with one
open component, there exists a unique upright tangle whose unbounded arcs
have rotation numbers 0.



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 83

Figure A.4: By advancing the front over a crossing, we bring a crossing into upright
form. A dashed front indicates where the front is advancing to.

This is a Haskell implementation†1 of the algorithm toRVT,†2 which takes
a classical tangle and produces an upright tangle by computing a compatible
choice of rotation numbers for each arc. This follows largely the same logic
as above, except the leftmost strand is always prioritized for absorption,
regardless of which component it belongs to.

Use case

For example, to query the SX-form of a link (i.e. its skeleton-crossing form),
one writes:

1 >>> link 4 True 1

2 SX [Loop [1,2,3,4],Loop [5,6,7,8]]

3 [Xm 1 6,Xm 3 8,Xm 5 2,Xm 7 4]

To convert from the SX form to an upright tangle form (here written
RVT), we must first replace one of the closed Loops with an open Strand

(accomplished by openFirstStrand):

4 >>> toRVT . openFirstStrand $ link 4 True 1

†1 The full source code is available at https://github.com/phro/KnotTheory.
†2 Here, the acronym RVT stands for “Rotational Virtual Tangle”, which is another term for

“upright tangle”.

https://github.com/phro/KnotTheory


A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 84

5 RVT [Strand [1,2,3,4],Loop [5,6,7,8]]

6 [Xm 1 6,Xm 3 8,Xm 5 2,Xm 7 4]

7 [(5,-1),(6,1),(8,1)]

Reading off the final line, we see that arc 5 has rotation number −1, arcs
6 and 8 have rotation number 1, and the rest of the arcs have rotation
number 0.

Implementation

We begin with a series of imports of common functions, relating to list
manipulations and type-wrangling. The exact details are not too important.

8 {-# LANGUAGE DeriveFunctor #-}

9 module KnotTheory.PD where

10 import Data.Maybe (listToMaybe, catMaybes, mapMaybe, fromMaybe,

fromJust)↪

11 import Data.List (find, groupBy, sortOn, partition, intersect, union,

(\\))↪

12 import Data.Tuple (swap)

13 import Data.Function (on)

14 import Control.Monad ((>=>))

15 import Control.Arrow ((>>>))

Next, we introduce the crossing type, which can be either positive Xp or
negative Xm (using the mnemonic “plus” and “minus”):

16 type Index = Int

17 data Xing i = Xp i i | Xm i i -- | Xv i i

18 deriving (Eq, Show, Functor)

We define several functions which extract basic data from a crossing.

19 sign :: (Integral b) => Xing Index -> b

20 sign (Xp _ _) = 1

21 sign (Xm _ _) = -1

22

23 isPositive :: Xing i -> Bool



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 85

24 isPositive (Xp _ _) = True

25 isPositive (Xm _ _) = False

26

27 isNegative :: Xing i -> Bool

28 isNegative (Xp _ _) = False

29 isNegative (Xm _ _) = True

30

31 overStrand :: Xing i -> i

32 overStrand (Xp i _) = i

33 overStrand (Xm i _) = i

34

35 underStrand :: Xing i -> i

36 underStrand (Xp _ i) = i

37 underStrand (Xm _ i) = i

Next, we introduce the notion of a planar diagram, whose data is comprised
of a collection of Strands and Loops (indexed by some type i, typically an
integer). The Skeleton of a planar diagram is defined to be the collection
of Components, each of which is either an open Strand or a closed Loop.

38 type Strand i = [i]

39 type Loop i = [i]

40 data Component i = Strand (Strand i) | Loop (Loop i)

41 deriving (Eq, Show, Functor)

42 type Skeleton i = [Component i]

Next, we introduce the notion of a KnotObject, which has its components
labelled by the same type i. We further define a function toRVT which
converts a generic KnotObject into an upright tangle. (In this codebase,
the term Rotational Virtual Tangle is frequently used for the notion of an
upright tangle.) We call an object a planar diagram (or PD) if it has a notion
of Skeleton and a collection of crossings.

43 class KnotObject k where

44 toSX :: (Ord i) => k i -> SX i

45 toRVT :: (Ord i) => k i -> RVT i

46 toRVT = toRVT . toSX

47

48 class PD k where



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 86

49 skeleton :: k i -> Skeleton i

50 xings :: k i -> [Xing i]

The SX form of a diagram just contains the Skeleton and the Xings
(crossings), while the RVT form also assigns each arc an integral rotation
number.

51 data SX i = SX (Skeleton i) [Xing i] deriving (Show, Eq, Functor)

52 data RVT i = RVT (Skeleton i) [Xing i] [(i,Int)] deriving (Show, Eq,

Functor)↪

Given any labelling of the arcs in a diagram, we can re-label the arcs
using consecutive whole numbers. This is accomplised with reindex:

53 reindex :: (PD k, Functor k, Eq i) => k i -> k Int

54 reindex k = fmap (fromJust . flip lookup table) k

55 where

56 table = zip (skeletonIndices s) [1..]

57 s = skeleton k

Most importantly, we now declare that a diagram expressed in SX form
(that is, without any rotation data) may be assigned rotation numbers
to each of its arcs in a meaningful way. The bulk of the work is done by
getRotNums, which is defined farther below. We handle the case where the
entire tangle is a single crossingless strand separately.

58 instance KnotObject SX where

59 toSX = id

60 toRVT k@(SX cs xs) = RVT cs xs rs where

61 rs = filter ((/=0) . snd) . mergeBy sum $ getRotNums k f1

62 i1 = head . toList $ s

63 Just s = find isStrand cs

64 f1 = case next i1 (toList s) of

65 Just _ -> [(Out,i1)]

66 Nothing -> []

67

68 instance KnotObject RVT where

69 toRVT = id

70 toSX (RVT s xs _) = SX s xs



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 87

71

72 instance PD SX where

73 skeleton (SX s _) = s

74 xings (SX _ xs) = xs

75

76 instance PD RVT where

77 skeleton (RVT s _ _) = s

78 xings (RVT _ xs _) = xs

Next, we include a series of functions which answer basic questions about
planar diagrams. Note in rotnum, if a rotation number is not present in the
table of values, it is assumed to be 0.

79 rotnums :: RVT i -> [(i,Int)]

80 rotnums (RVT _ _ rs) = rs

81

82 rotnum :: (Eq i) => RVT i -> i -> Int

83 rotnum k i = fromMaybe 0 . lookup i . rotnums $ k

84

85 isStrand :: Component i -> Bool

86 isStrand (Strand _) = True

87 isStrand _ = False

88

89 isLoop :: Component i -> Bool

90 isLoop (Loop _) = True

91 isLoop _ = False

92

93 toList :: Component i -> [i]

94 toList (Strand is) = is

95 toList (Loop is) = is

96

97 skeletonIndices :: Skeleton i -> [i]

98 skeletonIndices = concatMap toList

99

100 involves :: (Eq i) => Xing i -> i -> Bool

101 x `involves` k = k `elem` [underStrand x, overStrand x]

102

103 otherArc :: (Eq i) => Xing i -> i -> Maybe i

104 otherArc x i

105 | i == o = Just u

106 | i == u = Just o

107 | otherwise = Nothing



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 88

108 where o = overStrand x

109 u = underStrand x

110

111 next :: (Eq i) => i -> Strand i -> Maybe i

112 next e = listToMaybe . drop 1 . dropWhile (/= e)

