Math 131 Course Description
Topology, Spring 1992

Time and place: 9AM (sorry) MWF, Emerson 108.

Instructor: Dror Bar-Natan, Science Center 426G, 5-8797, dror@math.

Office hours: Monday at noontime, Wednesday 10AM, Friday 1PM.

Teaching fellow: Jason Fulman (fulman@math, 3-0313).

Review sessions: 8PM Tuesday, Science Center room 309 (tentative). The review sessions will be open
ended and students are expected not to leave before all their questions had been answered.
Textbooks: J. R. Munkres, Topology — a first course, and W. S. Massey, A Basic Course in Algebraic
Topology. '

Goals: Understand the foundations of the notion of “continuity” — understand “topological spaces”.
Play a little with ultrafilters — not-too-useful but very pretty gadgets that live on and also make

topological spaces, and then study some mathematically more useful'topological creatures — surfaces, -

fundamental groups, and covering spaces.

Intended for: Math major, and anyone else who likes math for its own sake.

Prerequisites: Knowing well what {},N and U are, having seen V, ¢, 3, and § (preferably in this order),
and knowing what the quotient of a group by a normal subgroup is.

Course plan: The plan is quite ambitious. We’ll try to do it all, but we might have to settle with a
somewhat smaller subset:

M W F Topics

Feb 3 5 Topological spaces and continuous functions, bases, closed sets,
8 10 12 subspaces, product spaces, quotient spaces, metric spaces.
XX 17 19 ‘

22 24 26 Connectedness, connected components, the intermediate value theorem.
Mar 1 3 5 Compactness, compactness in metric spaces, the maximal value theorem.
8 10 12 The axiom of choice, ultrafilters, compactness and the Stone-Cech
15 17 19 compactification, Tychonoff’s and Hindemann’s theorems.
ME 24 26 ME stands for Midterm Examination; Baire category.
Apr XX XX XX Spring recess - no classes. '
5 7 9 Two-dimensional manifolds.
12 14 16 The fundamental group, the circle, the Brouwer fixed point theorem.
19 21 23 Van-Kampen’s theorem, the complement of the trefoil knot.
26 28 30 A little about covering spaces.
May 3 5 7 Reading period - I plan to finish everything before that,
10 12 14 but plans are there only so that they can be changed later.

Homework will be assigned weekly and due the following week. Homework assignments will be
hard and challenging.

Grading: There is a total of 600 points available to you in this course. During the semester, you can
earn up to 450 points: The midterm (ME) can get you up to 150 points, the homework assignments are
worth an additional 150 points, and during the semester you may be able to earn up to 150 additional
- points by collecting various prizes for solving various hard extra problems that I will assign. The
final exam then counts for the difference between 600 and the number of points you earned during
the semester, meaning that at no point along the term do you loose your hope of getting an A for
the course, and that at any point along the term you may increase the chance of that happening by
working. I reserve my right to deviate from this formula in a small number of special cases.




INFORMATION SHEET FOR MATH 131
Name:
Class:

Dorm address:

Electronic mail address:
Dorm phone number:
I want to major in:

I’'m taking this class because:

I’ve taken the following math courses before:

I’ve taken the following science courses before:

The other math/science courses that I’m taking this term are:
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MATH 131 — PRIZES! PRIZES! PRIZES!

DROR BAR-NATAN

February 17, 1993

Remember, during term each student may accumulate up to 150 points by solving various
(normally rather hard) problems and collecting prizes. Here are the first two such problems.

(1)

50 points to be awarded to the first few who solve this problem, provided all the
solutions are original. When (and if) the solution will become general knowledge, I
will remove this problem from the list.

Let R be a finite closed rectangle in the plane, and let f : B — R? be a distance
non-increasing map — a function satisfying d(f(z), f(y)) < d(z,y) for every z,y € R,
where d is the standard Euclidean distance function. Is it always the case that the
length of the boundary of the image f(R) of R under f is smaller than the length of
the boundary of R? Prove or give a counterexample. If you don’t feel like playing with
distance non-increasing maps, feel free to consider shadows cast by folded envelopes.
100 points to anyone who convinces me that she/he fully understands the proof of the
following theorem, which I think is one of the most amazing theorems in mathematics:
Any continuous function f: R? — R is a finite composition of functions ¢; : R — R
and the function + : R? — R.. (For example, zy = e!°67+1°¢¥ and z/y = elog=+(-log)),
This theorem is the solution of one of the famous 23 problems Hilbert posed in the
1900 conference. It is due to Kolmogorov, and finding a reference is a part of your
challenge. The proof is beautiful and uses no more than what we’ve studied, but it’s
not quite obvious.
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ULTRAFILTERS, COMPACTNESS, AND THE STONE-CECH
COMPACTIFICATION

DROR BAR-NATAN
March 7, 1993

1. THE AXIOM OF CHOICE AND ZORN’S LEMMA

Axiom 1. Whenever {X,}aer s an arbitrary indezed collection of non-empty sets, their
cartestan product
I Xa

a€l
is non-empty. In other words, whenever {X,}aer is an arbitrary indezed collection of non-
empty sets, there is a so-called choice function f: I — U,cr Xo satisfying f(a) € X, for
every o in I.

