Term Test 3

(Author's name here)
March 8, 2022
olve all 5 problems. Write your solutions only where indicated, or rite explicitly, "continued on page X "
eatness counts! Language counts!
Problem 1. In this question, we say that a function $\xi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves one coordinate if there is some $k \in \underline{n}$ such that $g_{k}\left(x_{1}, \ldots, x_{n}\right)=x_{k}$, where g_{k} is the k th
component function of g. Prove that if $n \geq 2$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable and $f^{\prime}(0)$ is invertible, then on a neighborhood of 0 we can write $f=g_{1} \circ g_{2}$ where g_{1} and g_{2} are continuously differentiable functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and each preserves one coordinate.
Tip. Don't start working! Read the whole exam first. You may wish to start with the questions that are easiest for you
Tip. You may want to start by writing "draft solutions" on the last pages of this notebook and only then write the perfected versions in the space left here for solutions.

Your solution of Problem 1.

Then, let us pick one iE
Then, let us define $9,0^{n} \rightarrow i{ }^{n}$ by i
$O_{2}\left(x_{1}, \ldots, x_{i}, 1, x_{i}, x_{i+1}, \ldots, x_{n}\right),=\left(x_{i, \ldots}, x_{i-1}, f\left(x_{i, 1}, x_{n}\right), x_{i+1}, \ldots, x_{n}\right)$
Then, we can find $\operatorname{det}_{2}^{\prime}\left(x_{y}, \ldots, x_{n}\right)$ as follans'.

$$
\approx \operatorname{det}\left(\begin{array}{ccccc}
0 & \cdots & 0 \\
0 & 1 & 0 & 0 \\
\frac{\partial f_{i}(x)}{\partial \sigma_{1}} \frac{\partial f_{i}(x)}{\partial x_{2}} & \cdots \frac{\partial f_{i}(0)}{\partial \varepsilon_{i}} & \cdots & \frac{\partial f_{i}(x)}{\partial x} \\
0 & 0 & \cdots & 0 & \cdots
\end{array}\right)
$$

(Continued on page 4)

For all $1 s_{j} k S_{n}$, let $a_{j, k}$ denote the entry in the $j^{\text {th }}$ row and $k^{t /}$ colum of $g_{2}(x)$, Then, detgl (x), by definition, equa $\sum_{\sigma \in S}(-1)^{\sigma} a_{1, \sigma(9)} a_{2, \sigma(2)} a_{1, \sigma(a)} a_{n, \sigma(n)}$. Note that, for all $1 s_{j} s_{n}$ such that iii, the arty nonzero element in the $j^{\text {th }}$ row of $g_{2}(x)$ is $\left.a_{j_{1}}\right)^{2}$, so we need $\sigma(j)$, for a term to be hon vera Since we need this for all jti, the only non leno term in the summation occurs when σ is the identity permutation, so $\operatorname{detg}_{2}(x)=\operatorname{li}_{1,2} \cdot a_{2,2}, d_{1, i} \cdots a_{n, n}$

$$
\begin{aligned}
& =1.1,1, \cdots, \frac{\partial f_{i}(x)}{\partial x:}, \cdots \cdot \mid \text { Eypirithy this proves that } \\
& =\frac{\partial f,(x)}{d_{e} t g_{2}^{\prime}(0, f 0} .
\end{aligned}
$$