113

114 prev :: (Eq i) => i -> Strand i -> Maybe i

115 prev e = next e . reverse

116

117 nextCyc :: (Eq i) => i -> Loop i -> Maybe i

118 nextCyc e xs = next e . take (length xs + 1). cycle $ xs

119

120 prevCyc :: (Eq i) => i -> Loop i -> Maybe i

121 prevCyc e xs = prev e . take (length xs + 1). cycle $ xs

122

123 isHeadOf :: (Eq i) => i -> [i] -> Bool

124 x `isHeadOf` ys = x == head ys

125

126 isLastOf:: (Eq i) => i -> [i] -> Bool

127 x `isLastOf` ys = x == last ys

128

129 nextComponentIndex :: (Eq i) => i -> Component i -> Maybe i

130 nextComponentIndex i (Strand is) = next i is

131 nextComponentIndex i (Loop is) = nextCyc i is

132

133 prevComponentIndex :: (Eq i) => i -> Component i -> Maybe i

134 prevComponentIndex i (Strand is) = prev i is

135 prevComponentIndex i (Loop is) = prevCyc i is

136

137 isHeadOfComponent :: (Eq i) => i -> Component i -> Bool

138 isHeadOfComponent _ (Loop _ ) = False

139 isHeadOfComponent i (Strand is) = i `isHeadOf` is

140

141 isLastOfComponent :: (Eq i) => i -> Component i -> Bool

142 isLastOfComponent _ (Loop _ ) = False

143 isLastOfComponent i (Strand is) = i `isLastOf` is

144

145 isTerminalOfComponent :: (Eq i) => Component i -> i -> Bool

146 isTerminalOfComponent c i = i `isHeadOfComponent` c || i

`isLastOfComponent` c↪

147

148 isTerminalIndex :: (Eq i) => Skeleton i -> i -> Bool

149 isTerminalIndex cs i = any (`isTerminalOfComponent` i) cs



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 89

150

151 nextSkeletonIndex :: (Eq i) => Skeleton i -> i -> Maybe i

152 nextSkeletonIndex s i = listToMaybe . mapMaybe (nextComponentIndex i)

$ s↪

153

154 prevSkeletonIndex :: (Eq i) => Skeleton i -> i -> Maybe i

155 prevSkeletonIndex s i = listToMaybe . mapMaybe (prevComponentIndex i)

$ s↪

In order to obtain all the crossing indices, we must take every combination
of the under- and over-strands and their following indices:

156 getXingIndices :: (Eq i) => Skeleton i -> Xing i -> [i]

157 getXingIndices s x = catMaybes

158 [ f a | f <- [id, (>>= nextSkeletonIndex s)], a <- [o, u] ]

159 where o = return (overStrand x)

160 u = return (underStrand x)

161

162 δ :: (Eq a) => a -> a -> Int

163 δ x y

164 | x == y = 1

165 | otherwise = 0

166

167 mergeBy :: (Ord i) => ([a] -> b) -> [(i,a)] -> [(i,b)]

168 mergeBy f = map (wrapIndex f) . groupBy ((==) `on` fst) . sortOn fst

169 where

170 wrapIndex :: ([a] -> b) -> [(i,a)] -> (i,b)

171 wrapIndex g xs@(x:_) = (fst x, g . map snd $ xs)

Here we come to the main function, getRotNums, for which we have the
following requirements (not expressed in the code):

1. The diagram k is a (1, 𝑛)-tangle (a tangle with only one open compo-
nent)

2. The underlying graph of k is a planar.

3. The diagram k is a connected.

Only in this case will the function toRVT output a planar (1, 𝑛)-upright
tangle which corresponds to a classical (i.e. planar) diagram.

This function involves taking a simple open curve (a Jordan curve passing
through infinity) called the Front, and passing it over arcs in the diagram.



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 90

This curve is characterized by the arcs it passes through, together with their
orientations. Each intersection of the Front with the diagram provides a
different View, either In or Out of the Front when following the orientation
of the intersecting arc.

Figure A.5: A tangle with a front passing over it. The portion of the tangle below
the front has all crossings in upright form. All arcs fully below the
front have an integer rotation number.

172 type Front i = [View i]

173 type View i = (Dir, i)

We obtain the rotation numbers by successively passing the front across
new crossings (achieved by advanceFront), keeping track of the rotation
numbers of arcs which have already passed by the front. Once the front has
passed across every crossing, all the rotation numbers have been computed.

Next, we define converge, which iterates a function until a fixed point is
achieved.

174 converge :: (Eq a) => (a -> a) -> a -> a

175 converge f x

176 | x == x' = x

177 | otherwise = converge f x'

178 where x' = f x

The function convergeT wraps converge in monadic transformations. In
our context, the monad will be used to keep track of rotation numbers of
the arcs.



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 91

179 convergeT :: (Monad m, Eq (m a)) => (a -> m a) -> a -> m a

180 convergeT f = return >>> converge (>>= f)

The implementation of getRotNums takes a front and advances it along a
diagram until no more changes occur.

181 getRotNums :: (Eq i) => SX i -> Front i -> [(i,Int)]

182 getRotNums k = convergeT (advanceFront k) >>> fst

When advancing the Front, we start by absorbing arcs that intersect with
the front twice until the leftmost View no longer connects directly back to
the Front. At this point, we can absorb a crossing into the front.

183 advanceFront :: (Eq i) => SX i -> Front i -> ([(i,Int)], Front i)

184 advanceFront k = convergeT (absorbArc k) >=> absorbXing k

We next check for the case where the leftmost arc connects back to the
Front. If it is pointing Out (and therefore connects back In further to the
right), we adjust the rotation number of the arc by −1. Otherwise, we leave
both the Front and the rotation numbers unchanged.

Figure A.6: Example of absorbing an arc which intersects the front multiple times.
If the horizontal tangent vector points to to right, as in this picture,
then the rotation number of the arc is decreased by 1. Otherwise, no
change in the rotation number is recorded.

185 absorbArc :: (Eq i) => SX i -> Front i -> ([(i,Int)],Front i)

186 absorbArc k [] = return []

187 absorbArc k f@(f1:fs) = case fs1 of



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 92

188 ( In,i):_ -> (return (i,-1), fss)

189 (Out,i):_ -> return fss -- No new rotation numbers

190 [] -> return f

191 where (fs1,fss) = partition (((==) `on` snd) f1) fs

Our goal is to repeat this operation until we get a fixed point, which is
encoded in absorbArcs:

192 absorbArcs :: (Eq i) => SX i -> Front i -> ([(i,Int)],Front i)

193 absorbArcs k = convergeT (absorbArc k)

Absorb a crossing involves expanding one’s view at an arc from looking
at a crossing to all the views one gets when looking in every direction at the
crossing (namely, to the left, along the arc, and to the right). The function
absorbXing performs this task on the leftmost View on the Front. The
transverse strand receives a positive rotation number if it moves from left
to right. The arc receiving the rotation depends on how the crossing is
oriented.

194 absorbXing :: (Eq i) => SX i -> Front i -> ([(i,Int)],Front i)

195 absorbXing _ [] = return []

196 absorbXing k (f:fs) = (rs,newFront++fs) where

197 newFront = catMaybes [l, a, r]

198 l = lookLeft k f

199 a = lookAlong k f

200 r = lookRight k f

201 rs = case (l,f,r) of

202 (Just (In,i), (Out,_),_ ) -> [(i,1)]

203 (_ , (In ,_),Just (Out, j)) -> [(j,1)]

204 _ -> [ ]

205

206 data Dir = In | Out

207 deriving (Eq, Show)

The following functions take a View, returning the View one has when
looking in the corresponding direction. Since it is possible for the resulting
gaze to be merely the boundary, it is possible for these functions to return
Nothing.