Warning: This axiom is far less innocent than it first seems!!!

Definition 1.1. A partially ordered set is a set S together with a binary relation < on it,
which is:

(1) Reflezive: s < s for every s € S.

(2) Anti-symmetric: if s <t and t < s for s,t € S, then t = s.

(3) Transitive: If s <t and t <wu for s,t,u € S, then s < u.
A chain in a partially ordered set S is a subset C of S which is simply ordered, namely, a
subset C for which whenever s,t € C, either s <t or ¢t < s. A chain C in a partially ordered

set § is called bounded from above if there exists some m € S for which s < m whenever
s eC.

Lemma 1.2. (Zorn’s lemma) If S is a partially ordered set in which every chain is bounded
from above, then S contains (at least one) mazimal element M — an element M € S for
which s € S and M < s implies s = M.

Remark 1.3. Zorn’s lemma is an equivalent and sometimes more convenient version of the
axiom of choice. A proof of this equivalence can be found, for example, in [5].

2. FILTERS, ULTRAFILTERS, AND COMPACTNESS

Definition 2.1. A filter on a set X is a collection F of subsets of X satisfying:
(1) X e F,but 0 ¢ F.
(2) f A€ Fand AC B C X, then B € F.
(3) A finite intersection of sets in F is in F: if Ay, € F, then A; N A, € F.

Ezample 2.2. Let X be a set, z be a member of X, and F, be the collection F.={ACX:
z € A}. Then F, is a filter on X, called “the principal filter on X at z”.

Ezample 2.3. The collection of all sets containing some neighborhood of a fixed point in a
topological space is a filter on that space.




Ezample 2.4. Let N be the natural numbers, and let F = {A C N : N — A is finite}. Then
F is a filter on N.

Definition 2.5. Let X be a topological space, F a filter on X, and z a point in X. We say
that F converges to x and write 7 — z if every neighborhood of z is in F. If F converges
to exactly one point z of X, we will call that point “the limit of F” and write z = lim F.

Ezample 2.6. If X is a topological space,  is a point in X and F, is the principal filter at
z, then F, — .

Proposition 2.7. A filter on a Hausdor{f space X may converge to at most one point in X.

Definition 2.8. Let X and Y be sets, f : X — Y be any function, and let F be a filter on
X. The collection

LF={ACY:fYA)eF}
is a filter on Y, called “the pushforward of the filter F via the map f”.

FEzample 2.9. Let f: N — X be an arbitrary sequence in a topological space X, let z be a
i point in X, and let F be the filter of example 2.4. Then f.F — z iff f,, — = as a sequence.
Veavi

L j Theorem 1. Let X and Y be topological spaces. A function f : X — Y is continuous iff
I\ Z whenever a filter F on X converges to a point x € X, the filter f.F on'Y converges to f(z).

Definition 2.10. An ultrafilter on a set X is a filter F on X which is maximal with respect
to inclusion. Le., it is a filter F for which any other filter 7’ on X satisfying F' O F actually
satisfies 7' = F.

Ezample 2.11. Every principal filter is an ultrafilter. The filter of example 2.4 is not an
ultrafilter. \

Theorem 2. FEvery filter is contained in some ultrafilter.

Theorem 3. The following are equivalent for a filter F on a set X :

(1) F is an ultrafilter.
(2) For every set A C X either A€ F or A=X—AeF.
(3) For every finite cover {A;}7; of X, Ai € F for some 1.

Problem 2.12. Let F be a non-principal ultraﬁlter on N. Determine if the set

Af—{Z— : Fe]-"}

neF

>

is Lebesgue measurable and if it is measurable, determine its Lebesgue measure. (Said
differently, Ar is the collection of all numbers z € [0, 1] for which the set of 1s in the binary
expansion of z is in F).

Theorem 4. A topological space X is compact iff every ultrafilter on X is convergent.

Proposition 2.13. If F is an ultrafilter on a set X and f: X — Y is a function, then f.F
is also an ultrafilter.

Tired of non-convergent sequences? You might like the following theorem: (Recall that
[* is the set of all bounded sequences of real numbers)

Theorem 5. There exists a functional [:1*° — R (called a generalized limit) satisfying:

(1) 1 is defined on all bounded sequences.




“(2) If (zr) is a sequence whose limit exists in the usual sense, then I((z,)) = lim,_o Zy.
(3) 1 is linear and multiplicative; whenever (z,,) and (y,) are bounded sequences and a and

b are real numbers, I((azn,+by,)) = al((z,)) +0l((yn)) and I((znyn)) = 1((z2)((yn))-

Theorem 6. Non-standard models of first order arithmetic (models containing infinite in-
tegers and like creatures) exist.

Theorem 7. (Tychonoff’s theorem) If X,, is a compact topological space for every o in some
arbitrary index set I, then [[,c; Xo s compact in the product topology.

