M.Sc. Math Workshop — Assignment #8 HUJI Spring 1998 Dror Bar-Natan

- (37) Prove that if n^c is an integer for every n, then c is an integer.
- (38) Prove that in any finite partition of the integers to at least two arithmetic progressions, at least two of the progressions will have the same skip.
- (39) Compute the fundamental group and describe the universal covering space of the topological space obtained by identifying the three edges of a triangle as in the figure below:

(40) Let $\gamma_{1,2}: S^1 \to \mathbf{R}^3$ be two non-intersecting smooth paths in \mathbf{R}^3 . Set

$$l(\gamma_1, \gamma_2) = \int_{S^1 \times S^1} dt_1 dt_2 \, \frac{(\dot{\gamma}_1(t_1) \times \dot{\gamma}_2(t_2)) \cdot (\gamma_1(t_1) - \gamma_2(t_2))}{|\gamma_1(t_1) - \gamma_2(t_2)|^3},$$

where $t_{1,2}$ are parameters in S^1 , $\dot{\gamma}$ denotes the derivative of γ with respect to its parameter (i.e., its tangent vector), \times and \cdot denote the vector and scalar products in \mathbf{R}^3 (respectively), and | | denotes the Euclidean norm.

- (a) Prove that l is a link invariant (that is, prove that it is invariant under deformations of $\gamma_{1,2}$ in the spirit of assignment #6). (One of many possibilities is to consider the map $S^1 \times S^1 \to S^2$ given by $(t_1, t_2) \mapsto \frac{\gamma_1(t_1) - \gamma_2(t_2)}{|\gamma_1(t_1) - \gamma_2(t_2)|}$, and to study the pullback of the volume form on S^2 via this map).
- (b) Find a simple combinatorial formula for computing l given a generic planar projection of $\gamma_{1,2}$.
- (41) Let $f : \mathbf{R} \to \mathbf{C}$ be a unit-norm L^2 function, and let \tilde{f} be the Fourier transform of f (the Fourier transform is normalized so that L^2 norms are preserved). Let μ be the distribution on \mathbf{R} whose density function is $|f|^2$, let $V = \int x^2 d\mu (\int x d\mu)^2$ be the variance of μ , and make similar definitions for $\tilde{\mu}$ and \tilde{V} starting from \tilde{f} .

(a) Prove that $V \cdot V \ge \frac{1}{4}$.

(b) Determine all the functions f for which the above inequality is an equality. Hint: you may want to recall Q16.