A.4 IMPLEMENTATION OF ROTATION NUMBER ALGORITHM 93

208 lookAlong :: (Eq i, PD k) => k i -> View i -> Maybe (View i)

209 lookAlong k (d, i) = case d of

210 Out -> sequence (Out, nextSkeletonIndex s i)

211 In -> sequence (In , prevSkeletonIndex s i)

212 where s = skeleton k

213

214 lookSide :: (Eq i, PD k) => Bool -> k i -> View i -> Maybe (View i)

215 lookSide isLeft k di@(Out,i) = do

216 x <- findNextXing k di

217 j <- otherArc x i

218 if isLeft == ((underStrand x == i) == isPositive x)

219 then return (In, j)

220 else sequence (Out, nextSkeletonIndex (skeleton k) j)

221 lookSide isLeft k (In,i) =

222 sequence (Out, prevSkeletonIndex (skeleton k) i) >>=

223 lookSide (not isLeft) k

224

225 lookLeft :: (Eq i, PD k) => k i -> View i -> Maybe (View i)

226 lookLeft = lookSide True

227

228 lookRight :: (Eq i, PD k) => k i -> View i -> Maybe (View i)

229 lookRight = lookSide False

230

231 findNextXing :: (Eq i, PD k) => k i -> View i -> Maybe (Xing i)

232 findNextXing k (Out,i) = find (`involves` i) $ xings k

233 findNextXing k (In ,i) = do

234 i' <- prevSkeletonIndex (skeleton k) i

235 find (`involves` i') $ xings k



B
TABLE OF VALUES

Here we include the table of values for the partial trace map. The full
table up to 11 crossings is available at https://github.com/phro/GDO/

blob/main/misc/ptrs-table.m, but here we include only the values for
links with up to 8 crossings.

94

https://github.com/phro/GDO/blob/main/misc/ptrs-table.m
https://github.com/phro/GDO/blob/main/misc/ptrs-table.m


TA
BLE

O
F

VA
LU

ES
95

Table B.1: Values of the partial trace invariant on links up to 8 crossings.
𝐿2a1 ((exp((𝑎1(𝑧2 − 𝐵1𝑧2))(𝐵1)−1 − 𝑏1𝑤2 + (exp(−(𝑧2)(𝐵1)−1)(𝑥1𝑦1 exp((𝑧2)(𝐵1)−1) −

𝑥1𝑦1 exp(𝑧2)))(𝑏1)−1) exp((𝑧2)(2𝐵1)−1 − (𝑧2)(2)−1))({1},{2}), (exp((𝑎2(𝑧1 − 𝐵2𝑧1))(𝐵2)−1 − 𝑏2𝑤1 +
(exp(−(𝑧1)(𝐵2)−1)(𝑥2𝑦2 exp((𝑧1)(𝐵2)−1) − 𝑥2𝑦2 exp(𝑧1)))(𝑏2)−1) exp((𝑧1)(2𝐵2)−1 − (𝑧1)(2)−1))({2},{1}))

𝐿4a1 ((exp((𝑎1(2𝑧2 − 2𝐵1
2𝑧2))(𝐵1

2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1
2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1

2)−1) −
𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1 exp((3𝑧2)(2𝐵1

2)−1) + exp((3𝑧2)(2𝐵1
2)−1))(𝐵1 exp((3𝑧2)(2)−1) + exp((𝑧2)(𝐵1

2)−1 +
(𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(2𝑧1 − 2𝐵2

2𝑧1))(𝐵2
2)−1 − 2𝑏2𝑤1 + (exp(−(2𝑧1)(𝐵2

2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2
2)−1) −

𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2 exp((3𝑧1)(2𝐵2
2)−1) + exp((3𝑧1)(2𝐵2

2)−1))(𝐵2 exp((3𝑧1)(2)−1) + exp((𝑧1)(𝐵2
2)−1 +

(𝑧1)(2)−1))−1)({2},{1}))
𝐿5a1 (((𝐵1)(𝐵1

2𝑧2 − 2𝐵1𝑧2 +𝐵1 + 𝑧2)−1)({1},{2}), ((𝐵2)(𝐵2
2𝑧1 − 2𝐵2𝑧1 +𝐵2 + 𝑧1)−1)({2},{1}))

𝐿6a1 ((exp((𝑎1(2𝑧2 − 2𝐵1
2𝑧2))(𝐵1

2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1
2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1

2)−1) −
𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1(− exp((3𝑧2)(2𝐵1

2)−1)) − exp((3𝑧2)(2𝐵1
2)−1))(−2𝐵1 exp((3𝑧2)(2)−1) +

𝐵1 exp((𝑧2)(𝐵1
2)−1 + (𝑧2)(2)−1) − 2 exp((𝑧2)(𝐵1

2)−1 + (𝑧2)(2)−1) + exp((3𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(2𝑧1 −
2𝐵2

2𝑧1))(𝐵2
2)−1 − 2𝑏2𝑤1 + (exp(−(2𝑧1)(𝐵2

2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2
2)−1) −

𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2(− exp((3𝑧1)(2𝐵2
2)−1)) − exp((3𝑧1)(2𝐵2

2)−1))(−2𝐵2 exp((3𝑧1)(2)−1) +
𝐵2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) − 2 exp((𝑧1)(𝐵2
2)−1 + (𝑧1)(2)−1) + exp((3𝑧1)(2)−1))−1)({2},{1}))

Continued on next page



TA
BLE

O
F

VA
LU

ES
96

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿6a2 ((exp((𝑎1(3𝑧2 − 3𝐵1

3𝑧2))(𝐵1
3)−1 − 3𝑏1𝑤2 + (exp(−(3𝑧2)(𝐵1

3)−1)(𝑥1𝑦1 exp((3𝑧2)(𝐵1
3)−1) −

𝑥1𝑦1 exp(3𝑧2)))(𝑏1)−1)(𝐵1
2 exp((5𝑧2)(2𝐵1

3)−1) + 𝐵1 exp((5𝑧2)(2𝐵1
3)−1) +

exp((5𝑧2)(2𝐵1
3)−1))(𝐵1

2 exp((𝑧2)(𝐵1
3)−1 + (3𝑧2)(2)−1) + 𝐵1 exp((5𝑧2)(2)−1) − 𝐵1 exp((𝑧2)(𝐵1

3)−1 + (3𝑧2)(2)−1) +
𝐵1 exp((2𝑧2)(𝐵1

3)−1 + (𝑧2)(2)−1) + exp((𝑧2)(𝐵1
3)−1 + (3𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(3𝑧1 − 3𝐵2

3𝑧1))(𝐵2
3)−1 −

3𝑏2𝑤1 + (exp(−(3𝑧1)(𝐵2
3)−1)(𝑥2𝑦2 exp((3𝑧1)(𝐵2

3)−1) − 𝑥2𝑦2 exp(3𝑧1)))(𝑏2)−1)(𝐵2
2 exp((5𝑧1)(2𝐵2

3)−1) +
𝐵2 exp((5𝑧1)(2𝐵2

3)−1) + exp((5𝑧1)(2𝐵2
3)−1))(𝐵2

2 exp((𝑧1)(𝐵2
3)−1 + (3𝑧1)(2)−1) + 𝐵2 exp((5𝑧1)(2)−1) −

𝐵2 exp((𝑧1)(𝐵2
3)−1 + (3𝑧1)(2)−1) + 𝐵2 exp((2𝑧1)(𝐵2

3)−1 + (𝑧1)(2)−1) + exp((𝑧1)(𝐵2
3)−1 + (3𝑧1)(2)−1))−1)({2},{1}))

𝐿6a3 ((exp((𝑎1(3𝑧2 − 3𝐵1
3𝑧2))(𝐵1

3)−1 − 3𝑏1𝑤2 + (exp(−(3𝑧2)(𝐵1
3)−1)(𝑥1𝑦1 exp((3𝑧2)(𝐵1

3)−1) −
𝑥1𝑦1 exp(3𝑧2)))(𝑏1)−1)(𝐵1

2 exp((5𝑧2)(2𝐵1
3)−1) + 𝐵1 exp((5𝑧2)(2𝐵1

3)−1) +
exp((5𝑧2)(2𝐵1

3)−1))(𝐵1
2 exp((2𝑧2)(𝐵1

3)−1 + (𝑧2)(2)−1) + 𝐵1 exp((𝑧2)(𝐵1
3)−1 +

(3𝑧2)(2)−1) + exp((5𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(3𝑧1 − 3𝐵2
3𝑧1))(𝐵2