3. THE STONE CECH COMPACTIFICATION

Definition 3.1. Let X be a (pologlcal space. A Stone-Cech compactification of X is a
compact@ologlcal space X containing X so that:

,//J

(1) The topology induced on X as a subset of X is the original topology of X.

(2) Whenever f : X — Y is a continuous map of X into some compact space Y, there

“7 exists a unique continuous map f BX — Y whose restriction to X 18 f
Remark 3.2. A rather non-trivial theorem (from our current perspective) says that if 83X is
a Stone-Cech compactification of X, then X is dense in 8X, namely, the closure of X in BX
is all of B X.

Theorem 8. Any two Stone-Cech compactifications of the same topological space X are
homeomorphic.

" Ll For simplicity, we will work below only with the space X = N — the natural numbers
, . with the discrete topology. The results in this section all have analogues for an arbitrary
28 ot \completely regular (whatever that is) topological space, and in particular, for an arbitrary

£ }’ AL i " metric space.

~, Definition 3.3. Let SN be the set of all ultrafilters on N. We will identify N as a subset
NP of BN by identifying every integer n with the principal ultrafilter y, at n.

omf* Theorem 9. There is a (naturally defined) topology on BN for which it is a Stone-Cech

compactification of N. A basis for that topology is given by B = {Us : A C N}, where for
any set A C N,

Us={pepBN:Aeu}

Remark 3.4. Notice that all the sets Uy are actually clopen in SN!

Proposition 3.5. N is dense in SN.

Ezercise 3.6. Prove that SIN is limit point compact but not sequentially compact.




4. HINDMAN’S THEOREM

Definition 4.1. For a set A C N and a numbern € N define A—n={keN:k4nc A}.
Let ¢ and v be ultrafilters on N. Define yu + v to be the collection

p+v={ACN : {neN:A—nepu}lev}.
Proposition 4.2. If u and v are ultrafilters on N, then so is u + v.

Proposition 4.3. The operation + : BN x SN — BN just defined has the following three
properties:
(1) + eatends the usual addition of natural numbers. Namely, if m,n € N, then i, +p, =
Kmtn-
(2) + is associative: if p,v,p € BN, then (u+v)+p=p+ (v+p).
(3) + is right-continuous. Namely, for each fized u € BN, the function SN — BN defined

by v — p+ v is continuous.

Lemma 4.4. If X is a non-empty compact space and + : X x X — X is associative and
right continuous, then X contains (at least one) idempotent — an element 1 of X for which

t+1v=1.

Theorem 10. (Hindman’s theorem) Whenever the natural numbers are colored with finitely
many colors (i.e., a function f : N — {a finite set of colors} is specified), one can find an
infinite subset A C N and a color ¢, so that whenever F' C A is finite, the color of the sum
of the members of F' is c.

Remark 4.5. Hindman’s theorem was proven by N. Hindman [4] in 1974. A simpler combi-
natorial proof was later found by Baumgartner [1]. The proof presented here was found by

Glazer, and appears in print in [2]. A topological proof of a somewhat different flavor was
found by H. Furstenberg [3].
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Math 131 - HW due March 17:

1. 3.7.3, 3.7.4, 3.7.5a-d, 3.8.4, 3.8.6, 3.8.9 - all from the textbook.

2. Let R be the real numbers, and A be the positive reals. Show that there
exists a filter on R which converges to 0 and which contains the set A.

3. Let X be the space of all functions (continuous or not) on the real
numbers with values in the two-element set {0,1}. Let A be the subset
made of the functions which are equal to zero in all but finitely many
places. Let u be the function in X whose value is everywhere 1.
a. Show that no sequence in A converges to u.
b. Describe explicitly a filter on X which contains the set A and which

converges to u.
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Lectures: Very Pcoor Very Good

Course overall: 1 2 3 4 5

:

Organization: 1 2 3 4 5 |
Content: 1 2 3 4 5 :
Chance to participate: 1 2 3 4 5 :
Overall: 1 2 3 4 5 :
Pace: Fast 2 3 4 Slow :
I
____________________________________________________ :
Jason’s Section: Very Poor Very Good |
Organization: 1 2 3 4 5 :
Content: 1 2 3 4 5 :
Chance to participate: 1 2 3 4 5 :
Relation with class: 1 2 3 4 5 :
Overall: 1 2 3 4 5 :
Pace: Fast 2 3 4 Slow :
|
__________________________________________________ :
Tom’s Section: Very Poor Very Good |
Organization: 1 2 3 4 5 :
Content: 1 2 3 4 5 :
Chance to participate: 1 2 3 4 5 :
Relation with class: 1 2 3 4 5 :
Overall: 1 2 3 4 5 :
Pace: Fast 2 3 4 Slow :
|
__________________________________________________ }
Homework (amount) : much 2 3 4 little |
Very Poor Very Good :

Homework (ﬁsefulness): 1 2 3 4 5 :
Reading: 1 2 3 4 5 :
Grading Policy: 1 2 3 4 5 :
|
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MATH 131 — HOMEWORK DUE MARCH 24, 1993

DROR BAR-NATAN

March 16, 1993

(1) Use Zorn’s lemma to prove that any set can be simply-ordered. Can you find explicitly
a simple order on the set of all real valued functions on the reals? (Reminder — a
simple order is an order relation in which every two elements are comparable).

