M.Sc. Math Workshop - Assignment \#6
 HUJI Spring 1998
 Dror Bar-Natan

(21) Give two proofs that the configuration space of a 6-legged roach (such as the one in Figure 4) is an oriented surface of genus 17 :

- Using Euler characteristics,
- And by a direct cut-and-paste argument.

Figure 4. A roach. Don't worry! It is safely attached to this page and it cannot jump out.
(22) Which way did the bicycle go?

(23) A smooth pre-knot is a smooth $\left(C^{\infty}\right)$ embedding of S^{1} (the circle) in \mathbf{R}^{3}. We say that two smooth pre-knots are smoothly equivalent if there is a smooth homotopy between them, which is also an embedding at all intermediate times. A smooth knot is an equivalence class of smooth pre-knots, modulo smooth equivalence. Similarly we can define continuous knots. Are the two notions equivalent?
(24) We say that two smooth pre-knots $\gamma_{1,2}: S^{1} \rightarrow \mathbf{R}^{3}$ are smoothly ambient-equivalent if there exists a diffeomorphism (smooth bijection with a smooth inverse) $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ so that $\gamma_{2}=f \circ \gamma_{1}$. A smooth ambient knot is an equivalence class of smooth pre-knots modulo smooth ambient-equivalence. Similarly we can define continuous ambient knots. Are the two notions equivalent?
(25) Are smooth ambient knots equivalent to smooth knots?
(26) A polygonal pre-knot is simply a polygon embedded in \mathbf{R}^{3}. Two polygonal preknots are called Δ-equivalent if they differ by a sequence of triangle moves such as in Figure 5, in which no other parts of the polygon pass through the triangle. A
polygonal knot is an equivalence class of polygonal pre-knots modulo Δ-equivalence. Are polygonal knots equivalent to smooth knots?

Figure 5. A triangle move.
(27) Come up with a reasonable notion of "a knot projection" (in \mathbf{R}^{2}, of a knot in \mathbf{R}^{3}). We say that two knot projections are R-equivalent if they differ by a sequence of "Reidemeister" moves of kinds $R 1, R 2$, and $R 3$, as shown in Figure 6. Prove that the set of polygonal knots is equivalent to the set of knot projections modulo R equivalence.
${ }^{R 1}:$

Figure 6. The three Reidemeister moves.
(28) An "interval" in a knot projection is precisely what you think it is. For example, the standard projection of the trefoil knot is made of three intervals. If P is knot projection, define $\nu(P)$ to be YES if the intervals of P can be colored with three colors so that

- all three colors are used,
- and in each crossings, the three intervals involved are either all colored the same way or in three different colors.
Otherwise set $\nu(P)$ to be NO. Prove that ν is a knot invariant (namely, it is invariant under the three Reidemeister moves), and compute it on the unknot and on the trefoil knot.