3)−1 − 3𝑏2𝑤1 +
(exp(−(3𝑧1)(𝐵2

3)−1)(𝑥2𝑦2 exp((3𝑧1)(𝐵2
3)−1) − 𝑥2𝑦2 exp(3𝑧1)))(𝑏2)−1)(𝐵2

2 exp((5𝑧1)(2𝐵2
3)−1) +

𝐵2 exp((5𝑧1)(2𝐵2
3)−1) + exp((5𝑧1)(2𝐵2

3)−1))(𝐵2
2 exp((2𝑧1)(𝐵2

3)−1 + (𝑧1)(2)−1) + 𝐵2 exp((𝑧1)(𝐵2
3)−1 +

(3𝑧1)(2)−1) + exp((5𝑧1)(2)−1))−1)({2},{1}))
𝐿7a1 (((𝐵1)(𝐵1

2𝑧2 − 2𝐵1𝑧2 +𝐵1 + 𝑧2)−1)({1},{2}), ((𝐵2
2)(𝐵2

4𝑧1 − 3𝐵2
3𝑧1 + 4𝐵2

2𝑧1 − 3𝐵2𝑧1 +𝐵2
2 + 𝑧1)−1)({2},{1}))
Continued on next page



TA
BLE

O
F

VA
LU

ES
97

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿7a2 ((exp((𝑎1(2𝑧2 − 2𝐵1

2𝑧2))(𝐵1
2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1

2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1
2)−1) −

𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1 exp((5𝑧2)(2𝐵1
2)−1 + (𝑧2)(2)−1) + exp((5𝑧2)(2𝐵1

2)−1 + (𝑧2)(2)−1))(𝐵1 exp(3𝑧2) −
2𝐵1 exp((𝑧2)(𝐵1

2)−1 + 2𝑧2) + 2𝐵1 exp((2𝑧2)(𝐵1
2)−1 + 𝑧2) + exp((3𝑧2)(𝐵1

2)−1) + 2 exp((𝑧2)(𝐵1
2)−1 +

2𝑧2) − 2 exp((2𝑧2)(𝐵1
2)−1 + 𝑧2))−1)({1},{2}), (exp((𝑎2(2𝑧1 − 2𝐵2

2𝑧1))(𝐵2
2)−1 − 2𝑏2𝑤1 +

(exp(−(2𝑧1)(𝐵2
2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2

2)−1) − 𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2
2 exp((3𝑧1)(2𝐵2

2)−1) +
𝐵2 exp((3𝑧1)(2𝐵2

2)−1))(𝐵2
3 exp((3𝑧1)(2)−1) − 2𝐵2

2 exp((3𝑧1)(2)−1) + 2𝐵2
2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) +
2𝐵2 exp((3𝑧1)(2)−1) − 2𝐵2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) + exp((𝑧1)(𝐵2
2)−1 + (𝑧1)(2)−1))−1)({2},{1}))

𝐿7a3 ((−(𝐵1)(2𝐵1
2𝑧2 − 4𝐵1𝑧2 − 𝐵1 + 2𝑧2)−1)({1},{2}), (−(𝐵2

2)(𝐵2
4𝑧1 − 2𝐵2

3𝑧1 + 2𝐵2
2𝑧1 − 2𝐵2𝑧1 − 𝐵2

3 + 𝐵2
2 − 𝐵2 +

𝑧1)−1)({2},{1}))
𝐿7a4 ((−(𝐵1)(2𝐵1

2𝑧2 − 4𝐵1𝑧2 −𝐵1 + 2𝑧2)−1)({1},{2}), (−(𝐵2)(2𝐵2
2𝑧1 − 4𝐵2𝑧1 −𝐵2 + 2𝑧1)−1)({2},{1}))

𝐿7a5 ((exp((𝑎1(𝑧2 − 𝐵1𝑧2))(𝐵1)−1 − 𝑏1𝑤2 + (exp(−(𝑧2)(𝐵1)−1)(𝑥1𝑦1 exp((𝑧2)(𝐵1)−1) − 𝑥1𝑦1 exp(𝑧2)))(𝑏1)−1) −
(𝐵1 exp((3𝑧2)(2𝐵1)−1+(𝑧2)(2)−1))(𝐵1

2(− exp(2𝑧2))+𝐵1
2 exp((𝑧2)(𝐵1)−1+𝑧2)+𝐵1 exp(2𝑧2)+𝐵1 exp((2𝑧2)(𝐵1)−1)−

3𝐵1 exp((𝑧2)(𝐵1)−1 + 𝑧2) − exp((2𝑧2)(𝐵1)−1) + exp((𝑧2)(𝐵1)−1 + 𝑧2))−1)({1},{2}), (exp((𝑎2(𝑧1 − 𝐵2𝑧1))(𝐵2)−1 −
𝑏2𝑤1 + (exp(−(𝑧1)(𝐵2)−1)(𝑥2𝑦2 exp((𝑧1)(𝐵2)−1) − 𝑥2𝑦2 exp(𝑧1)))(𝑏2)−1) − (𝐵2 exp((3𝑧1)(2𝐵2)−1 +
(𝑧1)(2)−1))(𝐵2

2(− exp(2𝑧1))+𝐵2
2 exp((𝑧1)(𝐵2)−1+𝑧1)+𝐵2 exp(2𝑧1)+𝐵2 exp((2𝑧1)(𝐵2)−1)−3𝐵2 exp((𝑧1)(𝐵2)−1+

𝑧1) − exp((2𝑧1)(𝐵2)−1) + exp((𝑧1)(𝐵2)−1 + 𝑧1))−1)({2},{1}))
Continued on next page



TA
BLE

O
F

VA
LU

ES
98

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿7a6 ((exp(𝑎1(𝑧2 − 𝐵1𝑧2) + 𝑏1𝑤2 + (exp(−𝑧2)(𝑥1𝑦1 exp(𝑧2) − 𝑥1𝑦1 exp(𝐵1𝑧2)))(𝑏1)−1)(𝐵1 exp((𝐵1𝑧2)(2)−1 +

(3𝑧2)(2)−1))(𝐵1
2(− exp(2𝐵1𝑧2)) + 𝐵1

2 exp(𝐵1𝑧2 + 𝑧2) + 𝐵1 exp(2𝑧2) + 𝐵1 exp(2𝐵1𝑧2) − 𝐵1 exp(𝐵1𝑧2 +
𝑧2) + exp(𝐵1𝑧2 + 𝑧2) − exp(2𝑧2))−1)({1},{2}), (exp(𝑎2(𝑧1 − 𝐵2𝑧1) + 𝑏2𝑤1 + (exp(−𝑧1)(𝑥2𝑦2 exp(𝑧1) −
𝑥2𝑦2 exp(𝐵2𝑧1)))(𝑏2)−1)(𝐵2 exp((𝐵2𝑧1)(2)−1+(3𝑧1)(2)−1))(𝐵2

2(− exp(2𝐵2𝑧1))+𝐵2
2 exp(𝐵2𝑧1+𝑧1)+𝐵2 exp(2𝑧1)+

𝐵2 exp(2𝐵2𝑧1) − 𝐵2 exp(𝐵2𝑧1 + 𝑧1) + exp(𝐵2𝑧1 + 𝑧1) − exp(2𝑧1))−1)({2},{1}))
𝐿7n1 ((exp((𝑎1(2𝑧2 − 2𝐵1

2𝑧2))(𝐵1
2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1

2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1
2)−1) −

𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1 exp((5𝑧2)(2𝐵1
2)−1+(𝑧2)(2)−1)+ exp((5𝑧2)(2𝐵1

2)−1+(𝑧2)(2)−1))(𝐵1 exp((3𝑧2)(𝐵1
2)−1)+

exp(3𝑧2))−1)({1},{2}), (exp((𝑎2(2𝑧1 − 2𝐵2
2𝑧1))(𝐵2

2)−1 − 2𝑏2𝑤1 + (exp(−(2𝑧1)(𝐵2
2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2