(2) Is there a filter F on the integers Z for which A € F iff (A+ 1) € F, where for a set
A CZwedefine(A+1)={a+1:a€ A}?

(3) Prove that a subset A of a topological space X is closed iff whenever a filter F on X
contains A and converges to a point € X, the point z is actually in A.

(4) Let X and Y be topological spaces. Prove that a function f : X — Y is continuous iff
whenever a filter F on X converges to a point z € X, the filter f.F on Y converges
to f(z).

(5) Show that SN is not countable. (Hint: if you could find a dense sequence in R, ...)

(6) Let X = {0,1}® be the space of all {0,1}-valued functions on the reals, and let
A C X be the subset

A:{fEX _{z € R: f(z) = 1} is a finite union of}
" intervals, all having rational endpoints.
(a) Prove that A is countable.
(b) Prove that A is dense in X.

(¢) (%) Deduce that the cardinality of SN is at least as big as the cardinality of the
set of all subsets of the real numbers. Could it be bigger?
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Midterm Examination
Math 131, March 22 1993
Dror Bar-Natan

You have 120 minutes to answer the following 8 questions, each worth 25 points. It is
a good idea to read the entire exam before starting to solve it. Notice that the maximal
possible score is 200, but for the purpose of the final grade grades higher than 150 will count
as 150. You may not use any material other than your pen or pencil. You may use any
lemmas proven in class, provided that you quote them in full. Don’t forget to sign your
name on anything you submit.

1) Give a precise definition of each of the following:
g
(a) A basis for a topology.
(b) An embedding of a topological space Y in a topological space X.
(c) The order topology on a simply ordered set X.
(d) A locally compact topological space.
(e) The pushforward of a filter F.

(2) Prove that if for every o € I a connected topological space X, is given, then their
product [],e; Xo 1s also connected, in the case when [ is a finite set.

(3) Prove that if f: X — Y is a continuous function defined on a compact metric space
X with values in a metric space Y, then f is uniformly continuous.

(4) (a) For a natural number k& € N define kN = {kn : n € N}. Show that the
collection 7 = {A C N : for some k € N, kN C A} is a filter on N.
(b) Define f: N — [0,1] by
1

f(n) = no. of prime factors of n’

Does lim f,F exist? What is it?
(c) Does the sequence f(n) converge? What is its limit?

(5) A topological space X is called regular if whenever F is a closed subset of X and y
is a point not in F', there exist disjoint open subsets U and V of X such that F C U
and y € V.

(a) Prove that a compact Hausdorfl space is always regular,
(b) Prove that all metric spaces are regular.

(6) Let X be an arbitrary topological space. Show that the diagonal {(z,z):z € X}, in
the topology induced from X x X, is homeomorphic to X.

(7) Let R* be the subset of RN consisting of all sequences that are “eventually zero”,
that is, all (21, z3,...) such that z; # 0 for only finitely many values of 7. What is
the closure of R in RN in the box and product topologies? Justify your answer.

(8) Let A C X. Show that if C is a connected subset of X that intersects both A and
X — A, then C intersects Bd A. (Recall that Bd A = AN X — A).

GOOD LUCK!
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10. Glazer’s proof of Hindman'’s theorem. The scene changes, from combina-
torial topology to number theory. As with many difficult problems in this
branch of mathematics, the statement of the question is quite easily under-
stood. The theorem of Hindman proved below serves to establish the following
statement, known for some years as the Graham-Rothschild conjecture.

 If the natural numbers are divided into two sets then there is a sequence drawn
from one of these sets such that all finite sums of distinct numbers of this sequence
remain in the same set.

ey e &

X 0; 1

~ To prove this, we begin with a simple result from the theory of mobs.
DEerINITION. Let X be a space and + a function from X X X to X. Then +
i right-continuous if for all p € X the function ¢ = p + ¢ is a continuous

1S p-compac _
< @ such th function of g.
()\ flw], 10.1. LEMMA. If X is a nonempty compact space and + is an associative, right-

continuous function from X X X to X, then there is a +-idempotent in X (i.e., an

Theorem 9.2 element p of X such that p = p + p).

- PrROOF. We define
There is a- se

={4 CX: 4 # J,Aisclosed,and 4 + 4 C 4},

and we note that € # & since X € <. Ordered by reverse containment, the
set Z satisfies the hypotheses of Zorn’s lemma: If {4,: i € I} is a chain in &,
then with 4 = ., 4; we have

) of Theoreﬂ_l

{-inequivalen
ror heorem

A+A CA + A4 CA foralli e 1

nd hence 4 + 4 C A4; it follows readily that 4 € £. Hence there is a
Mminimal element of €. Let B be a minimal element of € and choose p € B.