$=\frac{\partial f(x)}{\partial x}$
In particular, $d_{e} g_{2}(\partial)=\frac{\partial f:}{\partial x}$, which we assumed to be nonzero. Moreover, g_{2} is continuously differentiable since fir continuously differentiable. Thus, by the Inverse function Theorem we obtain open neighborhoods A, B around O ard g(0),
respectively, such that $g_{2}: A \rightarrow B$ has a continuously differentiate
inverse $g_{2}: B \rightarrow A$. Then let us define $g_{i}: B \rightarrow R^{n}$ by $g_{1}=\left.f\right|_{A} g_{2}$ so that $\left.f\right|_{A}=\left.f\right|_{A} \sigma_{1} \log _{2}=g_{1} g_{2}$ as desired. Mareaer we have the diagram $\left(x_{1}, \ldots, x_{1}, \ldots, x_{n}\right) \xrightarrow{g_{3}}\left(x_{1}, f_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{g_{2}}\left(f_{1}(x), f_{i}(x), f_{1}(x)\right.$ which shans that g_{1} preserves the $i^{\text {th }}$ coordinate and q_{2} preserves all fatter whichinates, os required. Finally 9 4's continuously differentiable as a composition of continuously differentiable functions, as required.
\qquad

Problem 2. Let $\phi: \mathbb{R}_{x, y}^{2} \rightarrow \mathbb{R}_{u, v}^{2}$ be given by $\phi(x, y)=$ $\left(e^{x} \cos y, e^{x} \sin y\right)$. Compute $\phi^{*}(d u \wedge d v)$ and $\phi_{=} \xi$, where
FDA44D4C-C177-406E-9F03-2FBASB3E4A63

term-test-3-0f711
\#13 of 22

Your solution of Problem 2.
If $4(x, y)=\left[e^{x} \cos y e^{x} \sin ^{2} y\right)$, the \quad vi $e^{x} \cos y, ~ v=e^{2} \sin y$, $\phi^{\prime}(d u A d v)=d\left(e^{x}(d s y) \wedge d\left(e^{x} \sin y\right)\right.$
$=\left(d y 1 \frac{\partial\left(e^{x} \cos y\right)}{\partial x}+d y^{1} \frac{\partial\left(e^{x} \cos y\right)}{\partial y}\right)$
$n\left(d_{x} \cap \frac{\partial\left(e^{x} \sin x\right)}{\partial x}+d_{y}=\frac{\partial\left(e^{x} \sin y\right)}{\partial y}\right)$
$=\left(e^{y} \cos y d x-e^{x} \sin y d y\right) \wedge\left(e^{x} \sin y d x+e^{x} \cos y d y\right)$
$=\left(e^{x} \cos y \cdot e^{x} \sin y\right) d x+d x+\left(e^{x} \cos y \cdot e^{x} \cos y\right) d x d y$ $-\left(e^{x} \sin y^{\prime} e^{x} \sin y\right) d y a d x-\left(e^{x} \sin y^{\prime} e^{x} \cos y\right) d y^{\prime} d y$
$=0+e^{2 x} \cos ^{2} y d x^{4} d y+e^{2 x} \sin ^{2} y d x a d y+0$
$=e^{2 x}\left(\cos ^{2} y+\sin ^{2} y\right) d x 1 d y$
$=e^{2 x} d x+d y \quad$ good 10
$\phi_{*} \xi=\phi_{*}\left(\binom{0}{\frac{\pi}{2}},\binom{0}{1}\right)$
$=\left(\phi\binom{0}{\frac{H}{2}}, \phi^{\prime}\binom{\theta}{\frac{\pi}{2}}+\binom{0}{1}\right)$
Continued on P. 6)

$$
\phi^{\prime}\binom{x}{y}=\left(\begin{array}{cc}
\frac{\partial \phi_{1}}{\partial x} & \frac{\partial \phi_{y}}{\partial y} \\
\frac{\partial \phi_{2}}{\partial x} & \frac{\partial \phi_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial\left(e^{x} \cos x\right)}{\partial x} & \frac{\partial\left(e^{x} \cos y\right.}{\partial y} \\
\frac{\left.\partial\left(e^{x} \sin \right\rangle\right)}{\partial x} & \underbrace{\partial\left(e^{x} \sin y\right)}_{\partial y}
\end{array}\right)
$$