2)−1) −
𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2

2 exp((3𝑧1)(2𝐵2
2)−1) + 𝐵2 exp((3𝑧1)(2𝐵2

2)−1))(𝐵2
3 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) +
exp((3𝑧1)(2)−1))−1)({2},{1}))

𝐿7n2 (((𝐵1)(𝐵1
2𝑧2 − 2𝐵1𝑧2 +𝐵1 + 𝑧2)−1)({1},{2}), ((𝐵2)(𝐵2

2𝑧1 − 2𝐵2𝑧1 +𝐵2
2 −𝐵2 + 𝑧1 + 1)−1)({2},{1}))

𝐿8a1 (((𝐵1)(𝐵1
2𝑧2 − 2𝐵1𝑧2 +𝐵1 + 𝑧2)−1)({1},{2}), (−(𝐵2

2)(𝐵2
4𝑧1 − 5𝐵2

3𝑧1 + 8𝐵2
2𝑧1 − 5𝐵2𝑧1 −𝐵2

2 + 𝑧1)−1)({2},{1}))
𝐿8a2 ((1)({1},{2}), ((𝐵2

2)(𝐵2
4𝑧1 − 4𝐵2

3𝑧1 + 6𝐵2
2𝑧1 − 4𝐵2𝑧1 −𝐵2

3 + 3𝐵2
2 −𝐵2 + 𝑧1)−1)({2},{1}))

Continued on next page



TA
BLE

O
F

VA
LU

ES
99

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿8a3 ((exp((𝑎1(2𝑧2 − 2𝐵1

2𝑧2))(𝐵1
2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1

2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1
2)−1) −

𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1(− exp((5𝑧2)(2𝐵1
2)−1 + (𝑧2)(2)−1)) − exp((5𝑧2)(2𝐵1

2)−1 + (𝑧2)(2)−1))(𝐵1 exp(3𝑧2) −
4𝐵1 exp((𝑧2)(𝐵1

2)−1 + 2𝑧2) + 2𝐵1 exp((2𝑧2)(𝐵1
2)−1 + 𝑧2) + exp((3𝑧2)(𝐵1

2)−1) + 2 exp((𝑧2)(𝐵1
2)−1 +

2𝑧2) − 4 exp((2𝑧2)(𝐵1
2)−1 + 𝑧2))−1)({1},{2}), (exp((𝑎2(2𝑧1 − 2𝐵2

2𝑧1))(𝐵2
2)−1 − 2𝑏2𝑤1 +

(exp(−(2𝑧1)(𝐵2
2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2

2)−1) − 𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2
2(− exp((3𝑧1)(2𝐵2

2)−1)) −
𝐵2 exp((3𝑧1)(2𝐵2

2)−1))(𝐵2
3 exp((3𝑧1)(2)−1) − 4𝐵2

2 exp((3𝑧1)(2)−1) + 2𝐵2
2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) +
2𝐵2 exp((3𝑧1)(2)−1) − 4𝐵2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) + exp((𝑧1)(𝐵2
2)−1 + (𝑧1)(2)−1))−1)({2},{1}))

𝐿8a4 ((1)({1},{2}), (−(𝐵2
2)(𝐵2

4𝑧1 − 4𝐵2
3𝑧1 + 6𝐵2

2𝑧1 − 4𝐵2𝑧1 −𝐵2
3 +𝐵2

2 −𝐵2 + 𝑧1)−1)({2},{1}))
𝐿8a5 ((exp((𝑎1(2𝑧2 − 2𝐵1

2𝑧2))(𝐵1
2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1

2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1
2)−1) −

𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1(− exp((5𝑧2)(2𝐵1
2)−1 + (𝑧2)(2)−1)) − exp((5𝑧2)(2𝐵1

2)−1 + (𝑧2)(2)−1))(−2𝐵1 exp(3𝑧2) +
𝐵1 exp((3𝑧2)(𝐵1

2)−1) + 2𝐵1 exp((𝑧2)(𝐵1
2)−1 + 2𝑧2) − 2𝐵1 exp((2𝑧2)(𝐵1

2)−1 + 𝑧2) − 2 exp((3𝑧2)(𝐵1
2)−1) −

2 exp((𝑧2)(𝐵1
2)−1 + 2𝑧2) + 2 exp((2𝑧2)(𝐵1

2)−1 + 𝑧2) + exp(3𝑧2))−1)({1},{2}), (exp((𝑎2(2𝑧1 − 2𝐵2
2𝑧1))(𝐵2

2)−1 −
2𝑏2𝑤1 + (exp(−(2𝑧1)(𝐵2

2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2
2)−1) − 𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2

2(− exp((3𝑧1)(2𝐵2
2)−1)) −

𝐵2 exp((3𝑧1)(2𝐵2
2)−1))(−2𝐵2

3 exp((3𝑧1)(2)−1) + 𝐵2
3 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) + 2𝐵2
2 exp((3𝑧1)(2)−1) −

2𝐵2
2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) − 2𝐵2 exp((3𝑧1)(2)−1) + 2𝐵2 exp((𝑧1)(𝐵2
2)−1 + (𝑧1)(2)−1) − 2 exp((𝑧1)(𝐵2

2)−1 +
(𝑧1)(2)−1) + exp((3𝑧1)(2)−1))−1)({2},{1}))

Continued on next page



TA
BLE

O
F

VA
LU

ES
100

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿8a6 ((exp((𝑎1(2𝑧2 − 2𝐵1

2𝑧2))(𝐵1
2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1

2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1
2)−1) −

𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1(− exp((3𝑧2)(2𝐵1
2)−1)) − exp((3𝑧2)(2𝐵1

2)−1))(−3𝐵1 exp((3𝑧2)(2)−1) +
2𝐵1 exp((𝑧2)(𝐵1

2)−1 + (𝑧2)(2)−1) − 3 exp((𝑧2)(𝐵1
2)−1 + (𝑧2)(2)−1) + 2 exp((3𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(2𝑧1 −

2𝐵2
2𝑧1))(𝐵2

2)−1 − 2𝑏2𝑤1 + (exp(−(2𝑧1)(𝐵2
2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2

2)−1) −
𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2(− exp((3𝑧1)(2𝐵2

2)−1)) − exp((3𝑧1)(2𝐵2
2)−1))(−3𝐵2 exp((3𝑧1)(2)−1) +

2𝐵2 exp((𝑧1)(𝐵2
2)−1 + (𝑧1)(2)−1) − 3 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) + 2 exp((3𝑧1)(2)−1))−1)({2},{1}))
𝐿8a7 ((exp((𝑎1(2𝑧2 − 2𝐵1

2𝑧2))(𝐵1
2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1

2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1
2)−1) −

𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1 exp((5𝑧2)(2𝐵1
2)−1 + (𝑧2)(2)−1) + exp((5𝑧2)(2𝐵1

2)−1 + (𝑧2)(2)−1))(𝐵1 exp(3𝑧2) −
4𝐵1 exp((𝑧2)(𝐵1

2)−1 + 2𝑧2) + 4𝐵1 exp((2𝑧2)(𝐵1
2)−1 + 𝑧2) + exp((3𝑧2)(𝐵1

2)−1) + 4 exp((𝑧2)(𝐵1
2)−1 +

2𝑧2) − 4 exp((2𝑧2)(𝐵1
2)−1 + 𝑧2))−1)({1},{2}), (exp((𝑎2(2𝑧1 − 2𝐵2

2𝑧1))(𝐵2
2)−1 − 2𝑏2𝑤1 +

(exp(−(2𝑧1)(𝐵2
2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2

2)−1) − 𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2
2 exp((3𝑧1)(2𝐵2

2)−1) +
𝐵2 exp((3𝑧1)(2𝐵2

2)−1))(𝐵2
3 exp((3𝑧1)(2)−1) − 4𝐵2

2 exp((3𝑧1)(2)−1) + 4𝐵2
2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) +
4𝐵2 exp((3𝑧1)(2)−1) − 4𝐵2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) + exp((𝑧1)(𝐵2
2)−1 + (𝑧1)(2)−1))−1)({2},{1}))