- We note that p + B # &, that p + B is the image of B under a continuous
unction and is therefore closed in X, and that

X, which are
2.6]; the mor¢




MATH 131 — HOMEWORK DUE APRIL 7, 1993

DROR BAR-NATAN

March 25, 1993

Notice: The questions in this HW assignment are hard. Therefore you will get full credit for
solving any 3 of them, and extra credit for anything you do beyond that. However, I urge you to
try solving all question - all of them are fun (at least when you know the answer). In solving any
of these questions you are allowed to use the results of the other questions, even if you could not
prove them.

(1)

(2)

(3)

(4)

Regarding N as a subset of SN, show that

(a) its subspace topology is the discrete topology,

(b) and its closure N is the whole space SN. (In other words, show that N is dense in SIN.

In general, a subset A of a topological space X is called dense if A = X).

Let f : N — X be an arbitrary sequence in a compact Hausdorff space. Let f : N — X
be the natural extension of f to SN, defined by setting f(u) = lim f,u. Prove that f is
continuous in the topology of SN defined in class.
Show that BN is not countable. (Hint: if you could find a dense sequence in [0, 1], you’d
have a map N — [0, 1] whose image is dense. What would the image of its extension to SN
be?)
Let X = {0,1}® be the space of all {0, 1}-valued functions on the reals, and let A C X be

the subset
e {fEX . {z € R: f(z) = 1} is a finite union of}
" intervals, all having rational endpoints. )

(a) Prove that A is countable.

(b) Prove that A is dense in X.

(c) Deduce that the cardinality of NN is at least as big as the cardinality of the set of all

subsets of the real numbers. Could it be bigger?

Prove that SN is limit point compact but not sequentially compact. (Hint: there is only one
really good sequence in SIN to start with).
Prove that our function + : SN x SN — N can be obtained by extending from N to SN
the usual function +: N x N — N C gN, first on the left and then on the right. To be more
precise, let 44 : N x N — BN be the usual addition, composed with the standard inclusion
N C BN. For each fixed integer n one gets a function N — BN defined by m — m +1 n.
This is a function with values in a compact space, and therefore, by question 2, it can be
extended to BN, giving a function 4+, : /N x N — BN. Now for each fixed x € AN one
gets a new function N — BN defined by n — g +3 n. Once again, by question 2, it can
be extended to SN, giving a function +3 : SN x SN — AN. Does this +5 coincide with
ultrafilter addition, as defined in class?
Let Y}, be the state space of the two-dimensional machine displayed below, which is made of
chain of n + 2 rods connected using n + 1 joints, and whose ends are attached to fixed points
and are not allowed to move.

Assume that the chain is “almost tight”, so that none of the rods in it may make a full turn.
Can you find a simpler description for the space Y7 It is a good idea to start from n = 0,
proceed ton =1, n = 2, n = 3, and then to try to generalize.
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Midterm Examination |
Math 131, March 22 1993 ' |
Dror Bar-Natan |

You have 120 minutes to answer the following 8 questions, each worth 25 points. It is |
a good idea to read the entire exam before starting to solve it. Notice that the maximal
possible score is 200, but for the purpose of the final grade grades higher than 150 will count
as 150. You may not use any material other than your pen or pencil. You may use any i
lemmas proven in class, provided that you quote them in full. Don’t forget to sign your
name on anything you submit.

(1) Give a precise definition of each of the foﬂowmv /¢ NIl
(a) A basis for a topology. = y J 4 ¥ x| 3. €6 3 ‘ o
(b) An embedding of a topologlcal ﬂ)ace Y m a topoloolcal space X.
(¢) The order topology on a simply ordered set X. -
(d) A locally compact topological space.

"?H';’v-; Y (e) The pushforward of a filter F.

TV . ; s .
(2) Prove that if for every o € I a connected topological space X, is given, then their
product [T,er X is also connected, in the case when [ is a finite set.
" (3) Prove that if f: X — Y is a continuous function defined on a compact metric space
X with values in a metric space Y, then f is uniformly continuous.
(4) (a) For a natural number & € N define kN = {kn : n € N}. Show that the
‘ collection F = {A C IN : for some & € N, kN C A} is a filter on N.
) (b) Define f: N — [0, 1] by
\' Y /T e ) |
) = —— —.
Hop f() no. of prime tactors of n
Does lim f.F exist? What is 1t7
C (c) Does the sequence f(n) couverge? What is its limit?
\ ! J

(5) A topological space X is called regular if whenever F' is a closed subset of X and y
is a point not in F', there exist disjoint open subsets U/ and V of X such that /' C U
and y € V. ,
13 (a) Prove that a compact Hausdorff space is always regular, 97y /3 /f «“15ng (/fase
I3fb) Prove that all metric spaces are regular. ’

Yo WY T =R e VASY

»(G) Let X be an arbitrary topological space. Show that the diagonal {(z, ;B) T € /\ }
»% the topology induced from X x X, is homeomorphic to X. \JA\ 5;{‘, :

5 = \ﬂ‘ A

(7) Let R be the subset of RN consisting of all sequences that are “eventually zero’ A"
, that is, all (El, ra,...) such that z; # 0 for only finitely many values of :. What i is-
> the Clusule 01 R> I in RN n the box and product topologies? Justify your answer. (=)

7

Forwih |

(%) Let A el e \huw that 1f C' is a connected subset of X that intersects both A and
X — A, then C intersects Bd A. (Recall that Bd A = AN X — A).

e Y E00D LUCK!
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Math 131 - Homework due April 21.