$$
\left.\begin{array}{rl}
& =\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right) \\
\phi^{\prime}\left(\frac{0}{\pi}\right. \\
\frac{\pi}{x}
\end{array}\right)=\left(\begin{array}{ll}
e^{0} \cos \frac{\pi}{2} & -e^{0} \sin \frac{\pi}{3} \\
e^{0} \sin \frac{\pi}{2} & e^{0} \cos \frac{\pi}{2}
\end{array}\right)-\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

$$
\text { Finally, } \phi_{*} \xi=\left(\phi\left(\frac{0}{\frac{\pi}{2}}\right), \phi^{\prime}\binom{0}{\frac{\pi}{2}} \cdot\binom{0}{1}\right)
$$

olve all 5 problems. Write your solutions only where indicated, or rite explicitly, "continued on page X "
fatness counts! Language counts!
'roblem 3. Let V be a vector space, let $\phi: V \rightarrow V \times V$ term-test-3-0f711 $\# 13 \quad 7$ of 22

given by $\phi(v)=(v, v)$ and let $\psi: V \times V \rightarrow V \times V$ be action Prove that $\phi^{*} B=0$ jiff $B+\psi^{*} B=0$.

Your solution of Problem 3.

$$
\Rightarrow " \text { direction Suppose } Q^{+} B=0 \text {. }
$$

$$
\text { Then, for all }\left(v_{1}, v_{2}\right)(v \times v \text {, we have: }
$$

$$
\left(Q^{t} B\right)\left(v_{1}+v_{2}\right)=0
$$

$$
B(Q(0,+\infty))=0
$$

$$
B\left(v_{1}+v_{2}, v_{1}+v_{1}\right)=0
$$

$$
B\left(v_{1}, v_{1}\right)+B\left(v_{1}, v_{2}\right)+B\left(v_{2}, v_{1}\right)+B\left(w_{2}, v_{2}\right)=0 \quad\left(b_{1} l_{\left.n-v_{1}\right)}\right.
$$

$$
B\left(\phi\left(v_{1}\right)\right)+B\left(v_{1}, v_{2}\right)+B\left(\psi\left(v_{1}, v_{2}\right)\right)+B\left(\phi\left(v_{2}\right)\right)=0
$$

$$
\left.\left(\phi^{*} B\right)\left(v_{1}\right)+B\left(v_{1} v_{2}\right)+(4+B)\left(v_{1} v_{2}\right)+\Phi+B\right)\left(v_{2}\right)=0
$$

$$
\left.0+(B) \psi^{*} B\right)\left(r_{0} r_{0}\right)+0=0
$$

$$
\text { Thick }(\beta+4 * B)\left(v_{1} v_{2}\right) \geq 0 \text { for all }\left(v_{v} v_{2}\right) \in v x v_{1} \text { so }
$$

$$
B+4^{+} B=0 \text {, as required for } \Rightarrow \text { "direction. }
$$

$$
\text { " } L=" \text { direction Suppose } B+\psi^{*} B=D \text {. }
$$

(Cantived on Po. .

朝喑
Then, for all vev, we have:
$\left(B+\psi^{+} B\right)(v, v)=0$

$$
\begin{array}{ll}
B(v, v)+(\psi * B)(v, v)=0 \\
B(v, v)+B(Y+(v, v)=0 \\
B(v, v)+B(v, v)=0 \\
Z B(v, v)=0 & \text { good } 20 \\
B(v, v)=0 &
\end{array}
$$

$$
B(\phi(v))=0
$$

$$
\left(Q^{*} B\right)(v)^{2} 0
$$

Thus $\left(a^{+} B\right)(V)=0$ for all $v \in V$, so $d^{+} B=0$, as require for " $C=$ " direction.
We proved both directions, so $9^{t} b=0$ if and only if Bf $\psi^{*} p=0$, as required.

ones counts! Language counts!
oblem 5. If $L: V \rightarrow W$ is an invertible linear transration between oriented vector spaces (vector spaces quipped with an orientation), we say that L is orient-
on preserving if it pushes the orientation of V forward to the orientation of W (or equivalently, if it pulls the rientation of W back to the orientation of V). Otherwise, L is called orientation reversing. Decide for each of le cases below, if L_{i} is orientation preserving or reversing. In this question \mathbb{R}^{n} always comes equipped with its tandard orientation $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$.

