M.Sc. Math Workshop - Assignment \#3
 HUJI Spring 1998
 Dror Bar-Natan

(15) Prove: If $\lambda>0$ is irrational and $\epsilon>0$ then there exists 5 continuous functions ϕ_{i} : $[0,1] \rightarrow[0,1](1 \leq i \leq 5)$ so that for every continuous function $f:[0,1] \times[0,1] \rightarrow \mathbf{R}$ there exists a continuous function $g:[0,1+\lambda] \rightarrow \mathbf{R}$ so that

$$
\left|f(x, y)-\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)\right|<\left(\frac{2}{3}+\epsilon\right)|f(x, y)|
$$

for every $x, y \in[0,1]$.
(16) A quantum probability space is a pair (\mathcal{H}, v) where \mathcal{H} is a Hilbert space and $v \in \mathcal{H}$ is a unit vector. A random variable on \mathcal{H} is a self-adjoint operator $\mathcal{H} \rightarrow \mathcal{H}$. We say that $\left\langle v, A^{n} v\right\rangle$ is the expectation value of the nth power of the random variable A (if this quantity exists, namely if v is in the domain of definition of $\left.A^{n}\right)$. In particular, we set $E(A)=\langle v, A v\rangle$ to be the expectation of A, and $V(A)=\left\langle v, A^{2} v\right\rangle-\langle v, A v\rangle^{2}$ to be the variance of A. Prove that if P and Q are random variables on some quantum probability space (\mathcal{H}, v), and P and Q satisfy $[P, Q]=P Q-Q P=i I$, then $V(P) V(Q) \geq \frac{1}{4}$. It is a good idea to start with the simplifying assumption $E(P)=E(Q)=0$.
(17) Prove that a finite group of affine transformations always has a fixed point.
(18) Prove that the area of any planar section of a perfect tetrahedron is at most the area of a face of that tetrahedron.
(19) Prove that any knot in \mathbf{R}^{3} is the boundary of some double-sided (non-Möbius) surface embeded in \mathbf{R}^{3}.
(20) A rectangle R is tiled (presented as a disjoint union, not minding about 1-dimensional boundaries) with (possibly different) semi-integral rectangles - rectangles at least one of whose sides is of integral length. Prove that R itself is semi-integral.