1.

2

In W.S. Massey 7.1, 7.3, (Page 21), 7.6 (with 7.1, 7.3) (Page 28),
8.1, 8.3, 8.5 (Page 34).

Find the orientable compact surface of smallest genus on which

you can draw the complete graph on 5 points without intersecting
edges. Draw it

Describe how you can figure out the type of any connected compact
surface you are considering with a glance at any of its polygonal
representation with edges identified in pairs. (No cut-and-paste.)

Math 131 - Homework due April 21.

1.

2.

In W.S. Massey 7.1, 7.3, (Page 21), 7.6 (with 7.1, 7.3) (Page 28),
8.1, 8.3, 8.5 (Page 34).

Find the orientable compact surface of smallest genus on which

you can draw the complete graph on 5 points without intersecting
edges. Draw it

Describe how you can figure out the type of any connected compact
surface you are considering with a glance at any of its polygonal
representation with edges identified in pairs. (No cut-and-paste.)

Math 131 - Homework due April 21.

1.

2.

In W.S. Massey 7.1, 7.3, (Page 21), 7.6 (with 7.1, 7.3) (Page 28),
8.1, 8.3, 8.5 (Page 34).

Find the orientable compact surface of smallest genus on which

you can draw the complete graph on 5 points without intersecting
edges. Draw it

Describe how you can figure out the type of any connected compact
surface you are considering with a glance at any of its polygonal
representation with edges identified in pairs. (No cut-and-paste.)

Math 131 - Homework due April 21.

1.

s

In W.S. Massey 7.1, 7.3, (Page 21), 7.6 (with 7.1, 7.3) (Page 28),

8.1, 8.3, 8.5 (Page 34).

Find the orientable compact surface of smallest genus on which
you can draw the complete graph on 5 points without intersecting
edges. Draw it

Describe how you can figure out the type of any connected compact
surface you are considering with a glance at any of its polygonal
representation with edges identified in pairs. (No cut-and-paste.)

Math 131 - Homework due April 21.

1.

2.

In W.S. Massey 7.1, 7.3, (Page 21), 7.6 (with 7.1, 7.3) (Page 28),

8.1, 8.3, 8.5 (Page 34).

Find the orientable compact surface of smallest genus on which
you can draw the gomplete graph on 5 points without intersecting
edges. Draw it

Describe how you can figure out the type of any connected compact
surface you are considering with a glance at any of its polygonal
representation with edges identified in pairs. (No cut-and-paste.)
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Math 131 - HW due April 28:

w N -

Read Massey II.6 and Munkres 8.3 and 8.4.

Do- Massey 3.1, 3.3, 4.2, 4.4, 4.8, and Munkres 8.3.5, 8.4.9.

Recall the "roach surface" X of March 22nd.

a. Compute the Euler characteristic of X by first computing v, e,
and f.

b* Show that X is orientable.

c. Deduce that X is the connected sum of 17 copies of the torus.

Math 131 - HW due April 28:

1.
2.
3

Read Massey II.6 and Munkres 8.3 and 8.4.

Do Massey 3.1, 2.3, 4.2, 4.4, 4.8, and Munkres 8.3.5, 8.4.9.

Recall the "roach surface" X of March 22nd.

a. Compute the Euler characteristic of X by first computing v, e,
and f.

b* Show that X is orientable.

c¢. Deduce that X is the connected sum of 17 copiés of the torus.

Math 131 - HW due April 28:

w N

Read Massey II.6 and Munkres 8.3 and 8.4.

Do Massey 3.1, 3.3, 4.2, 4.4, 4.8, and Munkres 8.3.5, 8.4.9.

Recall the "roach surface" X of March 22nd.

a. Compute the Euler characteristic of X by first computing v, e,
and f.

b* Show that X is orientable.

¢. Deduce that X is the connected sum of 17 copies of the torus.

Math 131 - HW due April 28:

1.
2.
3

Read Massey II.6 and Munkres 8.3 and 8.4.

Do Massey 3.1, 3.3, 4.2, 4.4, 4.8, and Munkres 8.3.5, 8.4.9.

Recall the "roach surface" X of March 22nd. '

a. Compute the Euler characteristic of X by first computing v, e,
and f.

b* Show that X is orientable.

c. Deduce that X is the connected sum of 17 copies of the torus.

Math 131 - HW due April 28:

1.
2.
3

Read Massey II.6 and Munkres 8.3 and 8.4.

Do Massey 3.1, 3.3, 4.2, 4.4, 4.8, and Munkres 8.3.5, 8.4.9.

Recall the "roach surface" X of March 22nd.

a. Compute the Euler characteristic of X by first computing v, e,
and f.

b* Show that X is orientable.

c. Deduce that X is the connected sum of 17 copies of the torus.