Continued on next page



TA
BLE

O
F

VA
LU

ES
101

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿8a8 ((exp((𝑎1(𝑧2 − 𝐵1𝑧2))(𝐵1)−1 − 𝑏1𝑤2 + (exp(−(𝑧2)(𝐵1)−1)(𝑥1𝑦1 exp((𝑧2)(𝐵1)−1) − 𝑥1𝑦1 exp(𝑧2)))(𝑏1)−1) −

(𝐵1 exp((3𝑧2)(2𝐵1)−1 + (𝑧2)(2)−1))(𝐵1
2 exp(2𝑧2) + 𝐵1

2 exp((2𝑧2)(𝐵1)−1) − 2𝐵1
2 exp((𝑧2)(𝐵1)−1 + 𝑧2) −

2𝐵1 exp(2𝑧2) − 2𝐵1 exp((2𝑧2)(𝐵1)−1) + 3𝐵1 exp((𝑧2)(𝐵1)−1 + 𝑧2) + exp((2𝑧2)(𝐵1)−1) − 2 exp((𝑧2)(𝐵1)−1 +
𝑧2) + exp(2𝑧2))−1)({1},{2}), (exp((𝑎2(𝑧1 − 𝐵2𝑧1))(𝐵2)−1 − 𝑏2𝑤1 + (exp(−(𝑧1)(𝐵2)−1)(𝑥2𝑦2 exp((𝑧1)(𝐵2)−1) −
𝑥2𝑦2 exp(𝑧1)))(𝑏2)−1) − (𝐵2 exp((3𝑧1)(2𝐵2)−1 + (𝑧1)(2)−1))(𝐵2

2 exp(2𝑧1) + 𝐵2
2 exp((2𝑧1)(𝐵2)−1) −

2𝐵2
2 exp((𝑧1)(𝐵2)−1 +𝑧1) − 2𝐵2 exp(2𝑧1) − 2𝐵2 exp((2𝑧1)(𝐵2)−1) + 3𝐵2 exp((𝑧1)(𝐵2)−1 +𝑧1) + exp((2𝑧1)(𝐵2)−1) −

2 exp((𝑧1)(𝐵2)−1 + 𝑧1) + exp(2𝑧1))−1)({2},{1}))
𝐿8a9 ((exp((𝑎1(𝑧2 − 𝐵1𝑧2))(𝐵1)−1 − 𝑏1𝑤2 + (exp(−(𝑧2)(𝐵1)−1)(𝑥1𝑦1 exp((𝑧2)(𝐵1)−1) −

𝑥1𝑦1 exp(𝑧2)))(𝑏1)−1)(𝐵1 exp((3𝑧2)(2𝐵1)−1 + (𝑧2)(2)−1))(𝐵1
2 exp(2𝑧2) + 𝐵1

2 exp((2𝑧2)(𝐵1)−1) −
2𝐵1

2 exp((𝑧2)(𝐵1)−1 + 𝑧2) − 2𝐵1 exp(2𝑧2) − 2𝐵1 exp((2𝑧2)(𝐵1)−1) + 5𝐵1 exp((𝑧2)(𝐵1)−1 + 𝑧2) +
exp((2𝑧2)(𝐵1)−1) − 2 exp((𝑧2)(𝐵1)−1 + 𝑧2) + exp(2𝑧2))−1)({1},{2}), (exp((𝑎2(𝑧1 − 𝐵2𝑧1))(𝐵2)−1 − 𝑏2𝑤1 +
(exp(−(𝑧1)(𝐵2)−1)(𝑥2𝑦2 exp((𝑧1)(𝐵2)−1) − 𝑥2𝑦2 exp(𝑧1)))(𝑏2)−1)(𝐵2 exp((3𝑧1)(2𝐵2)−1 + (𝑧1)(2)−1))(𝐵2

2 exp(2𝑧1) +
𝐵2

2 exp((2𝑧1)(𝐵2)−1) − 2𝐵2
2 exp((𝑧1)(𝐵2)−1 + 𝑧1) − 2𝐵2 exp(2𝑧1) − 2𝐵2 exp((2𝑧1)(𝐵2)−1) + 5𝐵2 exp((𝑧1)(𝐵2)−1 +

𝑧1) + exp((2𝑧1)(𝐵2)−1) − 2 exp((𝑧1)(𝐵2)−1 + 𝑧1) + exp(2𝑧1))−1)({2},{1}))
Continued on next page



TA
BLE

O
F

VA
LU

ES
102

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿8a10 ((exp((𝑎1(3𝑧2 − 3𝐵1

3𝑧2))(𝐵1
3)−1 − 3𝑏1𝑤2 + (exp(−(3𝑧2)(𝐵1

3)−1)(𝑥1𝑦1 exp((3𝑧2)(𝐵1
3)−1) −

𝑥1𝑦1 exp(3𝑧2)))(𝑏1)−1)(𝐵1
2 exp((5𝑧2)(2𝐵1

3)−1) + 𝐵1 exp((5𝑧2)(2𝐵1
3)−1) +

exp((5𝑧2)(2𝐵1
3)−1))(𝐵1

2(− exp((5𝑧2)(2)−1)) + 2𝐵1
2 exp((𝑧2)(𝐵1

3)−1 + (3𝑧2)(2)−1) + 2𝐵1 exp((5𝑧2)(2)−1) −
3𝐵1 exp((𝑧2)(𝐵1

3)−1 + (3𝑧2)(2)−1) + 2𝐵1 exp((2𝑧2)(𝐵1
3)−1 + (𝑧2)(2)−1) + 2 exp((𝑧2)(𝐵1

3)−1 +
(3𝑧2)(2)−1) − exp((2𝑧2)(𝐵1

3)−1 + (𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(3𝑧1 − 3𝐵2
3𝑧1))(𝐵2

3)−1 − 3𝑏2𝑤1 +
(exp(−(3𝑧1)(𝐵2

3)−1)(𝑥2𝑦2 exp((3𝑧1)(𝐵2
3)−1) − 𝑥2𝑦2 exp(3𝑧1)))(𝑏2)−1)(𝐵2

2 exp((5𝑧1)(2𝐵2
3)−1) +

𝐵2 exp((5𝑧1)(2𝐵2
3)−1) + exp((5𝑧1)(2𝐵2

3)−1))(𝐵2
2(− exp((5𝑧1)(2)−1)) + 2𝐵2

2 exp((𝑧1)(𝐵2
3)−1 + (3𝑧1)(2)−1) +

2𝐵2 exp((5𝑧1)(2)−1)− 3𝐵2 exp((𝑧1)(𝐵2
3)−1 +(3𝑧1)(2)−1)+ 2𝐵2 exp((2𝑧1)(𝐵2

3)−1 +(𝑧1)(2)−1)+ 2 exp((𝑧1)(𝐵2
3)−1 +

(3𝑧1)(2)−1) − exp((2𝑧1)(𝐵2
3)−1 + (𝑧1)(2)−1))−1)({2},{1}))