1. $L_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ via $(x, y) \mapsto(-x, y)$.
2. $L_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ via $(x, y) \mapsto(y, x)$
3. $L_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the counterclockwise rotation by $2 \pi / 7$.
4. $L_{4}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the clockwise rotation by $2 \pi / 7$.
5. $L_{5}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the complex conjugation map $z \mapsto \bar{z}$, where \mathbb{R}^{2} is identified with \mathbb{C} via $(x, y) \leftrightarrow x+i y$.
6. $L_{6}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ via $(x, y, z) \mapsto(y, z, x)$.

This recuse big hes
8. $L_{8}: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}$ via $(u, v) \mapsto(v, u)$, where $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ pass (e, when) to basis (Miser Men ts and these kites
Tip. The answers for L_{7} and for L_{8} may depend on n and m. Your solution of Problem 5.
L_{i} is orientation preserving if and only if detmso where min: is matrix uppesputifo i in the standard basis $1, M=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ deft $(n+(-1)(1)-(0)(0)=-1(0)$ reversing]
$2, n_{2}=\binom{0}{1}, 0_{0}-1 \quad n_{2}=(0)(0)-(1)(1) \cdots \cdots<0,1$
[raving (Standard rotation matrix by $\frac{2 \pi}{7}$)
$\left.2 \times \operatorname{man}_{3}=\left(\cos \frac{2 \pi}{7}-\sin \frac{2 \pi}{7} \quad \cos \frac{2 \pi}{7}\right)^{2} d \cos ^{2} \frac{2 \pi}{7}+\sin ^{2} \frac{2 \pi}{7} \quad \cos ^{2}\right) 0$
(Continued on Pg. 12)

06BC06B6-7009-489E-977A-0C58AC4C0561
Your solution of Problem 5, continue
term-test-3-0f711
Standard rotation matrix by $-\frac{2 \pi}{7}$)
U. An $=\left(\begin{array}{cc}\cos \frac{3 \pi}{7} & \sin \frac{2 \pi}{7} \\ -\sin \frac{2 \pi}{7} & \cos \frac{2 \pi}{7}\end{array}\right)$

S. $\left.\operatorname{Lig}_{5}(x, y)-\operatorname{Li}(x+y)-x-y\right)=(x,-y)$
$M_{5}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, $\operatorname{det} M_{5}=(0)(-1)-(0)(0)=-1<0$
GAM $M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ proposing
$0 . m_{6}-\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & j\end{array}\right) \operatorname{det} M_{6}=(1)(1)(1) d$ do to $1 \geq 0$
preserving 1 boys. 1 permutation $\sigma E S_{3}$ define
7. $M_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)^{n}, \operatorname{det} M_{1}=(-1)^{n} \quad \begin{array}{r}\text { ord } \\ 0\end{array}$

If n is even, tet $m=(-1)^{n}>0$ preening
If n is odd, dot $M,(-1)^{n}<0$ reversing
8. M_{8} is the block matrix $\left(\begin{array}{ll}0 & I_{n} \\ 1 & 0\end{array}\right)$, where I_{k} denotes the identity matrix of size k. Then, consider the permutation $\sigma \in S_{\text {mem }}$ defined b_{y} :
ratch work - this page will not be ad unless you explicitly request it.
BAEDDOBB-C410-4BDE-AC10-E9A9F548CDE1

| term-test-3-0£711 | |
| :--- | :--- | :--- |
| \#13 | |
| | 13 of 22 |

-8. (Continued)

Then, we count hme crassings, since all in arrows starting
from $\{1, \ldots, n\}$ cross all m arrows starting frowe $\{n+1, \ldots, m$ mas.
Thus, det $M_{8}=[-1)^{\circ}=(-1)^{\text {na }}$.
If h and m are odd, then $\operatorname{det} M_{g}=1<0$, reversing. If nor m is even, then det $M_{8}=120$, ppeserving.

Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions. (Note: This section was not submitted for grading.)

1. This was probably the hardest question on the test. One way to approach this problem is to recall a similar proof we did in lecture: We proved that if $f^{\prime}(0)$ is invertible, then f can be written as a composition of coordinate swaps and layer preserving maps. A key step in that proof was that we defined $\alpha_{k}(x):=\left(x_{1}, x_{2}, \ldots, x_{n-1}, f_{k}(x)\right)$, and we wanted to define $\beta_{k}:=f \circ \alpha_{k}^{-1}$ so that $f=\beta_{k} \circ \alpha_{k}$. To do this, we needed to use the Inverse Function Theorem on α_{k}, which required $\operatorname{det} \alpha_{k}^{\prime}(0) \neq 0$. Since $\alpha_{k}^{\prime}(x)=\left(\begin{array}{cc}I_{n-1} & 0 \\ * & \frac{\partial f_{k}(x)}{\partial x_{n}}\end{array}\right)$, we obtained $\operatorname{det} \alpha_{k}^{\prime}(x)=\frac{\partial f_{k}(x)}{\partial x_{n}}$, so we needed $\frac{\partial f_{k}(x)}{\partial x_{n}}$ to be nonzero for some k. Since $f^{\prime}(0)$ is invertible, we knew that some entry in the $n^{\text {th }}$ column of $f^{\prime}(0)$ was nonzero, so we obtained $\frac{\partial f_{k}(x)}{\partial x_{n}} \neq 0$ for some k, as required. (Then, we composed α_{k} and β_{k} with coordinate swaps to form layer preserving maps.)
The solution for this test question follows analogously. First, our goal is to obtain the following diagram:

$$
\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \stackrel{g_{2}}{\longmapsto}\left(x_{1}, \ldots, f_{i}(x), \ldots, x_{n}\right) \stackrel{g_{1}}{\longmapsto}\left(f_{1}(x), \ldots, f_{i}(x), \ldots, f_{n}(x)\right)
$$

Then, we define $g_{2}(x):=\left(x_{1}, \ldots, f_{i}(x), \ldots, x_{n}\right)$. Following the discussion above, we compute $\operatorname{det} g_{2}^{\prime}(x)=\frac{\partial f_{i}(x)}{\partial x_{i}}$, and assuming that $\frac{\partial f_{i}(x)}{\partial x_{i}} \neq 0$ for some i, we proceed to use the Inverse Function Theorem. This allows us to define $g_{1}:=f \circ g_{2}^{-1}$, completing the proof.
If you're curious, a possible counterexample to the original statement (i.e., without $\frac{\partial f_{i}}{\partial x_{i}} \neq 0$) is $f(x, y)=(y, x)$. In this example, we have $\operatorname{det} f^{\prime}(0)=\operatorname{det}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=-1 \neq 0$, so $f^{\prime}(0)$ is invertible. However, if we try to write $f=g_{1} \circ g_{2}$, whire g_{1} and g_{2} each preserve a coordinate, then we can only preserve one coordinate at a time. This means that we must have the following diagram:

$$
(x, y) \stackrel{g_{2}}{\longleftrightarrow}(x, x) \stackrel{g_{1}}{\longmapsto}(y, x)
$$

or the following diagram:

$$
(x, y) \stackrel{g_{2}}{\longleftrightarrow}(y, y) \stackrel{g_{1}}{\longleftrightarrow}(y, x)
$$

Both situations are invalid because g_{2} is not invertible: Since $g_{2}(x, y)$ only contains information about one coordinate, g_{1} does not know how to map $g_{2}(x, y)$ to (y, x). (By the way, this is not a contradiction for the fixed problem statement because $\frac{\partial f_{1}}{\partial x_{1}}=\frac{\partial f_{2}}{\partial x_{2}}=0$.)
2. (Note: This question was very similar to Question 6 from last year's Test 3 rejects.)