MATH 131 — PRIZES! PRIZES! PRIZES!

DROR BAR-NATAN
April 25, 1993

Remember, during term each student may accumulate up to 150 points by solving various
(normally rather hard) problems and collecting prizes.

To preserve my own sanity (or at least a part of it), I will only read solutions which are
mathematically crystal clear that are either typed or written with a perfect handwriting.

You may drop solutions in my math department mailbox any time before the final exam-
ination.

Prize 1. 50 points to be awarded to the first few who solve this problem, provided all the
solutions are original. When (and if) the solution will become general knowledge, I will
remove this problem from the list.

Let R be a finite closed rectangle in the plane, and let f : B — R? be a distance non-
increasing map — a function satisfying d(f(z), f(y)) < d(z,y) for every z,y € R, where
d is the standard Euclidean distance function. Is it always the case that the length of the
boundary of the image f(R) of R under f is smaller than or equal to the length of the
boundary of R? Prove or give a counterexample. :

You can win an extra 30 points by deciding whether or not it is possible to take a rectan-
gular envelope and fold it a few times in such a way that when you put the folded envelope
back in the plane, the length of the boundary of the resulting planar domain is more than
the original boundary of the envelope.

You can win an extra 25 points by deciding whether or not a map f as above can be found
for which the length of the boundary of f(R) is infinite.

Prize 2. 150 points to anyone who convinces me that she/he fully understands the proof of
the following theorem, which I think is one of the most amazing theorems in mathematics:

Any continuous function f : R* — R is a finite composition of functions ¢; : R — R and
the function 4+ : R* — R. (For example, zy = el°82F1°8v and )y = eloszt(=logv)),

This theorem is the solution of one of the famous 23 problems Hilbert posed in the 1900
conference. It is due to Kolmogorov, and you may find a proof as well as some further
references in Lorentz, approzimation of functions, which is on reserve in the Cabot library.
The proof is beautiful and uses no more than what we’ve studied, but it’s not quite obvious.

Prize 3. The notion “topology” was partially invented in order to properly treat conver-
gence. . There is an analogue notion, called “uniform structure”, whose purpose is to serve as
the abstract foundation for uniform convergence. One of the theorems we’ve proven in class
lends itself naturally to be treated in that language. Which one is it? You can win up to
150 points by writing an essay on uniform structures, which should-be comparable in size,
level and elegance to an average chapter in Munkres’ book. In particular, it should contain
all the necessary definitions, some motivating discussions and some examples, at least one
non-trivial theorem and it should be easily readable.

1




]

Prize 4. Hindman’s theorem says that whenever the natural numbers are colored with
finitely many colors (i.e., a function f : N — {a finite set of colors} is specified), one can |
find an infinite subset A C IN and a color ¢, so that whenever F' C A is finite, the color of the |
sum of the members of F'is ¢. You may win up to 100 points by finding a non-topological |
proof of this theorem. (“Finding” means either on your own or in the library).

Prize 5. (50 points) Let F be a non-principal ultrafilter on N. Determine if the set

1
nekl

is Lebesgue measurable and if it is measurable, determine its Lebesgue measure. (Said ‘
differently, Ar is the collection of all numbers € [0, 1] for which the set of 1s in the binary |
expansion of z is in F). |

Prize 6. In what sense is the dimension of the Cantor set C' equal to log, 27 30 points for a
complete and written answer. A complete answer should also include some justification for
the notion of dimension that you choose to use.

Prize 7. (50 points) In class we proved that the existence of ultrafilters implies Tychonoff’s
theorem. Can you show the converse (at least for X = N)?7 Namely, prove that there exist
non-principal ultrafilters on N using Tychonoff’s theorem, and without using the axiom of
choice or Zorn’s lemma in any other way.

Prize 8. Can there be a continuous onto map [0,1] — [0,1]*? The surprising answer is yes.
30 points if you convince me (in writing and in detail) that you’ve understood why, 30 points
more if you write a computer program that graphs such a map, an extra 20 if you're program
is shorter than mine, and 10 extra points if you find such a map for which the inverse image
of every point in [0, 1] is uncountable.

Prize 9. (80 points) Convince me (in writing and in detail) that you understand that there
exist continuous but nowhere differentiable functions R — R.

Prize 10. (120 points) What are SU(2) and SO(3)? Show that SU(2) is a covering of
SO(3) in some natural way, and use that to compute the fundamental group of SO(3).
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Reading/Examination Period Time Table
Math 131, May 3 1993
Dror Bar-Natan

Dror’s office hours — as usual until Wednesday May 12, then none.
Monday May 3: Last class meeting, time and place as usual.
Monday May 3: Tom’s review session, 3PM Science Center 112A.
Tuesday May 4: Jason’s review session, 8PM Science Center 309.

Wednesday May 5: One extra class, only for those interested, about how to use
the fundamental group in order to distinguish between knots.

Friday May 7: All HW is due today! 5PM at Jason’s and/or Tom’s mailboxes.
Saturday May 22: Jason’s review session, 3PM Science Center 309.

