Word Crunching 1 2 3 4 5 6 7
wrote a poem on a page but then each line grew to the word sum of the previous two until I began to worry about all these words coming with such frequency
because as you can see, it can be easy to run out of space when a poem gets all Fibonacci sequency
Brian Bilston

(1) Let A, B, C, D be $n \times n$ matrices such that AC = CA. Prove that $\det \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \det(AD - CB) \ .$ $\begin{pmatrix}
A & B \\
C & D
\end{pmatrix} = \begin{pmatrix}
I & BD^{-1} \\
O & I
\end{pmatrix} \begin{pmatrix}
A - BD^{-1} \\
O & D
\end{pmatrix}$ Assuming DC=CD =) dit M = det (A - BD'C) dit D (A+)IB)=Jet(A+,II)D-BC)
For all but Finitely

$$\frac{(Z-B)}{OZ} \left(\frac{Z}{CA'} - \frac{A}{CA'} \frac{B}{B} \right) \\
\left(\frac{A}{CD} \right) = \left(\frac{A}{CD} - \frac{A}{CA'} \frac{B}{B} \right) \\
\left(\frac{A}{CD} \right) = Jat A Jit \left(\frac{D}{CA'} \frac{B}{B} \right)$$

(2) Let A, B be $n \times n$ matrices (with real entries) that commute (i.e. AB = BA.) Prove that if $\det(A + B) \ge 0$, then $\det(A^k + B^k) \ge 0$ for all $k \ge 1$.

$$J_{1}b_{n}n: A^{2}+B^{2}=(A+iB)(A-iB)$$

$$=(A+iB)(A+iB)$$

$$det(A^{2}+B^{2})=Jet(A+iB)Jet(A+iB)$$

 $\sum_{x=1}^{n} x^{2} = (x+y) T (x+w_{x}y)$ $= \sum_{x=1}^{n} x^{2} + y T (x+w_{x}y)$

$$\frac{1}{1+5}C^{n} = \frac{1}{1}\left(\frac{b}{2} - w_{k}\right)$$

$$\frac{1}{1+b^{n}} = \frac{1}{1}\left(\frac{b}{b} - w_{k}\right)$$

$$A^{n}+B^{n}=TJ(B-W_{K}A)$$

$$Jet(A^{n}+B^{n})=TJJet(B-W_{K}A)$$

(6) (A2) Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is

$$\frac{1}{\min(i,j)}$$

for $1 \le i, j \le n$. Compute det(A).

(7) (A3) Let d_n be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \dots, \cos n^2$. (For example,

$$d_3 = \begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix}.$$

The argument of cos is always in radians, not degrees.) Evaluate $\lim_{n\to\infty} d_n$.

=2652 COSA-6

Sin(Z+B) = Sin(x) + Gos(x) +