## M.Sc. Math Workshop — Assignment #2 HUJI Spring 1998 Dror Bar-Natan

- (7) Prove: If  $\lambda > 0$  is irrational then there exists a continuous function  $\phi : [0, 1] \rightarrow [0, 1]$ so that for every  $\epsilon > 0$  and every every continuous function  $f : [0, 1] \times [0, 1] \rightarrow \mathbf{R}$  there exists a continuous function  $g : [0, 1 + \lambda] \rightarrow \mathbf{R}$  so that  $|f(x, y) - g(\phi(x) + \lambda \phi(y))| < \epsilon$ on a set of area at least  $1 - \epsilon$  in  $[0, 1] \times [0, 1]$ . (Notice the different order of the quantifiers relative to Q2).
- (8) Can you completely cover a disk of diameter 100 with 99 rectangles of sides  $100 \times 1$ ?
- (9) Let A and B be two  $n \times n$  matrices over C.
  - (a) Prove that  $[A, B] \stackrel{\text{def}}{=} AB BA \neq I$ .
  - (b) Prove that if [A, [A, B]] = 0, then [A, B] is nilpotent.
- (10) Find a 2-variable polynomial that is always positive on  $\mathbf{R}^2$ , and has exactly two critical points, both of which are minima.
- (11) Let  $C_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : \forall 1 \leq < j \leq n, z_i \neq z_j \text{ be the configuration space of } n \text{ distinct points in the complex plane } \mathbb{C}, \text{ and let the } n\text{ th pure braid group } PB_n = \pi_1(C_n) \text{ be the fundamental group of } C_n.$  Prove that  $PB_n \simeq PB_{n-1} \ltimes F_{n-1}$  where  $F_{n-1}$  denotes the free group on n-1 generators. Deduce that  $PB_n \simeq F_1 \ltimes F_2 \ltimes \cdots \ltimes F_{n-1}$ .
- (12) Let  $A_n = \{1, 2, 3\}^n$  and let  $A = A_1$ . A function  $f : A_n \to A$  is called *injective*, if whenever x and y are different,  $f(x) \neq f(y)$ . Obviously, injective functions exist only if n = 1, and in this case, they are simply permutations  $\pi : A \to A$ . A function  $f : A_n \to A$  is called *weakly injective*, if whenever x and y are *totally different*, meaning that  $x_i \neq y_i$  for all  $1 \leq i \leq n$ , one has  $f(x) \neq f(y)$ . Prove that if  $f : A_n \to A$  is weakly injective then for some permutation  $\pi : A \to A$  and  $1 \leq i \leq n$ , one has  $f(x) = \pi(x_i)$  for all  $x \in A_n$ .
- (13) f is a real valued function on the reals, and it is known that at any point at least one derivative of f vanishes (possibly different derivatives at different points). Prove that f is a polynomial.
- (14) What is the configuration space of the machine  $M_3$  in the picture below?



**Figure 3.** The machine  $M_3$ .