𝐿8a11 ((exp((𝑎1(3𝑧2 − 3𝐵1
3𝑧2))(𝐵1

3)−1 − 3𝑏1𝑤2 + (exp(−(3𝑧2)(𝐵1
3)−1)(𝑥1𝑦1 exp((3𝑧2)(𝐵1

3)−1) −
𝑥1𝑦1 exp(3𝑧2)))(𝑏1)−1)(𝐵1

2 exp((5𝑧2)(2𝐵1
3)−1) + 𝐵1 exp((5𝑧2)(2𝐵1

3)−1) +
exp((5𝑧2)(2𝐵1

3)−1))(𝐵1
2(− exp((𝑧2)(𝐵1

3)−1 + (3𝑧2)(2)−1)) + 2𝐵1
2 exp((2𝑧2)(𝐵1

3)−1 + (𝑧2)(2)−1) −
𝐵1 exp((5𝑧2)(2)−1) + 3𝐵1 exp((𝑧2)(𝐵1

3)−1 + (3𝑧2)(2)−1) − 𝐵1 exp((2𝑧2)(𝐵1
3)−1 + (𝑧2)(2)−1) −

exp((𝑧2)(𝐵1
3)−1 + (3𝑧2)(2)−1) + 2 exp((5𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(3𝑧1 − 3𝐵2

3𝑧1))(𝐵2
3)−1 −

3𝑏2𝑤1 + (exp(−(3𝑧1)(𝐵2
3)−1)(𝑥2𝑦2 exp((3𝑧1)(𝐵2

3)−1) − 𝑥2𝑦2 exp(3𝑧1)))(𝑏2)−1)(𝐵2
2 exp((5𝑧1)(2𝐵2

3)−1) +
𝐵2 exp((5𝑧1)(2𝐵2

3)−1) + exp((5𝑧1)(2𝐵2
3)−1))(𝐵2

2(− exp((𝑧1)(𝐵2
3)−1 + (3𝑧1)(2)−1)) + 2𝐵2

2 exp((2𝑧1)(𝐵2
3)−1 +

(𝑧1)(2)−1) − 𝐵2 exp((5𝑧1)(2)−1) + 3𝐵2 exp((𝑧1)(𝐵2
3)−1 + (3𝑧1)(2)−1) − 𝐵2 exp((2𝑧1)(𝐵2

3)−1 + (𝑧1)(2)−1) −
exp((𝑧1)(𝐵2

3)−1 + (3𝑧1)(2)−1) + 2 exp((5𝑧1)(2)−1))−1)({2},{1}))
Continued on next page



TA
BLE

O
F

VA
LU

ES
103

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿8a12 ((exp((𝑎1(4𝑧2 − 4𝐵1

4𝑧2))(𝐵1
4)−1 − 4𝑏1𝑤2 + (exp(−(4𝑧2)(𝐵1

4)−1)(𝑥1𝑦1 exp((4𝑧2)(𝐵1
4)−1) −

𝑥1𝑦1 exp(4𝑧2)))(𝑏1)−1)(𝐵1
3 exp((7𝑧2)(2𝐵1

4)−1) + 𝐵1
2 exp((7𝑧2)(2𝐵1

4)−1) + 𝐵1 exp((7𝑧2)(2𝐵1
4)−1) +

exp((7𝑧2)(2𝐵1
4)−1))(𝐵1

3 exp((2𝑧2)(𝐵1
4)−1 + (3𝑧2)(2)−1) + 𝐵1

2 exp((𝑧2)(𝐵1
4)−1 + (5𝑧2)(2)−1) −

𝐵1
2 exp((2𝑧2)(𝐵1

4)−1 + (3𝑧2)(2)−1) + 𝐵1
2 exp((3𝑧2)(𝐵1

4)−1 + (𝑧2)(2)−1) + 𝐵1 exp((7𝑧2)(2)−1) −
𝐵1 exp((𝑧2)(𝐵1

4)−1 + (5𝑧2)(2)−1) + 𝐵1 exp((2𝑧2)(𝐵1
4)−1 + (3𝑧2)(2)−1) + exp((𝑧2)(𝐵1

4)−1 +
(5𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(4𝑧1 − 4𝐵2

4𝑧1))(𝐵2
4)−1 − 4𝑏2𝑤1 + (exp(−(4𝑧1)(𝐵2

4)−1)(𝑥2𝑦2 exp((4𝑧1)(𝐵2
4)−1) −

𝑥2𝑦2 exp(4𝑧1)))(𝑏2)−1)(𝐵2
3 exp((7𝑧1)(2𝐵2

4)−1) + 𝐵2
2 exp((7𝑧1)(2𝐵2

4)−1) + 𝐵2 exp((7𝑧1)(2𝐵2
4)−1) +

exp((7𝑧1)(2𝐵2
4)−1))(𝐵2

3 exp((2𝑧1)(𝐵2
4)−1 + (3𝑧1)(2)−1) + 𝐵2

2 exp((𝑧1)(𝐵2
4)−1 + (5𝑧1)(2)−1) −

𝐵2
2 exp((2𝑧1)(𝐵2

4)−1+(3𝑧1)(2)−1)+𝐵2
2 exp((3𝑧1)(𝐵2

4)−1+(𝑧1)(2)−1)+𝐵2 exp((7𝑧1)(2)−1)−𝐵2 exp((𝑧1)(𝐵2
4)−1+

(5𝑧1)(2)−1) + 𝐵2 exp((2𝑧1)(𝐵2
4)−1 + (3𝑧1)(2)−1) + exp((𝑧1)(𝐵2

4)−1 + (5𝑧1)(2)−1))−1)({2},{1}))
Continued on next page



TA
BLE

O
F

VA
LU

ES
104

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿8a13 ((exp((𝑎1(4𝑧2 − 4𝐵1

4𝑧2))(𝐵1
4)−1 − 4𝑏1𝑤2 + (exp(−(4𝑧2)(𝐵1

4)−1)(𝑥1𝑦1 exp((4𝑧2)(𝐵1
4)−1) −

𝑥1𝑦1 exp(4𝑧2)))(𝑏1)−1)(𝐵1
3 exp((7𝑧2)(2𝐵1

4)−1) + 𝐵1
2 exp((7𝑧2)(2𝐵1

4)−1) + 𝐵1 exp((7𝑧2)(2𝐵1
4)−1) +

exp((7𝑧2)(2𝐵1
4)−1))(𝐵1

3 exp((𝑧2)(𝐵1
4)−1+(5𝑧2)(2)−1)+𝐵1

2 exp((7𝑧2)(2)−1)−2𝐵1
2 exp((𝑧2)(𝐵1

4)−1+(5𝑧2)(2)−1)+
2𝐵1

2 exp((2𝑧2)(𝐵1
4)−1 + (3𝑧2)(2)−1) + 2𝐵1 exp((𝑧2)(𝐵1

4)−1 + (5𝑧2)(2)−1) − 2𝐵1 exp((2𝑧2)(𝐵1
4)−1 + (3𝑧2)(2)−1) +

𝐵1 exp((3𝑧2)(𝐵1
4)−1 + (𝑧2)(2)−1) + exp((2𝑧2)(𝐵1

4)−1 + (3𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(4𝑧1 − 4𝐵2
4𝑧1))(𝐵2