The question itself was mostly computational, I will proceed by providing a visualization of $\phi_{*} \xi$. First, $\xi=\left(\left(0, \frac{\pi}{2}\right),(0,1)\right)$ is a vector on the y-axis that points further in the positive y direction. Next, let us examine how ϕ "pushes" the y-axis. Plugging in $x=0$, we obtain $\phi(0, y)=(\cos y, \sin y)$. As a result, ϕ "pushes" the y-axis to the unit circle in \mathbb{R}^{2}, and ϕ "pushes" the positive y-direction to the counterclockwise direction on the circle. Then, it would make sense if ξ gets "pushed" to a vector starting at the point $\left(\cos \frac{\pi}{2}, \sin \frac{\pi}{2}\right)=(0,1)$ and pointing counterclockwise. Indeed, we can compute that $\phi_{*} \xi=\left(\left(0, \frac{\pi}{2}\right),(0,1)\right)=((0,1),(-1,0))$,
where $(-1,0)$ points counterclockwise, as desired. Here is a diagram of this visualization:

3. (Note: This question also appeared as Question 3 from last year's Test 3 rejects.) First, let us try to understand what " $\phi^{*} B=0$ " and " $B+\psi^{*} B=0$ " actually mean. If we have $\phi^{*} B=0$, then it means that $0=\left(\phi^{*} B\right)(v)=B(\phi(v))=B(v, v)$ for all $v \in V$. In other words, " $\phi^{*} B=0$ " is equivalent to " B kills repetitions". Moreover, if $B+\psi^{*} B=0$, then it means that $0=\left(B+\psi^{*} B\right)(u, v)=B(u, v)+B(\psi(u, v))=B(u, v)+B(v, u)$, so $B(u, v)=-B(v, u)$ for all $u, v \in V$. In other words, " $B+\psi^{*} B=0$ " is equivalent to " B is alternating". Then, the question is really asking us to prove that B kills repetitions if and only if B is alternating. In fact, we also proved this statement in lecture, so we can re-apply the proof for this test question.
4. (Note: This question also appeared as Question 3 on last year's Test 3, and it is also strongly related to Assignment 15 Question 1).
First, since curl only operates on vector fields in \mathbb{R}^{3}, it makes sense that we should consider d on forms in \mathbb{R}^{3}. Next, since F and curl F both have three coordinates/components, it makes sense that they correspond to forms in some 3 -dimensional space $\Omega^{k}\left(\mathbb{R}^{3}\right)$. Since we know that $\operatorname{dim} \Omega^{0}\left(\mathbb{R}^{3}\right)=\operatorname{dim} \Omega^{3}\left(\mathbb{R}^{3}\right)=1$ and $\operatorname{dim} \Omega^{1}\left(\mathbb{R}^{3}\right)=\operatorname{dim} \Omega^{2}\left(\mathbb{R}^{3}\right)=3$, this tells us to associate F with 1-forms and curl F with 2-forms. We associate F with $\omega_{1}^{F}=F_{1} d x_{1}+F_{2} d x_{2}+F_{3} d x_{3}$ because that is a simple and natural choice. After computing $d \omega_{1}^{F}$, we compare that with curl F, and that tells us how to associate curl F with a corresponding 2 -form. After we compile this "scratch work" into a written solution, we are done.
5. This question also appeared as Question 2 on Assignment 13. As with Assignment 13, the key idea was to treat each L_{i} as a change of basis matrix, then to compute whether its determinant is positive or negative.