Sunday May 23: Tom'’s review session, 3PM Science Center 309.

Monday May 24: Dror’s Prefinal party. 7TPM in the math lounge. Bring questions!
Tuesday May 25: Tom’s office hours, TPM at the Greenhouse.

Wednesday May 26: The final examination. 9AM, Boylston Aud. All prizes are
due before the beginning of the exam!
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Math 131 Final
May 26 1993
Dror Bar-Natan

You have 180 minutes to solve the following 8 questions, whose total value is 100 points.
Do as much as you can, but keep in mind that it is unlikely that anybody will be able to
do all 8 questions. Plan your time wisely! It is a good idea to read the entire exam before
answering any question. You may not use any material other than your pen or pencil. Don’t
forget to write your name on anything you submit.

(1) (18 points) Write the precise definition of each of the following notions:

a) A path-connected topological space.

) The boz topology on an arbitrary product of topological spaces.

) The sum u + v of two ultrafilters p, v € BN.

) A triangulation of a two-dimensional manifold M.

) f and g are homotopic, where both f and g carry (X, b) to (X', 0).

) A covering map 7 : E — B.

(2) (12 points) Compute (and justify your computation) the fundamental group of the
space Y obtained from a triangle by identifying its sides in the following manner:

a a ( all sides identified )

to each other

a

Can you generalize your result to the case of a square with similar identifications? A
pentagon? An n-gon? .

(3) (12 points) Recall that the Stone-Cech compactification AN of N is the set of all
ultrafilters on N, with the topology generated by the basis B = {U, : A C N}, where
for any set A C N,

Us={p€epBN:Acyu}.

Prove that BN is compact.
(4) (12 points) Let S be the surface whose symbol is abedc™'bdea™ fe=1gg~1f~!. Can
you describe S in terms of the classification theorem for two-dimensional manifolds?
(5) (12 points) A contraction on a metric space (X,d) is a transformation 7 : X — X
for which d(Tz,Ty) < d(z,y) for every z,y € X.
(a) Show that if (X, d) is compact and T is a contraction on X, then 7" has a unique
fized point — there exists a point z € X for which Tz = z.
(b) Find a metric space X and a contraction T on X that has no fixed points.
(6) (12 points) Sketch the proof (namely, prove but omit technical details) of the Brouwer
fixed point theorem. You may use the fact that 7,(S?) = Z, if you so wish.
(7) (12 points) Let X,,, n € N be a sequence of non-empty topological spaces. Prove that
[T.en X is metrizable iff X,, is metrizable for every n € N.
(8) (10 points) Show that a topological space X is Hausdorff iff the diagonal {(z,2):z €
X} is closed in X x X.




]

The 3-line Mathematica program below, as well as its output, is completely irrelevant for
this exam:

Mathematica 2.0 for SPARC
Copyright 1988-91 Wolfram Research, Inc.
-- X11 windows graphics initialized --

In[1]:=

(bltlx_,y_11:={tlx,-yl,tlx,yl,t[x,y],t[-x,yl}; b[1_List]:=Flatten[b /@ 1];

Peano[n_] :=Show[Graphics[{Thickness[0.002] ,Line[FoldList[Plus,{0,0}, -
List @@ Join @@ Nest[b,t[{1,1},{1,-1}],n]1]1]},AspectRatio->1]])

In[2] := Peano[6]

Out[2]= -Graphics-
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Dror Bar-Natan

You have 180 minutes to solve the following 7 questions, whose total value is 100 points.
Do as much as you can, but keep in mind that the exam is probably too hard to be completely
solved. Plan your time wisely! It is a good idea to read the entire exam before answering
any question. You inay not use any material other than your pen or pencil.

(1) (18 points) Write the precise definition of each of the following notions:
(a) The quotient topology of a space with an equivalence relation.
(b) A retract.
(c) Homotopic paths in a topological space.
(d) A non-principal ultrafilter on a set X.
(e) A manifold.
(f) Limit point compactness.
(2) (15 points) What is the fundamental group of the space Y, #Y,,, where Y, is defined
by

a polygon with n sides, all
identified to each other

and the “connect-sum” operation is performed along the marked blob?

(3) (12 points) Prove that addition of ultrafilters is continuous from the right.

(4) (12 points) Let S be the surface whose symbol is aba=tedeb™ ffgg~le 1dlc. Can
you describe S in terms of the classification theorem for two-dimensional manifolds?

(5) (13 points) Sketch the proof of 71(S?) = Z.

(6) (12 points) Let {X,}aer be a collection of non-empty topological spaces. Prove that
[Taer Xo is connected iff for every o € I, X, is connected. You may use the corre-
sponding fact for finite products without proof, if you so wish.

(7) (18 points) Let f : X — Y be a function with X an arbitrary topological space and
Y compact and Hausdorff. Prove that f is continuous iff the graph of f,

Gy ={(z, f(z)) : x € X},
1s closed. '

Hint: If Gy is closed and V' is a neighborhood of f(xo), find a tube about z¢x (Y —V),

not intersecting Gy.

— GOOD LUCK —