4)−1 −
4𝑏2𝑤1 + (exp(−(4𝑧1)(𝐵2

4)−1)(𝑥2𝑦2 exp((4𝑧1)(𝐵2
4)−1) − 𝑥2𝑦2 exp(4𝑧1)))(𝑏2)−1)(𝐵2

3 exp((7𝑧1)(2𝐵2
4)−1) +

𝐵2
2 exp((7𝑧1)(2𝐵2

4)−1) + 𝐵2 exp((7𝑧1)(2𝐵2
4)−1) + exp((7𝑧1)(2𝐵2

4)−1))(𝐵2
3 exp((𝑧1)(𝐵2

4)−1 + (5𝑧1)(2)−1) +
𝐵2

2 exp((7𝑧1)(2)−1) − 2𝐵2
2 exp((𝑧1)(𝐵2

4)−1 + (5𝑧1)(2)−1) + 2𝐵2
2 exp((2𝑧1)(𝐵2

4)−1 + (3𝑧1)(2)−1) +
2𝐵2 exp((𝑧1)(𝐵2

4)−1 + (5𝑧1)(2)−1) − 2𝐵2 exp((2𝑧1)(𝐵2
4)−1 + (3𝑧1)(2)−1) + 𝐵2 exp((3𝑧1)(𝐵2

4)−1 + (𝑧1)(2)−1) +
exp((2𝑧1)(𝐵2

4)−1 + (3𝑧1)(2)−1))−1)({2},{1}))
𝐿8a14 ((exp((𝑎1(4𝑧2 − 4𝐵1

4𝑧2))(𝐵1
4)−1 − 4𝑏1𝑤2 + (exp(−(4𝑧2)(𝐵1

4)−1)(𝑥1𝑦1 exp((4𝑧2)(𝐵1
4)−1) −

𝑥1𝑦1 exp(4𝑧2)))(𝑏1)−1)(𝐵1
3 exp((7𝑧2)(2𝐵1

4)−1) + 𝐵1
2 exp((7𝑧2)(2𝐵1

4)−1) + 𝐵1 exp((7𝑧2)(2𝐵1
4)−1) +

exp((7𝑧2)(2𝐵1
4)−1))(𝐵1

3 exp((3𝑧2)(𝐵1
4)−1 + (𝑧2)(2)−1) + 𝐵1

2 exp((2𝑧2)(𝐵1
4)−1 + (3𝑧2)(2)−1) +

𝐵1 exp((𝑧2)(𝐵1
4)−1 + (5𝑧2)(2)−1) + exp((7𝑧2)(2)−1))−1)({1},{2}), (exp((𝑎2(4𝑧1 − 4𝐵2

4𝑧1))(𝐵2
4)−1 −

4𝑏2𝑤1 + (exp(−(4𝑧1)(𝐵2
4)−1)(𝑥2𝑦2 exp((4𝑧1)(𝐵2

4)−1) − 𝑥2𝑦2 exp(4𝑧1)))(𝑏2)−1)(𝐵2
3 exp((7𝑧1)(2𝐵2

4)−1) +
𝐵2

2 exp((7𝑧1)(2𝐵2
4)−1) + 𝐵2 exp((7𝑧1)(2𝐵2

4)−1) + exp((7𝑧1)(2𝐵2
4)−1))(𝐵2

3 exp((3𝑧1)(𝐵2
4)−1 + (𝑧1)(2)−1) +

𝐵2
2 exp((2𝑧1)(𝐵2

4)−1 + (3𝑧1)(2)−1) + 𝐵2 exp((𝑧1)(𝐵2
4)−1 + (5𝑧1)(2)−1) + exp((7𝑧1)(2)−1))−1)({2},{1}))

Continued on next page



TA
BLE

O
F

VA
LU

ES
105

Table B.1– continued from previous page
Link Partial trace 𝑍tr of link
𝐿8n1 ((exp((𝑎1(2𝑧2 − 2𝐵1

2𝑧2))(𝐵1
2)−1 − 2𝑏1𝑤2 + (exp(−(2𝑧2)(𝐵1

2)−1)(𝑥1𝑦1 exp((2𝑧2)(𝐵1
2)−1) −

𝑥1𝑦1 exp(2𝑧2)))(𝑏1)−1)(𝐵1(− exp((5𝑧2)(2𝐵1
2)−1 + (𝑧2)(2)−1)) − exp((5𝑧2)(2𝐵1

2)−1 +
(𝑧2)(2)−1))(𝐵1 exp((3𝑧2)(𝐵1

2)−1) − 2𝐵1 exp((2𝑧2)(𝐵1
2)−1 + 𝑧2) − 2 exp((𝑧2)(𝐵1

2)−1 + 2𝑧2) +
exp(3𝑧2))−1)({1},{2}), (exp((𝑎2(2𝑧1 − 2𝐵2

2𝑧1))(𝐵2
2)−1 − 2𝑏2𝑤1 + (exp(−(2𝑧1)(𝐵2

2)−1)(𝑥2𝑦2 exp((2𝑧1)(𝐵2
2)−1) −

𝑥2𝑦2 exp(2𝑧1)))(𝑏2)−1)(𝐵2
2(− exp((3𝑧1)(2𝐵2

2)−1)) − 𝐵2 exp((3𝑧1)(2𝐵2
2)−1))(𝐵2

3 exp((𝑧1)(𝐵2
2)−1 + (𝑧1)(2)−1) −

2𝐵2
2 exp((𝑧1)(𝐵2

2)−1 + (𝑧1)(2)−1) − 2𝐵2 exp((3𝑧1)(2)−1) + exp((3𝑧1)(2)−1))−1)({2},{1}))
𝐿8n2 ((−(𝐵1)(𝐵1

2𝑧2 − 2𝐵1𝑧2 −𝐵1 + 𝑧2)−1)({1},{2}), (−(𝐵2)(𝐵2
2𝑧1 − 2𝐵2𝑧1 +𝐵2

2 − 3𝐵2 + 𝑧1 + 1)−1)({2},{1}))



BIBL IOGRAPHY

[BNMea] Dror Bar-Natan, Scott Morrison, and et al., The Knot Atlas.

[BNS] Dror Bar-Natan and Sam Selmani, Meta-monoids,
meta-bicrossed products, and the Alexander polynomial,
no. 10, 1350058, Publisher: World Scientific Publishing Co.

[BNvdVa] Dror Bar-Natan and Roland van der Veen, A
perturbed-Alexander invariant, no. arXiv:2206.12298.

[BNvdVb] , Perturbed Gaußian generating functions for universal
knot invariants, no. arXiv:2109.02057.

[ES] Pavel I. Etingof and Olivier Schiffmann, Lectures on quantum
groups, International Press.

[Fox] R. H. Fox, Some problems in knot theory.

[Hal] Brian C. Hall, Quantum theory for mathematicians, Graduate
Texts in Mathematics, vol. 267, Springer.

[Kau] Louis H. Kauffman, Rotational virtual knots and quantum link
invariants.

[Lic] W. B. Raymond Lickorish, An introduction to knot theory,
Springer Science & Business Media.

[Maj] Shahn Majid, A quantum groups primer, London Mathematical
Society Lecture Note Series, Cambridge University Press.

[Pen] Roger Penrose, Spinors and space-time. volume 1, two-spinor
calculus and relativistic fields, Cambridge monographs on math-
ematical physics, University Press.

[RT] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via
link polynomials and quantum groups, no. 1, 547–597.

[Wey] H. Weyl, Quantenmechanik und gruppentheorie, no. 1, 1–46.

106



COLOPHON

This thesis was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić.

The style was inspired by Robert Bringhurst’s seminal book
on typography The Elements of Typographic Style.

Figures were created with Asymptote: The Vector Graphics
Language (https://asymptote.sourceforge.io/).

This manuscript and its amendments are hosted on GitHub
at https://github.com/phro/thesis.

Version 1.0.0 (electronic)

107

https://asymptote.sourceforge.io/
https://github.com/phro/thesis

	Computing the generating function of a coinvariants map
	Abstract
	Dedication
	Acknowledgements
	Contents
	1 Executive summary
	1.1 Algebraic tools for understanding knots
	1.2 Computational improvements using the universal invariant
	1.3 Extending Z to links
	1.4 Further study

	2 Tensor products and meta-objects
	2.1 Tensor product notation
	2.2 Meta-objects
	2.3 Algebraic definitions
	2.4 The meta-algebra of tangle diagrams
	2.5 The meta-algebra 
	2.6 Morphisms between meta-objects

	3 Perturbed Gaußians
	3.1 Expressing morphisms as generating functions
	3.2 Computational example

	4 Constructing the trace
	4.1 Extending an invariant of open tangles to mixed tangles
	4.2 The space of coinvariants of 
	4.3 Computational example

	5 Conclusions
	5.1 Limitations of 
	5.2 Comparison with the multivariable Alexander polynomial
	5.3 Further work

	A Code
	A.1 Implementation of the perturbed Gaußian framework
	A.2 Implementation of the trace
	A.3 Defining Z and 
	A.4 Implementation of rotation number algorithm

	B Table of values
	Colophon

