Red-black diagrams and cyclic words

Vertices

Def. With $F L(x)$ the free Lie algebra on letters $x, F A(x)$ the free associative algebra on x,

$$
\begin{gathered}
C W(x)=F A(F L(x)) / w_{1} w_{2} \cdots w_{k}=w_{2} \cdots w_{k} w_{1} \\
D W(x)=C W(x) / w_{1} w_{2} \cdots w_{k}=(-1)^{1+\sum \operatorname{deg} w_{i}} w_{k} \cdots w_{2} w_{1}
\end{gathered}
$$

Conj. $\mathcal{D}^{R B} /$ wheel reversal $\cong D W(x)$
$\mathcal{D}^{R B}=\{$ RB-diagrams, labeled snakes $\} / R A S, S T U, Y, L, R I H X \operatorname{Pf} 1$. By remark 2 can assume diagram completely red (no,

Remark 1. If snakes are labeled by letters $x=\left\{x_{i}\right\}$ then

$$
T^{R B} \cong F L(x)
$$

by the map

STU is Jacobi identity, all other relations are bracket antisymmetry.

Remark 2. Any RB-diagram where wheel is not completely black is equivalent to a lin. comb. of completely red diagrams, with labeled leaves.

Use Y to shorten snakes starting from heads. If a snake has no head, it is the complete wheel.
almost!). Need to extend the map in remark 1 to vertices on wheel. If with an orientation get $\varepsilon w_{1} \ldots w_{k}$, after reversing get

$(-1)^{k} \varepsilon w_{k} \ldots w_{1}$.
Pf 2. Trees are words in $F L(x)$ by Remark 1.
Need to extend the map in remark 1 to vertices on wheel.
$\overbrace{\downarrow}^{a} \begin{aligned} & \text { I } \\ & 1 \\ & \downarrow\end{aligned} \mapsto a b$

But it does not satisfy STU!

