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Notes on Intuition

Now, let us develop some intuition on how to approach these problems and motivate these solutions.
(Note: This section was not submitted for grading.)

1. This was probably the hardest question on the test. One way to approach this problem is to recall
a similar proof we did in lecture: We proved that if f ′(0) is invertible, then f can be written as
a composition of coordinate swaps and layer preserving maps. A key step in that proof was that
we defined αk(x) := (x1, x2, . . . , xn−1, fk(x)), and we wanted to define βk := f ◦ α−1k so that
f = βk ◦ αk. To do this, we needed to use the Inverse Function Theorem on αk, which required

detα′k(0) 6= 0. Since α′k(x) =

(
In−1 0

∗ ∂fk(x)
∂xn

)
, we obtained detα′k(x) = ∂fk(x)

∂xn
, so we needed

∂fk(x)
∂xn

to be nonzero for some k. Since f ′(0) is invertible, we knew that some entry in the nth

column of f ′(0) was nonzero, so we obtained ∂fk(x)
∂xn

6= 0 for some k, as required. (Then, we
composed αk and βk with coordinate swaps to form layer preserving maps.)
The solution for this test question follows analogously. First, our goal is to obtain the following
diagram:

(x1, . . . , xi, . . . , xn) �
g2 //(x1, . . . , fi(x), . . . , xn) �

g1 //(f1(x), . . . , fi(x), . . . , fn(x))

Then, we define g2(x) := (x1, . . . , fi(x), . . . , xn). Following the discussion above, we compute

det g′2(x) = ∂fi(x)
∂xi

, and assuming that ∂fi(x)
∂xi

6= 0 for some i, we proceed to use the Inverse

Function Theorem. This allows us to define g1 := f ◦ g−12 , completing the proof.

If you’re curious, a possible counterexample to the original statement (i.e., without ∂fi
∂xi
6= 0)

is f(x, y) = (y, x). In this example, we have det f ′(0) = det

(
0 1
1 0

)
= −1 6= 0, so f ′(0) is

invertible. However, if we try to write f = g1 ◦ g2, whire g1 and g2 each preserve a coordinate,
then we can only preserve one coordinate at a time. This means that we must have the following
diagram:

(x, y) �
g2 //(x, x) �

g1 //(y, x)

or the following diagram:

(x, y) �
g2 //(y, y) �

g1 //(y, x)

Both situations are invalid because g2 is not invertible: Since g2(x, y) only contains information
about one coordinate, g1 does not know how to map g2(x, y) to (y, x). (By the way, this is not
a contradiction for the fixed problem statement because ∂f1

∂x1
= ∂f2

∂x2
= 0.)

2. (Note: This question was very similar to Question 6 from last year’s Test 3 rejects.)
The question itself was mostly computational, I will proceed by providing a visualization of
φ∗ξ. First, ξ = ((0, π2 ), (0, 1)) is a vector on the y-axis that points further in the positive y-
direction. Next, let us examine how φ ”pushes” the y-axis. Plugging in x = 0, we obtain
φ(0, y) = (cos y, sin y). As a result, φ ”pushes” the y-axis to the unit circle in R2, and φ
”pushes” the positive y-direction to the counterclockwise direction on the circle. Then, it would
make sense if ξ gets ”pushed” to a vector starting at the point (cos π2 , sin

π
2 ) = (0, 1) and point-

ing counterclockwise. Indeed, we can compute that φ∗ξ = ((0, π2 ), (0, 1)) = ((0, 1), (−1, 0)),
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where (−1, 0) points counterclockwise, as desired. Here is a diagram of this visualization:

3. (Note: This question also appeared as Question 3 from last year’s Test 3 rejects.)
First, let us try to understand what “φ∗B = 0” and “B + ψ∗B = 0” actually mean. If we have
φ∗B = 0, then it means that 0 = (φ∗B)(v) = B(φ(v)) = B(v, v) for all v ∈ V . In other words,
“φ∗B = 0” is equivalent to “B kills repetitions”. Moreover, if B + ψ∗B = 0, then it means that
0 = (B+ψ∗B)(u, v) = B(u, v) +B(ψ(u, v)) = B(u, v) +B(v, u), so B(u, v) = −B(v, u) for all
u, v ∈ V . In other words, “B+ψ∗B = 0” is equivalent to “B is alternating”. Then, the question
is really asking us to prove that B kills repetitions if and only if B is alternating. In fact, we also
proved this statement in lecture, so we can re-apply the proof for this test question.

4. (Note: This question also appeared as Question 3 on last year’s Test 3, and it is also strongly
related to Assignment 15 Question 1).
First, since curl only operates on vector fields in R3, it makes sense that we should consider d
on forms in R3. Next, since F and curlF both have three coordinates/components, it makes
sense that they correspond to forms in some 3-dimensional space Ωk(R3). Since we know that
dim Ω0(R3) = dim Ω3(R3) = 1 and dim Ω1(R3) = dim Ω2(R3) = 3, this tells us to associate
F with 1-forms and curlF with 2-forms. We associate F with ωF1 = F1dx1 + F2dx2 + F3dx3
because that is a simple and natural choice. After computing dωF1 , we compare that with curlF ,
and that tells us how to associate curlF with a corresponding 2-form. After we compile this
“scratch work” into a written solution, we are done.

5. This question also appeared as Question 2 on Assignment 13. As with Assignment 13, the key
idea was to treat each Li as a change of basis matrix, then to compute whether its determinant
is positive or negative.
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